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Review of structural equation models

Consider a collection of variables X1, . . . ,Xp (a gene expression network,
concentrations of chemicals, et cetera).

X2
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In most situations, we will only be able to observe the distribution of the
variables X1, . . . ,Xp.

2 / 22



Review of structural equation models

Consider a collection of variables X1, . . . ,Xp (a gene expression network,
concentrations of chemicals, et cetera).
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However, we will often be interested in the causal relationships between
the variables. Such relationships may be expressed by means of a graph.
Causal relationships allow us to reason about the effects of interventions.
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Review of structural equation models

Definition. A directed acyclic graph (DAG) G on a set of vertices V is a
directed graph with no cycles.
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Above: The left graph is a DAG, while the right graph is not a DAG.

In a DAG, there is a natural notion of “parents”, “children”, “ancestors”
and “descendants”.
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Review of structural equation models

A model for causality can be obtained through the notion of a structural
equation model (SEM).

Definition. A set of variables X1, . . . ,Xp is said to satisfy a set of
structural equations with DAG G on {1, . . . , p} if there exists noise
variables ε1, . . . , εp such that

Xi = fi (Xpa(i), εi )

This allows for a notion of “intervention”: The result of making the
intervention Xi := xi is defined to be the variables resulting from removing
the i ’th equation, substituting xi for Xi in the remaining equations, and
removing all edges in G pointing towards Xi .
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Review of structural equation models

A recurring problem in causal inference is that for a set of variables
X1, . . . ,Xp satisfying a set of structural equations, the DAG G is not
uniquely determined from the distribution of X1, . . . ,Xp.

This makes it difficult to estimate the effects of interventions.

It is reasonable to believe that causality is easier to handle when
observations are time-dependent. In the following, we will:

1 Introduce a notion of intervention for SDEs.

2 Calculate intervention effects in Ornstein-Uhlenbeck SDEs.

3 Argue that postintervention distributions often are uniquely
determined from observational distributions.

4 Relate our results to classical causal inference.
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SDEs as models of causality

The stochastic integral
∫ t

0 Hs dXs can be defined for integrand processes
(Ht)t≥0 and integrators (Xt)t≥0 satisfying suitable regularity properties,
and behaves “like an integral” in the sense that for example

lim
n

2n∑
k=1

Ht(k−1)/2n(Xtk/2n − Xt(k−1)/2n) =

∫ t

0
Hs dXs ,

where the limit is in probability.

The class of “well-behaved integrators” is the space of semimartingales.
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SDEs as models of causality

Using the stochastic integral, we may consider equations in X such as

Xt = 1 +

∫ t

0
Xs− dZs ,

where Z is some semimartingale. This equation can be written more
suggestively in “differential form” as

dXt = Xt− dZt .

We refer to such equations as stochastic differential equations (SDEs).
The solution to this particular equation, for example, is

Xt = exp

(
Zt −

1

2
[Z c ]t

) ∏
0<s≤t

(1 + ∆Zs) exp (−∆Zs) .
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SDEs as models of causality

In general, we are most interested in multivariate SDEs. Consider:

• A p-dimensional initial condition X0.

• A d-dimensional semimartingale Z .

• A continuous function a : Rp →M(p, d),

where M(p, d) is the space of real p × d matrices. We then consider the
equation

X i
t = X i

0 +
d∑

j=1

∫ t

0
aij(Xs−)dZ j

s for i ≤ p (†)

which has a unique solution whenever a is Lipschitz. (†) can be written
more compactly using differential and matrix notation as

dXt = a(Xt−)dZt .
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SDEs as models of causality

As the argument t in Xt frequently denotes time, it is often natural to
interpret the solution (Xt) to (†) in terms of causality: We may use the
formula

dXt = a(Xt−)dZt

to make the approximation

Xt+∆ = Xt + a(Xt)(Zt+∆ − Zt)

and consider this as describing how interventions in Xt will influence Xt+∆.

In the following, we formalize a notion of intervention in SDEs and show
that this notion essentially is equivalent to a version of the above idea.
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SDEs as models of causality

Definition. Consider some m ≤ p and ζ ∈ R. The postintervention SDE
arising from making the intervention Xm := ζ in the SDE (†) is the
p-dimensional SDE

Y i
t = Y i

0 +
d∑

j=1

∫ t

0
bij(Ys−)dZ j

s for i ≤ p (††)

where b : Rp →M(p, d), bij(y) = aij(y) for i 6= m and bmj(y) = 0,
Y i

0 = X i
0 for i 6= m and Ym

0 = ζ. In differential form, the intervention
takes us from the p-dimensional SDE

dXt = a(Xt−) dZt

to the p-dimensional SDE

dYt = b(Yt−) dZt .
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SDEs as models of causality

Our first objective is to give an interpretation of what this definition
means. We will do this using the notion of Euler schemes.

Definition. Fix T > 0 and consider ∆ > 0 such that N = T/∆ is natural.
The Euler scheme (X∆

k∆)k≤N for (†) over [0,T ] with step size ∆ is the set
of p-dimensional variables defined by putting X∆

0 = X0 and recursively
defining

X∆
k∆ = X∆

(k−1)∆ + a(X∆
(k−1)∆)(Zk∆ − Z(k−1)∆).

Theorem (Protter, Émery). Assume that a is Lipschitz. Connecting the
variables (X∆

k∆) into a function (X∆
t )t≤T in a suitable way and letting ∆

tend to zero, it holds that supt≤T | Xt − X∆
t | tends to zero in probability.
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SDEs as models of causality

A structural equation model is implicit in the recursive definition of the
Euler scheme: (X∆

k∆)k≤N constitutes a SEM of p(N + 1) one-dimensional
variables with:

• Functional relationships:

(X∆
k∆)i = (X∆

(k−1)∆)i +
d∑

j=1

aij(X
∆
(k−1)∆)(Z j

k∆ − Z j
(k−1)∆).

• Noise variables (Zk∆ − Z(k−1)∆)k≤N .
• DAG G defined by letting ((i1, j1), (i2, j2)) be an edge if and only if
i2 = i1 + 1 and j1 = j2 or j1 6= j2 and aj1· is not independent of the
j2’th coordinate.

Note that given the mapping a, this DAG is not learned: Rather, for fixed
a, the above constitutes a rule for which DAG we think of as the “true”
DAG for the SEM, and in practice it is a which is to be estimated.
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SDEs as models of causality

Below, an illustration of the DAG:
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SDEs as models of causality

The following result is then immediate:

Proposition. Fix T > 0 and ∆ > 0 such that N = T/∆ is natural. The
Euler scheme SEM for the SDE (††) is equal to the postintervention SEM
obtained by making the intervention (X∆)mk∆ := ζ for all k ≤ N in the
Euler scheme SEM for the SDE (†).

Essentially, this means that the following diagram commutes:

Observational Euler SEM //

��

Observational SDE

��

Postintervention Euler SEM // Postintervention SDE
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The Ornstein-Uhlenbeck case

Consider now the p-dimensional Ornstein-Uhlenbeck SDE

dXt = B(Xt − A)dt + σ dWt ,

Let Y be the process obtained from making the intervention Xm := ζ.
With Y−m denoting Y minus the m’th coordinate, we then obtain that
Y−m satisfies the Ornstein-Uhlenbeck SDE

dY−m
t = B̃(Y−m

s − Ã) dt + σ̃ dWt ,

where

B̃ = B minus the m’th row and column

σ̃ = σ minus the m’th row

Ã = α− B̃−1β,

and α, β ∈ Rp−1 with αi = Ai , βi = Bim(ζ − Am).
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The Ornstein-Uhlenbeck case

For the Ornstein-Uhlenbeck process, the zeroes of the mean reversion
speed matrix B measures causal dependency.

In special cases, the stationary mean and variance of postintervention OU
processes are computable and comparable with the observational OU
process. Consider the case σ = I3 and

B =

 b11 b12 b13

0 b22 b23

0 0 b33

 ,
where the diagonal entries are assumed negative to ensure existence of the
stationary distribution.

We consider the stationary distribution corresponding to the interventions
X 2 := ζ and X 3 := ζ.
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The Ornstein-Uhlenbeck case

Some intuition. The observational process has causality structure:
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The Ornstein-Uhlenbeck case

Some intuition. The result of X 2 := ζ has causality structure:
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The Ornstein-Uhlenbeck case

Some intuition. The result of X 3 := ζ has causality structure:
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The Ornstein-Uhlenbeck case

The stationary means are:

No intervention:

 A1

A2

A3


X 2 := ζ intervention:

 A1 − B12
B11

(ζ − A2)

ζ
A3



X 3 := ζ intervention:

 A1 −
(
B13
B11
− B12B23

B11B22

)
(ζ − A3)

A2 − B23
B22

(ζ − A3)

ζ


Expressions for the stationary variance can also be obtained. The results
agree with heuristic reasoning.
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Identifiability of intervention distributions

Recall that in the classical (non-SDE) case, the DAG and thus the
postintervention distributions are indeterminate from the observational
distribution. In the SDE case, this is not typically the case.

Example. For the Ornstein-Uhlenbeck SDE

dXt = BXt dt + σ dWt ,

the transition probabilities of moving from state x in time t is

Pt(x , ·) = N
(

exp(tB)x ,

∫ t

0
exp(sB)σσt exp(sBt)ds

)
.

Thus, only σσt and not σ is determined from the distribution of X .
However, explicit calculations show that intervention distributions also are
determined only from σσt and not σ.
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Identifiability of intervention distributions

This example can be extended to a more general context:

Theorem. Consider the two SDEs

dXt = a(Xt−)dZt

and

dXt = ã(Xt−)dZ̃t ,

where Z and Z̃ are Lévy processes of dimension d and d̃ , respectively, and
a and ã are Lipschitz and bounded. Then:

1 For each of the two SDEs, all solutions (as the initial distribution
varies) are Feller processes with the same semigroup.

2 If the semigroups for the two SDEs are equal, the postintervention
distributions are the same when the initial distributions are the same.
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Identifiability of intervention distributions

Conclusions from the theorem:

• For the case of SDEs driven by Lévy processes, postintervention
distributions are uniquely determined by the semigroup.

• As the semigroup essentially is determined by the distribution (for
example in the case where the solution process is irreducible), this in
practice means that postintervention distributions are identifiable
from observational distributions.

• As the zeroes of the coefficient a determines the causal relationship
between the variables in the SDE, and a in general is not identifiable
from the observational distribution, we also find that
postintervention distributions are identifiable even when the
causal network is unidentifiable.
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Perspectives

• Solve control-theory type problems for optimal choice of interventions

• Understand why classical causal calculus works (Causal structure of
SDE does not carry over to DAG structure of stationary distributions)

• For Ornstein-Uhlenbeck processes, apply penalized estimation
methods to obtain sparse estimates of B and thus of the causal
structure (Recall that zeroes identify the causal structure)
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Thank you for your attention!


