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A motivating problem

Consider the following situation:

• A patient has a disease

• The disease may lead to an event (such as death)

• A treatment can be given, depending on health condition

• The patient may at any time be censored (e.g., recover)

We wish to model this scenario and estimate the causal effect of the
treatment on the time to the event.
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A motivating problem

We may use counting processes to set up a modeling framework (Røysland
2010). Assume:

• NA, NC , ND are univariate counting processes

• NL is a multivariate counting process

and

• TA = inf{t ≥ 0 | NA
t = 1}, similarly for TC and TD

• At =
∫ t

0 1(s≤TA) dN
A
s , similarly for C and D

• Lt = L0 +
∫ t

0 HL
s dN

L
s

Here:

• A is the counting process for initiation of treatment

• C is the counting process for censoring

• D is the counting process for the event

• L measures the patients multivariate health condition
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A motivating problem

Illustration of the model setup:
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A motivating problem

The behaviour of the model is determined by the intensities of the
counting processes NA, NC , ND and NL. Let NA have intensity λA, etc.

The intensities are stochastic. We allow, say, λD , to depend on the
processes A and L. This corresponds to that the probability of the event
occurring depends on both treatment status and health condition.

We put restrictions on the dependencies, corresponding to the local
independence graph:

C L

��

vv ((
D

A
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5 / 46



A motivating problem

The behaviour of the model is determined by the intensities of the
counting processes NA, NC , ND and NL. Let NA have intensity λA, etc.

The intensities are stochastic. We allow, say, λD , to depend on the
processes A and L. This corresponds to that the probability of the event
occurring depends on both treatment status and health condition.

We put restrictions on the dependencies, corresponding to the local
independence graph:

C L

��

vv ((
D

A

HHWW GG

5 / 46



A motivating problem

The behaviour of the model is determined by the intensities of the
counting processes NA, NC , ND and NL. Let NA have intensity λA, etc.

The intensities are stochastic. We allow, say, λD , to depend on the
processes A and L. This corresponds to that the probability of the event
occurring depends on both treatment status and health condition.

We put restrictions on the dependencies, corresponding to the local
independence graph:

C L

��

vv ((
D

A

HHWW GG

5 / 46



A motivating problem

Røysland proposes estimation in this model for unobserved L by
constructing a randomized trial measure and carrying out estimation
under this measure. A randomized trial measure is a probability measure
where the local independence graph is:

C L
((
D

A

HHWW GG

Røysland shows that this facilitates estimation of the causal effect of A on
D in the marginal model where L is unobserved.
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A motivating problem

We can now formulate two questions:
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A motivating problem

We can now formulate two questions:

1 The estimation methodology outlined above requires the existence of
randomized trial measures. What are sufficient criteria ensuring
this existence?

2 Our modeling discussion involved notions of causality. How do we
formalize such notions in a continuous-time framework?
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Exponential martingales

Recall that our motivating question was the existence of randomized trial
measures, defined through the local independence graph.

The local independence graph is a description of the dependency
relationships of the intensities. Thus, we need to construct counting
process distributions with particular intensities.

From a more abstract perspective, our problem is thus:

Problem I. Assume given processes λ and µ, and a multidimensional
counting process N with intensity λ. When is it possible to construct from
this a multidimensional counting process with intensity µ?

8 / 46



Exponential martingales

Recall that our motivating question was the existence of randomized trial
measures, defined through the local independence graph.

The local independence graph is a description of the dependency
relationships of the intensities. Thus, we need to construct counting
process distributions with particular intensities.

From a more abstract perspective, our problem is thus:

Problem I. Assume given processes λ and µ, and a multidimensional
counting process N with intensity λ. When is it possible to construct from
this a multidimensional counting process with intensity µ?

8 / 46



Exponential martingales

Recall that our motivating question was the existence of randomized trial
measures, defined through the local independence graph.

The local independence graph is a description of the dependency
relationships of the intensities. Thus, we need to construct counting
process distributions with particular intensities.

From a more abstract perspective, our problem is thus:

Problem I. Assume given processes λ and µ, and a multidimensional
counting process N with intensity λ. When is it possible to construct from
this a multidimensional counting process with intensity µ?

8 / 46



Exponential martingales

To give a solution to this problem, we assume given:

• A filtered probability space (Ω,F , (Ft),P)

• Predictable d-dimensional processes λ and µ on the probability space

• A counting process N with intensity λ on the probability space

And we define:

• M i
t = N i

t −
∫ t

0 λ
i
s ds

• γ it = µit/λ
i
t

• H i
t = γ it − 1

All integrals are vector integrals, meaning that

(H ·M)t =
d∑

i=1

∫ t

0
H i
s dM

i
s .
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Exponential martingales

Definition. Given a local martingale L with initial value zero, the
exponential martingale E(L) of L is given as the solution to the SDE

dE(L)t = E(Lt−)dLt .

The following lemma shows that the martingale property of E(H ·M) can
be used to construct a counting process with intensity µ by a change of
measure.

Lemma. Assume that E(H ·M) is a martingale. Let t ≥ 0 and let Qt

have Radon-Nikodym derivative E(H ·M)t . Then N has intensity µ on
[0, t] under Qt .
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Exponential martingales

Thus, by the lemma, it suffices to consider:

Problem II. When is E(H ·M) a martingale?

We obtained the following sufficient criterion:

Theorem. Assume that there is ε > 0 such that for 0 ≤ u ≤ t with
t − u ≤ ε, it holds that one of the following two conditions are satisfied:

E exp

(
d∑

i=1

∫ t

u
(γis log γ is − (γ is − 1))λis ds

)
<∞ or

E exp

(
d∑

i=1

∫ t

u
λis ds +

∫ t

u
log+ γ

i
s dN

i
s

)
<∞.

Then E(H ·M) is a martingale.
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Exponential martingales

For the case of a homogeneous Poisson process, meaning that λ = 1, we
get the following corollary.

Corollary. Assume that there is ε > 0 such that for 0 ≤ u ≤ t with
t − u ≤ ε, it holds that one of the following two conditions are satisfied:

E exp

(
d∑

i=1

∫ t

u
µis log+ µ

i
s ds

)
<∞ or

E exp

(
d∑

i=1

∫ t

u
log+ µ

i
s dN

i
s

)
<∞.

Then E(H ·M) is a martingale.
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Exponential martingales

This yields criteria for the existence of:
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Exponential martingales

This yields criteria for the existence of:

• Randomized trial measures

• Counting processes with intensity increasing affinely in N

• Counting processes with intensity given as transformations of SDEs

• Some self-exciting counting processes
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Exponential martingales

We also considered a more classical problem, namely:

Problem III. Given a local martingale M with initial value zero, when is
E(M) a uniformly integrable martingale?

A classical result is:

Theorem (Novikov, 1972). Assume that M is continuous. If
E exp( 1

2 [M]∞) is finite, then E(M) is a uniformly integrable martingale.

What happens when M is allowed to have jumps, with ∆M ≥ −1?

Theorem (Protter & Shimbo, 2008). If E exp( 1
2〈M

c〉∞ + 〈Md〉∞) is
finite, then E(M) is a uniformly integrable martingale.
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Exponential martingales

We showed the following. For a > −1 with a 6= 0, define

α(a) =
(1 + a) log(1 + a)− a

a2

β(a) =
(1 + a) log(1 + a)− a

(1 + a)a2
,

and extend to [−1,∞) by continuity.

Theorem. Let a ≥ −1 and assume that ∆M1(∆M 6=0) ≥ a. It holds that

E exp( 1
2〈M

c〉∞ + α(a)〈Md〉∞) <∞⇒ E(M) is an UI MG

E exp( 1
2 [Mc ]∞ + β(a)[Md ]∞) <∞⇒ E(M) is an UI MG.

All constants are optimal. Note that β(−1) =∞.
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Exponential martingales

Plot of α and β:
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Exponential martingales

As α(0) = β(0) = 1
2 , we obtain:

Corollary. Assume that ∆M ≥ 0. If E exp( 1
2〈M〉∞) or E exp( 1

2 [M]∞) is
finite, then E(M) is a uniformly integrable martingale.

Thus, having nonnegative jumps seems to lead to equal importance of the
predictable and optional quadratic variation.

Based on this observation, we proved, extending a result by Krylov (2009):

Theorem. Assume that ∆M ≥ 0. Fix 0 ≤ γ ≤ 1. Assume that

lim inf
ε→0

ε log E exp

(
(1− ε)

1

2
(γ[M]∞ + (1− γ)〈M〉∞)

)
<∞,

then E(M) is a uniformly integrable martingale.
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Simplified proofs in the general theory of processes

A detour. Having considered some problems applying local martingales,
compensators and the quadratic variation, we asked: Can simplified
proofs of the existence of these processes could be found?

Beiglböck et al (2012) gave a simplified proof of the Doob-Meyer theorem
using the following lemma:

Lemma. Let (Xn) be a uniformly integrable sequence of variables. Then,
there exist a limit variable X and convex weights such that

Ki∑
i=n

λni Xi
L1

−→ X .
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Simplified proofs in the general theory of processes

Applying an L2 version of the lemma, we gave simple proofs of:
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• The existence of the quadratic variation process: For a local
martingale M, there exists an adapted and increasing process [M]
such that M2 − [M] is a local martingale and (∆M)2 = ∆[M].

The first proof is a minor variation of the arguments presented in
Beiglböck et al (2012).
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Simplified proofs in the general theory of processes

Outline of the proof of the existence of the quadratic variation:

By the fundamental theorem of local martingales, it suffices to consider
the case of a bounded local martingale M.

Write M2
t = Nn

t + Qn
t , where tnk = k2−n and

Nn
t = 2

∑
k:tnk−1<t

Mt
tnk−1

(Mt
tnk
−Mt

tnk−1
).

Observe that (Nn
t ) is a sequence of local martingales with (Nn

∞) bounded
in L2. Thus, by the lemma, there exists a limiting martingale N.

Put [M] = M2 − N and verify using strong convergence.

20 / 46



Simplified proofs in the general theory of processes

Outline of the proof of the existence of the quadratic variation:

By the fundamental theorem of local martingales, it suffices to consider
the case of a bounded local martingale M.

Write M2
t = Nn

t + Qn
t , where tnk = k2−n and

Nn
t = 2

∑
k:tnk−1<t

Mt
tnk−1

(Mt
tnk
−Mt

tnk−1
).

Observe that (Nn
t ) is a sequence of local martingales with (Nn

∞) bounded
in L2. Thus, by the lemma, there exists a limiting martingale N.

Put [M] = M2 − N and verify using strong convergence.

20 / 46



Simplified proofs in the general theory of processes

Outline of the proof of the existence of the quadratic variation:

By the fundamental theorem of local martingales, it suffices to consider
the case of a bounded local martingale M.

Write M2
t = Nn

t + Qn
t , where tnk = k2−n and

Nn
t = 2

∑
k:tnk−1<t

Mt
tnk−1

(Mt
tnk
−Mt

tnk−1
).

Observe that (Nn
t ) is a sequence of local martingales with (Nn

∞) bounded
in L2. Thus, by the lemma, there exists a limiting martingale N.

Put [M] = M2 − N and verify using strong convergence.

20 / 46



Simplified proofs in the general theory of processes

Outline of the proof of the existence of the quadratic variation:

By the fundamental theorem of local martingales, it suffices to consider
the case of a bounded local martingale M.

Write M2
t = Nn

t + Qn
t , where tnk = k2−n and

Nn
t = 2

∑
k:tnk−1<t

Mt
tnk−1

(Mt
tnk
−Mt

tnk−1
).

Observe that (Nn
t ) is a sequence of local martingales with (Nn

∞) bounded
in L2. Thus, by the lemma, there exists a limiting martingale N.

Put [M] = M2 − N and verify using strong convergence.

20 / 46



Simplified proofs in the general theory of processes

Outline of the proof of the existence of the quadratic variation:

By the fundamental theorem of local martingales, it suffices to consider
the case of a bounded local martingale M.

Write M2
t = Nn

t + Qn
t , where tnk = k2−n and

Nn
t = 2

∑
k:tnk−1<t

Mt
tnk−1

(Mt
tnk
−Mt

tnk−1
).

Observe that (Nn
t ) is a sequence of local martingales with (Nn

∞) bounded
in L2. Thus, by the lemma, there exists a limiting martingale N.

Put [M] = M2 − N and verify using strong convergence.

20 / 46



A notion of causality for SDEs

We return to our main line of problems. Recall that through our main
motivating problem, we can to ask the question: How do we formalize
causality in a continuous-time framework?

Instead of considering counting processes, where causality already has been
discussed through local independence (e.g. Didelez 2008), we considered
causality for stochastic differential equations (SDEs) of the type

dXt = a(Xt−)dZt ,

where a : Rp →M(p, d) and Z is a d-dimensional semimartingale.

We begin by considering an example.

21 / 46



A notion of causality for SDEs

We return to our main line of problems. Recall that through our main
motivating problem, we can to ask the question: How do we formalize
causality in a continuous-time framework?

Instead of considering counting processes, where causality already has been
discussed through local independence (e.g. Didelez 2008), we considered
causality for stochastic differential equations (SDEs) of the type

dXt = a(Xt−)dZt ,

where a : Rp →M(p, d) and Z is a d-dimensional semimartingale.

We begin by considering an example.

21 / 46



A notion of causality for SDEs

We return to our main line of problems. Recall that through our main
motivating problem, we can to ask the question: How do we formalize
causality in a continuous-time framework?

Instead of considering counting processes, where causality already has been
discussed through local independence (e.g. Didelez 2008), we considered
causality for stochastic differential equations (SDEs) of the type

dXt = a(Xt−)dZt ,

where a : Rp →M(p, d) and Z is a d-dimensional semimartingale.

We begin by considering an example.

21 / 46



A notion of causality for SDEs

Example. We consider a plant whose growth depends on the expression of
some known particular genes. Furthermore, the expression level of the
genes are causally dependent on each other.

gene Aoo

OO

+
//

+
��

gene B (growth)

gene C
+
//

+ ))

gene D (growth)

gene E
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gene D (growth)

gene E

What happens when we intervene by changing the activity level of some
gene?
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+ ))

gene D (growth)

gene E

Increasing the activity of gene E: no effect. (in spite of positive
correlation with growth)
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Increasing the activity of gene C: growth effect. (through gene D)
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A notion of causality for SDEs

Example. We consider a plant whose growth depends on the expression of
some known particular genes. Furthermore, the expression level of the
genes are causally dependent on each other.

gene Aoo

OO

+
//

+
��

gene B (growth)

gene C
+
//

+ ))

gene D (growth)

gene E

Increasing the activity of gene A: large growth effect. (through genes B
and D)
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A notion of causality for SDEs

In reality, expression levels of genes change over time. Consider a network
of p genes. One simple model of the activity of these genes over time is
through an Ornstein-Uhlenbeck SDE of the type

dXt = B(Xt − A)dt + σ dWt .

In this case, the matrix B controls the association of the p genes to each
other.

If we could endow this model with a notion of causality, we might be able
to use it to predict the effect of interventions in the system. This is
our motivation for introducing a notion of causality for SDEs.
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A notion of causality for SDEs
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A notion of causality for SDEs

Formally, our setup consists of the following:

• A p-dimensional initial condition X0

• A d-dimensional semimartingale Z

• A continuous function a : Rp →M(p, d).

We consider the SDE

dXt = a(Xt−)dZt .
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A notion of causality for SDEs

As the argument t in Xt frequently denotes time, it is natural to interpret
our SDE in terms of causality where variables from previous timepoints are
the causes of variables for future timepoints.

In particular, we may use the formula

dXt = a(Xt−)dZt

to make the approximation

Xt+∆ = Xt + a(Xt)(Zt+∆ − Zt)

and consider this as describing how interventions in Xt will influence Xt+∆.
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A notion of causality for SDEs

Definition. Consider some m ≤ p and ζ ∈ R. The postintervention SDE
arising from making the intervention Xm := ζ in the p-dimensional SDE

dXt = a(Xt−)dZt

is the p-dimensional SDE

dYt = b(Yt−) dZt

where b : Rp →M(p, d), bij(y) = aij(y) for i 6= m and bmj(y) = 0,
Y i

0 = X i
0 for i 6= m and Ym

0 = ζ.

This directly defines interventions in SDEs without specifying the
underlying notion of causality.
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A notion of causality for SDEs

However, a limiting argument shows that our notion of intervention is in
agreement with intervening in the DAG (directed acyclic graph) of
the discretized SDE given as below, where arrows corresponds to
entries of a(x) independent of particular coordinates of x .

(X∆)1
0

//

$$

(X∆)1
∆

//

%%

(X∆)1
2∆

//

&&

(X∆)1
3∆

//

""(X∆)2
0

// (X∆)2
∆

// (X∆)2
2∆

// (X∆)2
3∆

//

(X∆)3
0

//

::

(X∆)3
∆

//

99

(X∆)3
2∆

//

88

(X∆)3
3∆

//

<<

Z∆ − Z0

FF

CC

BB

Z2∆ − Z∆

FF

CC

BB

Z3∆ − Z2∆

FF

CC

BB
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A notion of causality for SDEs

We now have a notion of intervention for SDEs, and thus a notion of
causality for SDEs, at our disposal.

Question: Assume that we observe some SDE. Are postintervention
distributions idenfiable from the observational distribution?

In Pearl’s classical DAG-based notion of causality, this is not the case.

In our SDE case, the fact that distinct SDEs can have the same
distributions (for example, through varying the diffusion matrix) could be a
source of complications.
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A notion of causality for SDEs

Theorem. Consider the two SDEs

dXt = a(Xt−)dZt

and

dXt = ã(Xt−)dZ̃t ,

where Z and Z̃ are Lévy processes of dimension d and d̃ , respectively, and
a and ã are Lipschitz and bounded. Then the results of intervention in the
SDEs are the same whenever the Feller semigroups and the initial
distributions are the same for the SDEs.

29 / 46



A notion of causality for SDEs

This enables practical inference of postintervention distributions through
the following line of inference:

Observational distribution

��

Feller semigroup of the observational SDE

��

Postintervention distribution
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A notion of causality for SDEs

Consider again our previous plant growth example:

gene Aoo

OO

+
//

+
��

gene B (growth)

gene C
+
//

+ ))

gene D (growth)

gene E

Our results imply that for time-dependent SDE observations with Lévy
noise, all intervention effects can be identified.
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Identifiability in ICA

A detour (again). Having come into contact with the literature on
DAG-based causality, we also considered a problem related to this.

In the DAG-based model for causal discovery, we:

• Consider the distribution of p variables X 1, . . . ,X p.

• Assume that the distribution of these variables have conditional
independence properties consistent with some DAG.

• Wish to identify the DAG, corresponding to the causal network.

The central problem is that the DAG is not uniquely identifiable from the
distribution.
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Identifiability in ICA

However, Shimizu et al (2006) showed the following. Assume that the
variables X 1, . . . ,X p are linearly related in the sense that

X = CX + ε

where C ∈M(p, p) is acyclic in the sense that PCPt is strictly lower
triangular for some permutation matrix P. Also assume that the error
variable ε has independent, non-degenerate and non-Gaussian coordinates
of mean zero.

Then, the DAG can be recovered from the distribution of X .
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Identifiability in ICA

This identifiability result is derived from a result on ICA (Independent
Component Analysis).
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This identifiability result is derived from a result on ICA (Independent
Component Analysis). The ICA model considers p variables X 1, . . . ,X p

satisfying

X = Aε,

where ε has independent non-degenerate coordinates of mean zero. Both
A and the distribution of ε are assumed unknown and are to be estimated.
X is observed.

From the results of Comon (1994), it follows that:

1 If the true distribution of ε has only Gaussian coordinates, A is
identifiable up to transpose products.

2 If the true distribution of ε has no Gaussian coordinates, then A is
identifiable up to scaling and permutation.
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Identifiability in ICA

This presents the following practical conundrum:

It is infeasible to claim that the error distribution is exactly Gaussian.
Therefore, it is reasonable to expect that we will always be in the latter
of the two scenarios.

Nonetheless, we might think that in practice, if the error distribution is
close to Gaussian, the behaviour of the model will more closely resemble
the former of the two scenarios.

Question: What actually happens to identifiability when we sample
finitely many times and the error distribution is close to Gaussian while not
being Gaussian?
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Identifiability in ICA

This issue may be framed as a discrepancy between continuous and
discontinuous behaviour:
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This issue may be framed as a discrepancy between continuous and
discontinuous behaviour:

• When considering the entire family of distributions, the model
behaves discontinuously: Identifiability properties can change
drastically even for small changes in the true distribution of ε.

• When considering a single distribution at a time, the model
behaves continuously: When the distribution of ε varies a small
amount, the distribution of Aε also varies only a small amount.

We set out to understand this phenomenon better.
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Identifiability in ICA

To obtain results, we considered estimation only of the mixing matrix A,
assuming the error distribution fixed. We considered error distributions
which are independent and identical contaminated Gaussian distributions.
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To obtain results, we considered estimation only of the mixing matrix A,
assuming the error distribution fixed. We considered error distributions
which are independent and identical contaminated Gaussian distributions.

Theorem. Consider n samples X1, . . . ,Xn from the p-dimensional true
distribution. Assume that the common error distribution Pn is
Pn = βnξ + (1− βn)N , where N is the standard normal distribution.
Letting n tend to infinity, it holds that:

• If βn ' n−ρ for ρ > 1/2 (fast approach to Gaussianity), then the
asymptotic behaviour of the model is similar to the Gaussian scenario.

• If βn ' n−ρ for ρ < 1/2 (slow approach to Gaussianity), then the
asymptotic behaviour of the model is similar to the non-Gaussian
scenario.

(Subject to very favorable interpretations)
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Degrees of freedom in nonlinear regression

Recall that one of our motivating examples for the development of a
notion of causality for SDEs was an Ornstein-Uhlenbeck SDE for modeling
gene expression networks:

dXt = B(Xt − A) dt + σ dWt .

Having introduced our notion of causality for such SDEs, we next turned
to the question of estimating the causal network in such an SDE.

For the OU SDE, the causal network is determined by the zeroes of the
mean reversion speed matrix B (Bij = 0 means the absence of a causal
link from j to i).

We will take particular interest in sparse networks, meaning that we wish
to obtain sparse estimates of B (many entries equal to zero).
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Degrees of freedom in nonlinear regression

For simplicity, we consider the Ornstein-Uhlenbeck SDE

dXt = BXt dt + dWt

with mean reversion level zero and diffusion matrix Ip.

We assume that we observe this SDE discretely at times tk = ∆k for
k = 0, . . . , n. A natural loss function for the estimation of B is then
R : M(p, p)→ [0,∞) given by

R(B) =
n∑

k=1

‖Xtk − exp(∆B)Xtk−1
‖2

2

and sparse estimates can be obtained by, for λ ≥ 0,

B̂λ(Xt0 , . . . ,Xtn) = argmin
B∈M(p,p)

R(B) + λ‖B‖1.
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R(B) + λ‖B‖1.
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Degrees of freedom in nonlinear regression

Some numerical results from simulated data:
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Degrees of freedom in nonlinear regression

Some numerical results from simulated data:
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Degrees of freedom in nonlinear regression

Conclusion. Estimation through L1-penalized estimation with loss
function R yields reasonable sparse estimates.

Problem. How should λ be chosen? This can be thought of as a model
selection type of problem, as we are choosing a “submodel” based on the
zeroes of our estimate of B.

Sad fact. We don’t really know how to choose λ.

Workaround. Ignore the hard problem and solve a simpler problem.
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Degrees of freedom in nonlinear regression

Example. Consider the linear regression model

Y = Xβ + ε

where X ∈M(n, p), β ∈ Rp and ε is N (0, σ2In).

Sparse estimation can be obtained by the LASSO estimator

β̂λ = argmin
β∈Rp

‖Y − Xβ‖2
2 + λ‖β‖1

and λ can be chosen by introducing the generalization error of β̂λ

Errβ(β̂λ) = Eβ‖Y ∗ − X β̂λ‖2
2,

where Y ∗ is independent of Y and has the same distribution as Y , and
choosing λ as the minimizer of an estimate of Errβ(β̂λ).
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Degrees of freedom in nonlinear regression

In the linear regression model, Tibshirani and Taylor (2012) showed that

Eβ‖Y ∗ − X β̂λ‖2
2 = Eβ‖Y − X β̂λ‖2

2 + 2σ2Eβ rank XAλ
,

where Aλ = {i ≤ p | β̂λ 6= 0}.

Therefore, we may estimate Errβ(β̂λ) by

Êrrβ(β̂λ) = ‖Y − X β̂λ‖2
2 + 2σ̂2 rank XAλ

and define λ̂ = argminλ≥0 Êrrβ(β̂λ).

This yields a methodology for choosing λ in the linear regression case.

Let us try this for a more complicated model (though still less complicated
than the Ornstein-Uhlenbeck model).
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Degrees of freedom in nonlinear regression

We consider the nonlinear regression model

Y = ϕ(β) + ε

where ϕ : Rp → Rn is continuous and ε is N (0, σ2In).
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σ2

n∑
i=1

covβ(Yi , ϕ(β̂)i )
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We consider the nonlinear regression model

Y = ϕ(β) + ε

where ϕ : Rp → Rn is continuous and ε is N (0, σ2In).

Consider an estimator β̂ and introduce

df(β̂) =
1

σ2

n∑
i=1

covβ(Yi , ϕ(β̂)i )

dfS(β̂) = Eβ divϕ(β̂)

which we call the degrees of freedom and the Steinian degrees of
freedom, respectively, when defined. Here, the divergence can be a weak
type of divergence.
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Degrees of freedom in nonlinear regression

From Efron (2004), it holds that

Err(β̂) = MSPE(β̂) + 2σ2df(β̂)

while Stein (1981) showed that under certain differentiability conditions
(almost differentiability) on β̂, we have

df(β̂) = dfS(β̂).

This is important because while df(β̂) is hard to estimate, we can always
obtain an unbiased estimate of dfS(β̂) as

d̂fS(β̂) = divϕ(β̂).

This allows estimation of the generalization error and therefore allows
model selection, in our particular case of interest sparse model
selection through choice of λ.
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Degrees of freedom in nonlinear regression

The almost differentiability conditions are problematic. We showed the
following (under different regularity conditions):

Theorem I. For estimators of the type β̂ = argminβ∈K ‖Y − ϕ(β)‖2
2, with

K ⊆ Rp compact, it holds that df(β̂) ≥ dfS(β̂).

Theorem II. With β̂ as above and K the centered L1-ball of radius s,

d̂fS(β̂) = tr J−1
(A,A)G(A,A) −

γtAJ
−1
(A,A)G(A,A)J

−1
(A,A)γA

γtAJ
−1
(A,A)γA

.

Theorem III. For an estimator β̂ = argminβ∈Rp ‖Y − ϕ(β)‖2
2 + λ‖β‖1,

d̂fS(β̂) = tr J−1
(A,A)G(·,A).
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