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Exponential martingales

Let (Q, F, (Ft)t>0, P) be a filtered probability space satisfying the usual
conditions. Unless otherwise noted, all processes are adapted and have
initial value zero. We recall some conventions and definitions.

e An FV process A is integrable if E(V4) is finite.
e Ais locally integrable if AT is integrable for some sequence of
stopping times (T,) increasing to infinity.

* Any locally integrable FV process A has a compensator T, A: A

predictable and locally integrable FV process such that A—TI A is a
local martingale.



Exponential martingales

e For a local martingale M, the quadratic variation [M] is the unique
increasing process such that M? — [M] is a local martingale.

e M is locally square integrable if and only if [M] is locally integrable,
and in the affirmative, we let (M) be the compensator of [M].

e There exists a decomposition M = M° + M9, where M€ is continuous
and M9 is purely discontinuous.
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Exponential martingales

For a local martingale M, £(M) is the unique cadlag solution to the SDE
Zi =1+ fot Zs_ dMs, and is given by

E(M); = exp (Mt — ;[Mc]t> IT 1+ amg)e 2.

0<s<t

If AM > —1, we also have

1
E(M)e = exp | M — S[M<]e + > log(1+ AM;) — AM;
0<s<t
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Exponential martingales

Some properties:

e £(M) is always a local martingale with initial value one.

o If AM > —1, £(M) is a nonnegative supermartingale.

o If AM > —1, (M) is almost surely convergent.

o If AM > —1, E(M) is an Ul martingale if and only if EE(M)s = 1.
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Exponential martingales

Main problem. Finding sufficient criteria to ensure that £(M) is a
uniformly integrable martingale.

Motivation:

Likelihood inference for continuously observed stochastic processes.

Explicit pricing measures in mathematical finance.

Methods for existence of solutions to martingale problems / SDE's.

The problem is challenging and interesting in itself.



Novikov-type criteria: Optimal constants

The most classical sufficient criterion:

Theorem (Novikov, 1972). Let M be a continuous local martingale. If

E exp(3[M]w) is finite, £(M) is a uniformly integrable martingale. Also,
the constant % is optimal.



Novikov-type criteria: Optimal constants
Results for local martingales with jumps:

Theorem (Lepingle & Mémin, 1978). Let M be a local martingale with
AM > —1. Put Ay = 3[M€]; + ZO<S<t(1 + AM;) log(1 + AMs) — AMs.
If A'is locally integrable and E exp(IT;A) is finite, £(M) is a uniformly
integrable martingale.

Theorem (Lepingle & Mémin, 1978). Let M be a local martingale with
AM > —1. Put Ay = 5[M€]s + > o<, log(1+ AM;) — AM /(1 + AM).
If E exp(Ax) is finite, £(M) is a uniformly integrable martingale.



Novikov-type criteria: Optimal constants

A simple observation (Protter & Shimbo, 2008): As it holds that
(1 + x)log(1 + x) — x < x* for x > —1,

the previous theorems imply that if Eexp(%(M‘:>Oo + (M9 ) is finite,
E(M) is a uniformly integrable martingale.

This is a Novikov-type criterion for £(M) to be a uniformly integrable
martingale. Questions:

e Are the constants in front of (M) and (M9) optimal?

o Why is there a 1 instead of a 1 in front of (M9)?

e Can similar results be obtained with [M?] instead of (M9)?
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Novikov-type criteria: Optimal constants

For a > —1 with a # 0, define

_ (14 a)log(1l+ a) —

o(a) .
~ (1+a)log(1+a) —
Bla) = (1 + a)a?

Theorem 1. Let a > —1 and assume AM1ap0) > a. It holds that

Eexp(3(M ) + a(a) (M) o) < 00 = EE(M)og = 1
E exp(3[Moo + B(a)[M] ) < 00 = EE(M) oo = 1,
where the former requires local square-integrability to make sense. All

constants are optimal. Note that 3(—1) = oo, so no sufficient criterion
exists in the case a = —1 for this case.
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Novikov-type criteria: Optimal constants

Graph of the function a:
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Novikov-type criteria: Optimal constants

Graph of the function 5:
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Novikov-type criteria: Optimal constants

Outline of proof. Sufficiency follows immediately from the results of
Lepingle & Mémin once we observe that

a(a) =inf{c > 0] (14 x)log(1l + x) — x < cx? for x > a}
B(a) = inf{c >0 log(1 + x) — x/(1 + x) < cx? for x > a}

Optimality is more involved. The proof considers a > 0, a =0,

—1 < a< 0 and a= —1 separately. We outline the strategy for optimality
of a(a) in the case a > 0.

14 /39



Novikov-type criteria: Optimal constants

Let a > 0 and let £ > 0. We show that E exp((1 — ¢)a(a)(M)x) < oo is
insufficient to yield EE(M)s = 1.

Let N be a standard Poisson process and let b > 0. Define

Tp=inf{t >0| Ny — (1 + b)t=-1}
My = a(N]b — t A Tp)

It holds that N7, = (1 + b) T — 1. By elementary calculations,

E(M)oc = 11— exp(To((1+ ) log(1+ 3) — 3))

exp(((a) — €)(M)oo) = exp(Tha*(1 - £)a(a))
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Novikov-type criteria: Optimal constants

By optional stopping arguments, we obtain the desired counterexample by
choosing b € (0, a) such that

(L+b)log(l+a)—a<1l—(1+a)2+(1+b)log(l+a)+(1+b)log?
a*(1 — e)a(a) < (14 b)log(1 + b) — b,
and by elementary analysis, such a choice can be made.

Remaining cases:

e Optimality of a(a) for —1 < a < 0: more involved.
e Optimality of a(a) for a= —1 and a = 0: not difficult.
e Optimality of 5(a): Similar to optimality of a(a).
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Novikov-type criteria: Optimal constants

Corollary 2. Let M be a local martingale with AM > 0.

® If exp(1[M]) is integrable, it holds that £(M) is a uniformly
integrable martingale.

® If M is locally square integrable and exp(%(l\/l>oo) is integrable, it
holds that £(M) is a uniformly integrable martingale.

Both the constants and the requirement on the jumps are optimal.
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Novikov-type criteria: Some elementary proofs

Questions:

e Can Corollary 2 be proved using elementary methods?

e Can Corollary 2 be extended?
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Novikov-type criteria: Some elementary proofs

Current results. Similarly to (Krylov, 2009):

Theorem 3. Assume AM > 0. It holds that EE(M) = 1 if only

liminf e log E exp((1 — £)3[M]o) < 00
e—0

Theorem 4. Assume AM > 0 and let M be quasi-left-continuous. It
holds that EE(M)., = 1 if only

Iignigfs log E exp((1 — €)2(a[M]s + (1 — a)(M))) < o0

Open problem. Extension of Theorem 4 to the non-QLC case.
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Novikov-type criteria: Some elementary proofs

Outline of proof of Theorem 3. Note that for x > 0, we have

. 1+ Ax < A(1=X)
(1+ x)* 2
(+x° _aa=1) ,

1+ax — 2

x2when0§)\§1

when a>1
Let a,r > 1 and let s be the dual exponent to r. Using Holder's inequality

and the optional stopping theorem with £(arM), we find that for any
stopping time T,

ee(m)y < (oo (é’;((i’_‘l;)[woo))l/s.
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Novikov-type criteria: Some elementary proofs

As inf, ~1 % = % we conclude

E exp((1 4 ¢)3[M]s) < oo for some & > 0 = EE(M)o = 1.

Next, note that by our assumptions, E exp((1 — £)3[M].) is finite for
e > 0. Therefore, for 0 < A < 1, Eexp((1 4 £1)3[AM]) is finite for some
suitable ey > 0, so EE(AM) = 1. By Holder's inequality,

1-X

)

1 < (EE(M)oo)*e N2 4 (EE(M)oo1£, ) (E exp (2[/\/’]00))

where F, = ([M]s > 7). Taking the limes inferior as A tends to one and
letting v tend to infinity, we obtain EE(M)s = 1. O
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Novikov-type criteria: Some elementary proofs

Outline of proof of Theorem 4. As for Theorem 2, except that we need

14+ Ax+ (14 v1—ax)? (1+)\\/1—ax)<a)\(1—)\) 5

0<|
=18 1+ x) =0T

and we use Holder's inequality for triples with the processes
arM and arM + W®" — MW" instead of arM,
where W# = Y o<cs<i(l+ AM;)? — (14 BAM;), and secondly use
AM + W (a) — T W () instead of AM,

where WX(a) =Yg oo, (1+ VI —aAM;)* — (1+ A/1—aldM,). O



Applications to point processes

Definition. We say that a d-dimensional nonexplosive point process N
has intensity A if N — fot ALds is a local martingale, i < d.

A statistical model for a counting process with intensity consists of:

A filtered probability space (2, F, (F¢)e>0, P).
A nonexplosive point process N on (Q, F, (Ft)e>0, P).

o A parametrized family (ug)gco of intensities.

e A corresponding family of probability measures Py such that under
Py, N is a nonexplosive counting process with intensity .

Problem. Given a family (1)gco, does there exist a statistical model
corresponding to this family of candidate intensities? This is not a vacuous
question, as many candidate intensities yield explosion.
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Applications to point processes

Solution approach on canonical spaces. Let (Q, F, (F¢)e>0, P) be the
space of nonexplosive point process trajectories endowed with the
canonical o-algebra and filtration, let N : Q — Q be the identity and let P
be such that N is a homogeneous Poisson process.

(Jacobsen, 2005) gives sufficient criteria on pg to ensure that there
exists a probability measure Py equivalent to P such that under Py, N has
intensity .

This yields the existence of nonexplosive point processes with intensity g
and yields the existence of the statistical model.
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Applications to point processes

Benefits of the canonical setting;:

e Precise expressions for the likelihood in terms of the waiting time
distributions of the point process with intensity pug.

e Coupling arguments may be used to analyze non-explosion.
Drawbacks of the canonical setting:

e Only intensities depending on N are covered.

e Arguments are often based on very technical manipulations of the
canonical space and various conditional distributions, instead of for
example modern martingale theory.

Alternative approach. Consider a general filtered space (2, F, (Ft), P)
and formulate all issues in terms of martingales.
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Applications to point processes

A general problem statement. Assume given:

A filtered probability space (2, F, (F¢)¢>0, P).

A positive, predictable and locally bounded intensity process A.

A point process N with intensity .

A parametrized family (u9)gco of intensities.

We seek: Sufficient criteria on g to ensure the existence of a probability
measure Py equivalent to P such that under Py, N has intensity .

As corollaries, we obtain: Explicit expressions for the likelihood, criteria
for existence of point processes with various intensities (corresponding to
criteria for nonexplosion).
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Applications to point processes

From now on, assume given:

o (Q,F,(Ft)e>0, P) satisfying the usual conditions.
e Positive, predictable and locally bounded d-dimensional A, p.

e A d-dimensional point process N with intensity A.
We define:

o Mi=N— [\ ds.

o = (V)

o Hi=~;—1.

o H-M =5, f{ M.
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Applications to point processes

Lemma 5. Assume that £(H - M) is a martingale. Let t > 0. With Q;
being the measure with Radon-Nikodym derivative E(H - M); with respect
to P, N is a counting process under Q; with intensity 1jg g/ + 1 00)A-

Conclusion. In order to obtain the existence of the desired equivalent

probability measures, we need criteria for the martingale property of
E(H-M).
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Applications to point processes

Theorem 6. Assume that there is € > 0 such that whenever 0 < uy < 't
with [t — u| < g, one of the following two conditions are satisfied:

d t i . ) )
E exp (Z/ (7<logye — (7L — 1)) AL ds) <oo or
=17
d st t _ _
E exp Z/ /\fsds+/ log, v¢dN; | < oo,
=17 u

where log, x = max{log x,0}. Then £(H - M) is a martingale.
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Applications to point processes

Corollary 7. Let A\ = 1. Assume that there is € > 0 such that whenever

0 < u < twith |t — u| <e¢, one of the following two conditions are
satisfied:

d ot
E exp (Z/ pg log . pug ds) < oo or
i=17Y
d t . .
E exp (Z/ log | pug dN;) < 00,
i=17Y

where log, x = max{log x,0}. Then £(H - M) is a martingale.
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Applications to point processes

Outline of proof of Theorem 6:
@ Argue that it suffices to show that E((H - M)t — (H - M)) is a
martingale for [t — u| < e.

® Decompose i into large and small parts and show a related
decomposition for exponential martingales.

©® Apply two theorems of (Lépingle & Mémin, 1978) to obtain the
result.
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Applications to point processes

Example. Let ) < o+ 527:1 N _. Then E(H - M) is a martingale.

The Example shows that we may recover the classical affine criteria for
non-explosion from the canonical case in the case of a general filtered
space. This also extends the criterion from (Gjessing et al. ,2010) from
an “LP"-criterion, p > 1, to an “LP"-criterion, p > 1.

QOutline of proof. To use the first moment condition, use that

E exp(eX log X) is finite when X is Poisson distributed and 0 < e < 1,
choose € > 0 such that 48ed < 1. To use the second moment condition,
use a Markov argument and that Poisson distributions have moments of all
orders, choose ¢ > 0 such that fed < 1.
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Applications to point processes

Example. Consider A: N§ x R — R9, B:Ng x RY — M(d, d) and
o :Ng x RY — M(d, d). Assume that A(,-), B(n,-) and a(n, ) are
continuous and bounded for 1 € Ng. Assume that o is positive definite.
Assume that for n € Ng, there is 6, ¢ > 0 such that

1-§
sup | A(n, )| < c|ln||?
t>0

1-6)/2
sup[|o(n, t)]2 < clln]|
t>0

sup [|B(n, t)]l2 < c.
>0
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Applications to point processes

Example, contined. Let X be a solution to
dXt = (/A(Nt7 Zf) + B(Nt, Zt)Xt) dt + O'(Nt, Zf) th,

where W is a d-dimensional (F;) Brownian motion and Z/ =t — T;,,
t

where T} is the n'th event time of N'. Let ¢ : RY — RY be Lipschitz and
put pr = ¢(X¢). Then E(H - M) is a martingale.

The example shows that we can use our results to construct counting
processes where the intensity is driven by a SDE whose coefficients vary
according to the history of the counting process.
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Applications to point processes

Outline of proof. Note that conditionally on N, the intensity has the
distribution of a Gaussian process. Apply bounds for E exp(c||Z||37¢), with
Z d-dimensionally Gaussian and 0 < € < 1, to obtain a bound for the
conditional expectation

N) |

d

E (exp (tZui log M;)
i=1

Use this to obtain a bound of the unconditional expectation varying

continuously in s, 0 < s < t. Apply Jensen’s inequality and further

estimates to obtain the result.
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Applications to point processes

Example. Let ¢; : R — [0,00) for i < d and h; : R, — R for i,j < d.
Define

. d ti .
ph = ¢ Z/O hij(t — s) NS
j=1

Assume that ¢' is Borel measurable, that ¢;(x) < |x| and that hj is
bounded. Then £(H - M) is a martingale.

This is an example of a sufficient criterion for non-explosion for
multidimensional Hawkes processes.
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