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Modeling counting processes

A classical method for modeling discrete events in continuous time is
through counting processes.

A statistical model for a counting process with intensity consists of:

A filtered probability space (2, F, (F¢)e>0, P).
A nonexplosive counting process N on (Q, F, (Ft)e>0, P).

o A parametrized family (ug)gco of intensities.

e A corresponding family of probability measures Py such that under
Py, N is a nonexplosive counting process with intensity .

Problem. Given a family (1)gco, does there exist a statistical model
corresponding to this family of candidate intensities? This is not a vacuous
question, as many candidate intensities yield explosion.



Modeling counting processes

Solution approach on canonical spaces. Let (Q, F, (F¢)e>0, P) be the
space of nonexplosive counting process trajectories endowed with the
canonical o-algebra and filtration, let N : Q — Q be the identity and let P
be such that N is a homogeneous Poisson process.

Jacobsen (2005) gives sufficient criteria on pg to ensure that there exists a
probability measure Py equivalent to P such that under Py, N has
intensity .

This yields the existence of nonexplosive counting processes with intensity
e and yields the existence of the statistical model.



Modeling counting processes

Benefits of the canonical setting;:

e Precise expressions for the likelihood in terms of the conditional

distributions of event times of the counting process with intensity .

e Coupling arguments may be used to analyze non-explosion.
Drawbacks of the canonical setting:

e Only intensities depending on N are covered.

e Arguments are often based on very technical manipulations of the
canonical space and various conditional distributions, instead of for
example modern martingale theory.

Alternative approach. Consider a general filtered space (2, F, (Ft), P)
and formulate all issues in terms of martingales.



Modeling counting processes

A general problem statement. Assume given:

A filtered probability space (2, F, (F¢)¢>0, P).

A positive, predictable and locally bounded intensity process A.

A counting process N with intensity .

A parametrized family (up)gco of intensities.

We seek: Sufficient criteria on g to ensure the existence of a probability
measure Py equivalent to P such that under Py, N has intensity .

As corollaries, we obtain: Explicit expressions for the likelihood, criteria
for existence of counting processes with various intensities (corresponding
to criteria for nonexplosion).

6 /22



Exponential martingales and changes of measure

Definition. We say that a d-dimensional nonexplosive counting process N
has intensity A if Nj — fot A ds is a local martingale, i < d.

From now on, assume given:

e (Q,F,(Ft)e>0, P) satisfying the usual conditions.
e Positive, predictable and locally bounded d-dimensional A, .
e A d-dimensional counting process N with intensity .

For any semimartingale X with AX > —1, we define

1
E(X)e=exp | Xe— S[XTe+ D log(l+ AXs) — AX;

0<s<t

E(X) is the Doléans-Dade exponential of X. If X is a local martingale, so
is £(X).



Exponential martingales and changes of measure

We define:
o Mi=N[— [F\lds.
7= m)et
* Hi=m-1
e H-M= 27:1 fot Hi dM;.

Lemma. Assume that £(H - M) is a martingale. Let t > 0. With Q; being
the measure with Radon-Nikodym derivative E(H - M) with respect to P,
N is a counting process under @ with intensity 1jg g/ + 1 o0)A-

Conclusion. In order to obtain the existence of the desired equivalent

probability measures, we need criteria for the martingale property of
E(H-M).



Exponential martingales and changes of measure

Theorem. Assume that there is € > 0 such that whenever 0 < u < t with
|t — u|] < e, one of the following two conditions are satisfied:

d t i . . .
E exp (Z/ (vilogye — (i — 1)) AL ds) < oo or
i=1Y
d d ¢ _ _
E exp (Z/ s ds) <oo and Eexp (Z/ log, Ve dNS’> < 00,
i=1"Y i=17u

where log, x = max{log x,0}. Then £(H - M) is a martingale.



Exponential martingales and changes of measure

Corollary. Let A = 1. Assume that there is € > 0 such that whenever

0 < u < twith |t — u| <e¢, one of the following two conditions are
satisfied:

d  ,t
E exp (Z/ piglogy fig ds) < oo or
i=17Y
d .t o
E exp (Z/ log | jug dN;) < 00,
i=17Y

where log, x = max{log x,0}. Then £(H - M) is a martingale.
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Exponential martingales and changes of measure

Outline of proof:
@ Argue that it suffices to show that E((H - M)t — (H - M)) is a
martingale for [t — u| < e.

® Decompose i into large and small parts and show a related
decomposition for exponential martingales.

® Apply two theorems of Lépingle & Mémin (1978) to the obtain the
result.
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Examples

Example 1. Let p} < o+ 627:1 N Then E(H - M) is a martingale.

Example 1 shows that we may recover the classical affine criteria for
non-explosion from the canonical case in the case of a general filtered
space. This also extends the criterion from Gjessing et al. (2010) from an
“LP"-criterion, p > 1, to an "“LP"-criterion, p > 1.

QOutline of proof: To use the first moment condition, use that

E exp(eX log X) is finite when X is Poisson distributed and 0 < e < 1,
choose € > 0 such that 48ed < 1. To use the second moment condition,
use a Markov argument and that Poisson distributions have exponential
moments of all orders, choose € > 0 such that fed < 1.



Examples

Example 2. Consider A: N¢ x R — R, B: N§ x RY — M(d, d) and
o :Ng x RY — M(d, d). Assume that A(,-), B(n,-) and a(n, ) are
continuous and bounded for 1 € Ng. Assume that o is positive definite.
Assume that for n € Ng, there is 6, ¢ > 0 such that

sup |A(n, t)]2 < cllnll;™

>0

1-6)/2
sup o (n, )]|2 < clln]{ "
t>0

sup || B(n, t)]l2 < c.
>0
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Examples

Example 2, contined. Let X be a solution to

dXt = (A(Nh Zt) + B(Nt, Zt)Xt) dt + O'(Nt, Zt) th7
where W is a d-dimensional (F;) Brownian motion and Z; = t — T,’;I,-,
where T/ is the n'th event time of N'. Let ¢ : RY — ]Ri be Lipschitz.

Assume that ¢(x)’ # 0 for x; # 0. Put us = ¢(X;). Then E(H- M) is a
martingale.

Example 2 shows that we can use our results to construct counting
processes where the intensity is driven by a SDE whose coefficients vary
according to the history of the counting process.
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Examples

Outline of proof: Note that conditionally on N, the intensity has the
distribution of a Gaussian process. Apply bounds for E exp(c||Z||37¢), with
Z d-dimensionally Gaussian and 0 < € < 1, to obtain a bound for the
conditional expectation

N) |

d
E (exp (tZui log , ui)
i=1
Use this to obtain a bound of the unconditional expectation varying
continuously in s, 0 < s < t. Apply Jensen’s inequality and further

estimates to obtain the result.
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Examples

Example 3. Let ¢; : R — (0,00) for i < d and h; : R, — R for i,j <d.
Define

. d ti .
ph = ¢ Z/O hij(t — s) NS
j=1

Assume that ¢' is Borel measurable, that ¢;(x) < |x| and that hj is
bounded. Then £(H - M) is a martingale.

Example 3 is an example of a sufficient criterion for non-explosion for
multidimensional Hawkes processes.

16 /22



Open problems

Questions not yet answered:
e Can the requirement that u be positive be dropped if we require only
absolute continuity instead of equivalence between measures?
e Can Example 2 be extended to the case where § = 07

e Can the condition Eexp(Zfi:1 fut AL ds) < oo in the second moment
condition of the main theorem be removed?
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Open problems

The final question inspires a more general conjecture:

Conjecture. If M is a purely discontinuous local martingale with
—1 < AM <0, does it hold that £(M) is a martingale?

The rationale behind this conjecture: nonpositive jumps yield pointwisely
smaller compensators, and therefore should not “cause explosion”.
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Open problems

The conjecture might lead to an extension of the Novikov condition in the
following sense. By a theorem of Lépingle and Mémin, £(M) is a
martingale if E exp(I1;B;) is finite for t > 0, where

1
B = 5[Me + > (1+ AM)log(1+ AM;) — AM;.

0<s<t

Noting that (1 + x) log(1 + x) — x < x? for x > —1, this yields that if (M)
exists and E exp( (M), + (M?),) is finite for t > 0, then £(M) is a
martingale.

However, for x > 0, it also holds that (1 + x) log(1 + x) — x < 3x2.
Therefore, if nonpositive jumps can be handled separately, the same
constant % as in the classical Novikov condition might be obtained.
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Open problems

If the result should hold, however, it is essential that we are attempting to
prove the martingale property and not the uniformly integrable martingale
property: By an example in Protter & Shimbo (2006), it does not hold
that finiteness of E exp(a(M)) implies that £(M) is a uniformly
integrable martingale for M purely discontinuous and o < 1.

The counterexample in Protter & Shimbo (2006) considers

M; = —a(N; — t)7 for N a standard Poisson process, a particular a with
0 < a < 1 and a particular finite, but unbounded, stopping time T, and
shows that £(M) is not a uniformly integrable martingale. However, £(M)
is in fact a martingale, and so the conjecture we consider here is not
disproved by this example.



Open problems

A method for proving the conjecture might be based on the following two
results.

Lemma. Let M be a local martingale with —1 < AM. Let (T,) be a
localising sequence such that £(M) 7" is a martingale. £(M) is a
martingale if and only if lim, EE(M)T,1(1,<¢) = 0.

Lemma. Let T be a stopping time, let —1 < & < 0 be F+ measurable, let
At =El>T) and let M = A —TI;A. Then £(M) is a uniformly integrable
martingale, and it holds that EE(M)11(r<;) < P(T < t).
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