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Modeling counting processes

A classical method for modeling discrete events in continuous time is
through counting processes.

A statistical model for a counting process with intensity consists of:

• A filtered probability space (Ω,F , (Ft)t≥0,P).

• A nonexplosive point process N on (Ω,F , (Ft)t≥0,P).

• A parametrized family (µθ)θ∈Θ of intensities.

• A corresponding family of probability measures Pθ such that under
Pθ, N is a nonexplosive counting process with intensity µθ.

Problem. Given a family (µθ)θ∈Θ, does there exist a statistical model
corresponding to this family of candidate intensities? This is not a vacuous
question, as many candidate intensities yield explosion.
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Modeling counting processes

Solution approach on canonical spaces. Let (Ω,F , (Ft)t≥0,P) be the
space of nonexplosive point process trajectories endowed with the
canonical σ-algebra and filtration, let N : Ω→ Ω be the identity and let P
be such that N is a homogeneous Poisson process.

Jacobsen (2005) gives sufficient criteria on µθ to ensure that there exists a
probability measure Pθ equivalent to P such that under Pθ, N has
intensity µθ.

This yields the existence of nonexplosive point processes with intensity µθ
and yields the existence of the statistical model.
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Modeling counting processes

Benefits of the canonical setting:

• Precise expressions for the likelihood in terms of the waiting time
distributions of the point process with intensity µθ.

• Coupling arguments may be used to analyze non-explosion.

Drawbacks of the canonical setting:

• Only intensities depending on N are covered.

• Arguments are often based on very technical manipulations of the
canonical space and various conditional distributions, instead of for
example modern martingale theory.

Alternative approach. Consider a general filtered space (Ω,F , (Ft),P)
and formulate all issues in terms of martingales.
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Modeling counting processes

A general problem statement. Assume given:

• A filtered probability space (Ω,F , (Ft)t≥0,P).

• A positive, predictable and locally bounded intensity process λ.

• A point process N with intensity λ.

• A parametrized family (µθ)θ∈Θ of intensities.

We seek: Sufficient criteria on µθ to ensure the existence of a probability
measure Pθ equivalent to P such that under Pθ, N has intensity µθ.

As corollaries, we obtain: Explicit expressions for the likelihood, criteria
for existence of point processes with various intensities (corresponding to
criteria for nonexplosion).

6 / 18



Exponential martingales and changes of measure

Definition. We say that a d-dimensional nonexplosive point process N
has intensity λ if N i

t −
∫ t

0 λ
i
s ds is a local martingale, i ≤ d .

From now on, assume given:

• (Ω,F , (Ft)t≥0,P) satisfying the usual conditions.

• Positive, predictable and locally bounded d-dimensional λ, µ.

• A d-dimensional point process N with intensity λ.

For any semimartingale X with ∆X > −1, we define

E(X )t = exp

Xt −
1

2
[X c ]t +

∑
0<s≤t

log(1 + ∆Xs)−∆Xs

 .

E(X ) is the Doléans-Dade exponential of X . If X is a local martingale, so
is E(X ).
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Exponential martingales and changes of measure

We define:

• M i
t = N i

t −
∫ t

0 λ
i
s ds.

• γ it = µit(λ
i )−1
t .

• H i
t = γ it − 1.

• H ·M =
∑d

i=1

∫ t
0 H i

s dM
i
s .

Lemma. Assume that E(H ·M) is a martingale. Let t ≥ 0. With Qt being
the measure with Radon-Nikodym derivative E(H ·M)t with respect to P,
N is a counting process under Qt with intensity 1[0,t]µ+ 1(t,∞)λ.

Conclusion. In order to obtain the existence of the desired equivalent
probability measures, we need criteria for the martingale property of
E(H ·M).
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Exponential martingales and changes of measure

Theorem. Assume that there is ε > 0 such that whenever 0 ≤ u ≤ t with
|t − u| ≤ ε, one of the following two conditions are satisfied:

E exp

(
d∑

i=1

∫ t

u
(γ is log γ is − (γ is − 1))λis ds

)
<∞ or

E exp

(
d∑

i=1

∫ t

u
λis ds

)
<∞ and E exp

(
d∑

i=1

∫ t

u
log+ γ

i
s dN

i
s

)
<∞,

where log+ x = max{log x , 0}. Then E(H ·M) is a martingale.
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Exponential martingales and changes of measure

Corollary. Let λ = 1. Assume that there is ε > 0 such that whenever
0 ≤ u ≤ t with |t − u| ≤ ε, one of the following two conditions are
satisfied:

E exp

(
d∑

i=1

∫ t

u
µis log+ µ

i
s ds

)
<∞ or

E exp

(
d∑

i=1

∫ t

u
log+ µ

i
s dN

i
s

)
<∞,

where log+ x = max{log x , 0}. Then E(H ·M) is a martingale.
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Exponential martingales and changes of measure

Outline of proof:

1 Argue that it suffices to show that E((H ·M)t − (H ·M)u) is a
martingale for |t − u| ≤ ε.

2 Decompose µ into large and small parts and show a related
decomposition for exponential martingales.

3 Apply two theorems of Lépingle & Mémin (1978) to the obtain the
result.
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Examples

Example 1. Let µit ≤ α + β
∑d

j=1 N
j
t−. Then E(H ·M) is a martingale.

Example 1 shows that we may recover the classical affine criteria for
non-explosion from the canonical case in the case of a general filtered
space. This also extends the criterion from Gjessing et al. (2010) from an
“Lp”-criterion, p > 1, to an “Lp”-criterion, p ≥ 1.

Outline of proof: To use the first moment condition, use that
E exp(εX logX ) is finite when X is Poisson distributed and 0 < ε < 1,
choose ε > 0 such that 4βεd < 1. To use the second moment condition,
use a Markov argument and that Poisson distributions have moments of all
orders, choose ε > 0 such that βεd < 1.
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Examples

Example 2. Consider A : Nd
0 × Rd

+ → Rd , B : Nd
0 × Rd

+ →M(d , d) and
σ : Nd

0 × Rd
+ →M(d , d). Assume that A(η, ·), B(η, ·) and σ(η, ·) are

continuous and bounded for η ∈ Nd
0 . Assume that σ is positive definite.

Assume that for η ∈ Nd
0 , there is δ, c > 0 such that

sup
t≥0
‖A(η, t)‖2 ≤ c‖η‖1−δ

1

sup
t≥0
‖σ(η, t)‖2 ≤ c‖η‖(1−δ)/2

1

sup
t≥0
‖B(η, t)‖2 ≤ c .
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Examples

Example 2, contined. Let X be a solution to

dXt = (A(Nt ,Zt) + B(Nt ,Zt)Xt)dt + σ(Nt ,Zt) dWt ,

where W is a d-dimensional (Ft) Brownian motion and Z i
t = t − T i

N i
t
,

where T i
n is the n’th event time of N i . Let φ : Rd → Rd

+ be Lipschitz.
Assume that φ(x)i 6= 0 for xi 6= 0. Put µt = φ(Xt). Then E(H ·M) is a
martingale.

Example 2 shows that we can use our results to construct counting
processes where the intensity is driven by a SDE whose coefficients vary
according to the history of the counting process.
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Examples

Outline of proof: Note that conditionally on N, the intensity has the
distribution of a Gaussian process. Apply bounds for E exp(c‖Z‖1+ε

2 ), with
Z d-dimensionally Gaussian and 0 < ε < 1, to obtain a bound for the
conditional expectation

E

(
exp

(
t

d∑
i=1

µis log+ µ
i
s

)∣∣∣∣∣N
)
.

Use this to obtain a bound of the unconditional expectation varying
continuously in s, 0 ≤ s ≤ t. Apply Jensen’s inequality and further
estimates to obtain the result.
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Examples

Example 3. Let φi : R→ (0,∞) for i ≤ d and hij : R+ → R for i , j ≤ d .
Define

µit = φi

 d∑
j=1

∫ t−

0
hij(t − s)dN j

s

 .

Assume that φi is Borel measurable, that φi (x) ≤ |x | and that hij is
bounded. Then E(H ·M) is a martingale.

Example 3 is an example of a sufficient criterion for non-explosion for
multidimensional Hawkes processes.
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Open problems

Questions not yet answered:

• Can the requirement that µ be positive be dropped if we require only
absolute continuity instead of equivalence between measures?

• Can Example 2 be extended to the case where δ = 0?
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