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Review of stochastic differential equations

We consider a filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the
usual conditions.

The stochastic integral
∫ t

0 Hs dXs can be defined for integrand processes
(Ht)t≥0 and integrators (Xt)t≥0 satisfying suitable regularity properties,
and behaves “like an integral” in the sense that for example

lim
n

2n∑
k=1

Ht(k−1)/2n(Xtk/2n − Xt(k−1)/2n) =

∫ t

0
Hs dXs ,

where the limit is in probability.

The class of “well-behaved integrators” is the space of semimartingales.
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Review of stochastic differential equations

Because of the irregularity of the sample paths of the integrators, the
stochastic integral behaves differently than the ordinary Lebesgue integral.
Itô’s formula states that for f ∈ C 2(R) and a semimartingale (Xt)t≥0,

f (Xt) = f (X0) +

∫ t

0
f ′(Xs−)dXs +

1

2

∫ t

0
f ′′(Xs−) d[X c ]s

+
∑

0<s≤t
f (Xs)− f (Xs−)− f ′(Xs)∆Xs

where ∆Xt = Xt −Xt−, the jump of X at time t and [X c ] is the quadratic
variation process of the continuous local martingale part X c of X .
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Review of stochastic differential equations

Example. For a Brownian motion (Wt)t≥0, it holds that

W 2
t = 2

∫ t

0
Ws dWs + t,

which is distinct from the ordinary result

t2 = 2

∫ t

0
s ds.

This difference essentially arises from the fact that the sample paths of
Brownian motion have nonzero quadratic variation, meaning that

[W ]t = lim
n→∞

2n∑
k=1

(Wtk/2n −Wt(k−1)/2n)2 = t.

5 / 33



Review of stochastic differential equations

Using the stochastic integral, we may consider equations in X such as

Xt = 1 +

∫ t

0
Xs− dZs ,

where Z is some semimartingale. This equation can be written more
suggestively in “differential form” as

dXt = Xt− dZt .

We refer to such equations as stochastic differential equations (SDEs).
The solution to this particular equation, for example, is

Xt = exp

(
Zt −

1

2
[Z c ]t

) ∏
0<s≤t

(1 + ∆Zs) exp (−∆Zs) .
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Review of stochastic differential equations

In general, we are most interested in multivariate SDEs. Consider:

• A p-dimensional initial condition X0.

• A d-dimensional semimartingale Z .

• A continuous function a : Rp →M(p, d),

where M(p, d) is the space of real p × d matrices. We then consider the
equation

X i
t = X i

0 +
d∑

j=1

∫ t

0
aij(Xs−)dZ j

s for i ≤ p (†)

which has a unique solution whenever a is Lipschitz. (†) can be written
more compactly using differential and matrix notation as

dXt = a(Xt) dZt .
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Review of stochastic differential equations

SDEs of this type are regularly used in fields such as for example:

• Mathematical finance, for modeling financial assets.

• Chemistry, for modeling reaction networks.

• Biology, for modeling membrane potentials of neurons.
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Review of stochastic differential equations

Some benefits of SDE modeling are:

• In simple cases, tractable formulas for expressions of interest.

• Well suited for capturing time dependency.

• Well suited for high-frequency data.

Some drawbacks are:

• In advanced cases, closed-form expressions are rarely available.

• Numerical computations of interest can be quite demanding.

• The behaviour of multidimensional SDEs is not well understood.
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SDEs as models of causality

As the argument t in Xt frequently denotes time, it is often natural to
interpret the solution (Xt) to (†) in terms of causality: We may use the
formula

dXt = a(Xt)dZt

to make the approximation

Xt+∆ = Xt + a(Xt)(Zt+∆ − Zt)

and consider this as describing how interventions in Xt will influence Xt+∆.

In the following, we formalize a notion of intervention in SDEs and show
that this notion essentially is equivalent to a version of the above idea.
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SDEs as models of causality

Definition. Consider some m ≤ p and c ∈ R. The postintervention SDE
arising from making the intervention Xm := c in the SDE (†) is the p − 1
dimensional SDE

Y i
t = Y i

0 +
d∑

j=1

∫ t

0
bij(Ys−)dZ j

s for i 6= m (††)

where b : Rp−1 →M(p − 1, d), b(y1, . . . , yp) = a(y1, . . . , c , . . . , yp) and
the c is on the m’th coordinate, and Ym

t = c . In differential form, the
intervention takes us from the p dimensional SDE

dXt = a(Xt)dZt

to the p − 1 dimensional SDE

dYt = b(Yt)dZt .
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SDEs as models of causality

Our first objective is to give an interpretation of what this definition
means. We will do this using the notion of Euler schemes.

Definition. Fix T > 0 and consider ∆ > 0 such that N = T/∆ is natural.
The Euler scheme (X∆

k∆)k≤N for (†) over [0,T ] with step size ∆ is the set
of p-dimensional variables defined by putting X∆

0 = X0 and recursively
defining

X∆
k∆ = X∆

(k−1)∆ + a(X∆
(k−1)∆)(Zk∆ − Z(k−1)∆).

Theorem (Protter, Émery). Assume that a is Lipschitz. Connecting the
variables (X∆

k∆) into a function (X∆
t )t≤T in a suitable way and letting ∆

tend to zero, it holds that supt≤T | Xt − X∆
t | tends to zero in probability.
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SDEs as models of causality

A structural equation model is implicit in the recursive definition of the
Euler scheme: (X∆

k∆)k≤N constitutes a SEM of p(N + 1) one-dimensional
variables with:

• Functional relationships:

(X∆
k∆)i = (X∆

(k−1)∆)i +
d∑

j=1

aij(X
∆
(k−1)∆)(Z j

k∆ − Z j
(k−1)∆).

• Noise variables (Zk∆ − Z(k−1)∆)k≤N .
• DAG G defined by letting ((i1, j1), (i2, j2)) be an edge if and only if
i2 = i1 + 1 and j1 = j2 or j1 6= j2 and aj1· is not independent of the
j2’th coordinate.

Note that given the mapping a, this DAG is not learned: Rather, for fixed
a, the above constitutes a rule for which DAG we think of as the “true”
DAG for the SEM, and in practice it is a which is to be estimated.
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SDEs as models of causality

Below, an illustration of the DAG:
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SDEs as models of causality

The following result is then immediate:

Proposition. Fix T > 0 and ∆ > 0 such that N = T/∆ is natural. The
Euler scheme SEM for the SDE (††) is equal to the postintervention SEM
obtained by making the do-calculus intervention X∆

k∆ := c for all k ≤ N in
the Euler scheme SEM for the SDE (†).

Essentially, this means that the following diagram commutes:

Observational Euler SEM //

��

Observational SDE

��

Postintervention Euler SEM // Postintervention SDE
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SDEs as models of causality

What is necessary to justify the use of this DAG?

• That for small ∆, the relationship between the variables can be
approximated well by functional relationships.

• That causality propagates forward in time.

• That there are no “instantaneous” dependencies.

• That the driving semimartingales Z are unaffected by interventions.
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SDEs as models of causality

A summary:

• We defined a notion of intervention of the type Xm := c for SDEs.

• This notion of intervention is consistent with the limiting result of
do-calculus interventions in the Euler schemes for the SDE using a
particular DAG derived from the function a.

• If we believe that this notion of intervention represents the true
data-generating mechanism, we will be able to understand the effect
of interventions if we can identify the true SDE, in particular we need
to estimate the function a.
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Identifiability of intervention distributions

In practice, we only observe the distribution of the solution to an SDE.
This motivates the following:

Question. If the solutions of the two SDEs

dXt = a(Xt)dZt

and

dXt = ã(Xt)dZ̃t

have the same distribution, can the distributions of the solutions to the
postintervention SDEs nonetheless be different?

We will argue that in most commonly occurring cases, the answer is no.
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Identifiability of intervention distributions

To prove our result, we will use the theory of continuous-time Markov
processes.

Definition. A family of transition probabilities on Rp is a family of
probability measures Pt(x , ·) on (Rp,Bp) for t ≥ 0 and x ∈ Rp such that

• P0(x , ·) is the Dirac measure in x .

• (t, x) 7→ Pt(x ,B) is measurable for all Borel sets B.

• It holds that Pt+s(x ,B) =
∫
Ps(y ,B)Pt(x , dy).

A process (Xt)t≥0 is a Markov process with transition probabilities Pt(x , ·)
if P(Xt+s ∈ B | Ft) = Ps(Xt ,B) for all t, s ≥ 0.

Intuition. Pt(x ,B) is the probability of moving from x to B in a time
period of t.
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Identifiability of intervention distributions

For f bounded and measurable, defining (Pt f )(x) =
∫
f (y)Pt(x , dy), we

can think of Pt as a linear operator on the space bBp of bounded Borel
measurable mappings f : Rp → Rp. (Pt) then becomes a contraction
semigroup of operators Pt : bBp → bBp.

We say that (Pt) is a Feller semigroup if it holds that:

• For all t ≥ 0, Pt maps C0(Rp) into itself.

• For all f ∈ C0(Rp), t 7→ Pt f is continuous at zero.

Being a Feller semigroup ensures sufficient analytic properties to yield a
rich semigroup and Markov process theory. In the following, we will only
be considering Feller semigroups.
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Identifiability of intervention distributions

For a Feller semigroup, we define

Af = lim
t→0+

Pt − P0

t
,

when the limit exists, and say that A is the generator of (Pt)t≥0. The limit
always exists on a dense subset D(A) of C0(Rp), the domain of the
generator. For Feller semigroups, the generator uniquely identifies the
semigroup.
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Identifiability of intervention distributions

Intuition. A semigroup is “like” a set of exponential operators. For
example, if D(A) = C0(Rp) and A is bounded, then Pt = exp(tA), where
the exponential is defined by its Taylor series.

Example. p-dimensional Brownian motion is a Markov process with Feller
semigroup, the domain of the generator A is C 2

0 (Rp) and for f ∈ C 2
0 (Rp),

it holds that

Af (x) =

p∑
i=1

∂2f

∂x2
i

(x).
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Identifiability of intervention distributions

Next, recall that a Lévy process is a stochastic process (Xt)t≥0 with initial
value zero and stationary and independent increments. The following
proposition is our main identifiability result.

Proposition. Consider the two SDEs

dXt = a(Xt)dZt

and

dXt = ã(Xt) dZ̃t ,

where Z and Z̃ are Lévy processes of dimension d and d̃ , respectively, and
a and ã are Lipschitz and bounded. If the solutions have the same
distribution, then the postintervention distributions are the same as well.
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Identifiability of intervention distributions

Sketch of proof.

1 Because Z and Z̃ are Lévy processes, the solutions to the SDEs are
Markov process with Feller semigroups. Identify expressions for the
generators on C 2

c (Rp).

2 Using our assumptions and the generators, identify the ways in which
a and ã and the parametes of the Lévy processes are equal.

3 Note that the postintervention SDEs of both SDEs also have Lévy
processes as driving semimartingales. Identify expressions for the
generators on C 2

c (Rp−1).

4 Use this to obtain equality of the generators of the postintervention
processes on C 2

c (Rp−1).
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Identifiability of intervention distributions

Conclusions. Assume that:

• The data-generating mechanism is an SDE with a driving
semimartingale which is a Lévy process.

• The data-generating mechanism satisfies the criteria of no
instantaneous dependencies and driving semimartingales unaffected by
interventions.

Then it holds that:

• The notion of intervention as defined is appropriate.

• Postintervention distributions can be identified from the observational
distribution.

25 / 33



Comparison with the do-calculus

We now give an example comparing our notion of intervention in SDEs
with do-calculus type interventions. This will be used to motivate the use
of SDE models. Assume given

• A real p × p matrix B.

• A p-dimensional vector A.

• A real invertible p × p matrix σ.

Consider the Ornstein-Uhlenbeck SDE

dXt = B(Xt − A)dt + σ dWt ,

where W is a p-dimensional Brownian motion. This SDE has a unique
solution which can be given in closed form.
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Comparison with the do-calculus

If the data-generating process is such that our notion of intervention is
applicable, then B determines which coordinates depend causally on
others: If Bij = 0, this means that Xi is locally unaffected by an
intervention in Xj .

Now consider the case where B is lower triangular with negative values in
the diagonal (corresponding to negative feedback loops ensuring stability
of the system). Modulo self-loops, this means that the causality of the
system exhibits no cyclic behaviour.
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Comparison with the do-calculus

In this case, the SDE has a stationary distribution, which is a Gaussian
distribution with mean A and variance Σ solving the Lyapounov equation

BΣ + ΣBt = −σσt .

If we observe the system in equilibrium at discrete timepoints, we obtain a
stationary time series (X∆

k∆)k≥0 of Gaussian distributions with parameters
(A,Σ).

However, the zeroes of Σ−1 in general do not correspond to zeroes of B.
Therefore, the conditional independence structure of the equilibrium
distribution does not reflect the causal structure of the system. This is a
reason for using an SDE model instead of a model with no time
component.
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Comparison with time series models

Still considering the case of the Ornstein-Uhlenbeck SDE, the time series
(X∆

k∆)k≥0 obtained by observing the process discretely has the distribution
of an autoregressive process: (X∆

k∆)k≥0 has the same distribution as
(Y ∆

k∆)k≥0, where

Yk∆ = (I − exp(∆B))A + exp(∆B)Y(k−1)∆ + εk ,

and (εk) are i.i.d. Gaussian with mean zero and variance∫ ∆

0
exp(sB)σσt exp(sBt) ds.

Question. If observations are in discrete time anyway, why not just use a
discrete-time AR(1) model instead of the OU model?
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Comparison with time series models

Answer. To make the question more precise, assume that the true
underlying model is the OU model. We seek to understand what we
should do if we “forget” about this and only model our observations as a
discrete-time AR(1) model.

In an AR(1) model, we would assume that

Xk∆ = α∆ + C∆X(k−1)∆ + ε∆
k

for some Gaussian i.i.d. noise variables (ε∆
k ) with mean zero and variance

Γ∆.
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Comparison with time series models

As the underlying true model is the OU model, we have

α∆ = (I − exp(∆B))A

C∆ = exp(∆B)

Γ∆ =

∫ ∆

0
exp(sB)σσt exp(sBt) ds.

The true causal structure is reflected in the zeroes of B. This is in general
not the same as the zeroes of C∆.
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Comparison with time series models

Noting that we have the relationships

B =
1

∆
logC∆

B = lim
∆→0

1

∆
(C∆ − I ),

we can obtain the zeroes of B from C∆ by using the right-hand sides in
the above (expressions which are, however, motivated by the OU process).

Conclusion. Understanding the true causal structure through “direct”
discrete-time modeling is possible, but it is necessary to keep in mind that
the causal structure may be determined by zeroes in the generator of the
process and not in the transition probabilities. This is also important
when considering penalization.
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Thank you for your attention!
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