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Theme: When is an exponential martingale an uniformly
integrable martingale, and why is this important?
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Outline of exponential martingales



In the following, assume given a filtered probability space
(Ω,F , (Ft),P) satisfying the usual conditions.

Consider a local martingale M with ∆M > −1 and initial
value zero. The exponential martingale E(M) of M is the
unique cadlag adapted solution in to the equation
Xt = 1 +

∫ t
0 Xs− dMs , and is given by

E(M)t = exp

Mt −
1

2
[Mc ]t +

∑
0<s≤t

log(1 + ∆Ms)−∆Ms

 .

E(M) is a nonnegative local martingale with initial value 1
and a supermartingale with EE(M)t ≤ 1.



If E(M) is an UI martingale, E(M)∞ is a nonnegative
variable with unit mean, and we may define a probability
measure Q = E(M)∞ · P.

Girsanov’s Theorem and its variants describe the martingales
under the measure Q.



Recall that by the Doob-Meyer decomposition theorem, any
increasing locally integrable process A has a compensator
Π∗pA such that A− Π∗pA is a local martingale.

Given local martingales M and N, if [N,M] is locally
integrable, we define the predictable covariation as Π∗p[N,M].
The Lenglart-Girsanov Theorem states that if 〈N,M〉 exists,
then the process

N − 〈N,M〉

is a Q martingale, with Q = E(M)∞ · P.



The conclusions from these observations are:

1 By changing the measure and applying the
Lenglart-Girsanov Theorem, we can construct processes
with certain martingale properties.

2 Given P and Q on the same probability space, if we can
identify M such that Q = E(M)∞ · P, we obtain an
expression for the likelihood dQ

dP .

3 To succeed in these objectives, we need useful sufficient
criteria to determine when E(M) is a UI martingale.



Previous results



When is an exponential martingale an UI martingale?

The most well-known sufficient criterion is (Novikov 1972): If
M is a continuous local martingale and exp(12 [M]∞) is
integrable, then E(M) is an UI martingale.

A much stronger result is (Lepingle & Mémin 1978): If M is
a local martingale with ∆M > −1, define

Bt =
1

2
[Mc ]t +

∑
0<s≤t

(1 + ∆Ms) log(1 + ∆Ms)−∆Ms .

E(M) is an UI martingale if exp(Π∗pB∞) is integrable.



Because it holds that

(1 + x) log(1 + x)− x ≤ 1
2x

2

whenever x ≥ 0, the Lepingle-Mémin result implies Novikov’s
criterion for local martingales with nonnegative jumps, in
particular for continuous local martingales. For x > −1, we
only have

(1 + x) log(1 + x)− x ≤ x2,

thus giving a weaker Novikov-type result in the general case.



Applications to point processes



Consider, on the filtered probability space (Ω,F , (Ft),P), a
positive predictable locally bounded process λ and a step
process N with steps of unit size.

If Nt −
∫ t
0 λs ds is a local martingale, we say that N is a

point process with intensity λ.



Assume that N is a standard Poisson process.

If there is M such that E(M) is an UI martingale and such
that under Q = E(M)∞ · P, N is a point process with
intensity λ, then we have both constructed a point process
with intensity λ, and “sort of” identified its likelihood E(M)
with respect to a standard Poisson process.



In general, for point processes with different intensities, their
distributions are singular. For example, for a Poisson process
with constant intensity λ, Nt

t
a.s.−→ λ and so different Poisson

processes are concentrated on disjoint sets.

Therefore, we cannot in general hope to find E(M) such that
with Q = E(M)∞ · P, Q and P are equivalent and N is a
point process with given intensity under Q.

Instead, we will do the following. If we can find M such that
E(M) is a martingale, corresponding to having E(Mt) an UI
martingale, we can define Qt = E(M)t · P. We can then try
to find M such that N is a point process with intensity λ on
[0, t] under Qt .



Our plan for this is as follows:

1 Find candidate for M.

2 Obtain small but useful lemma for proving the
martingale property of E(M).

3 Prove the martingale property for M for a suitable class
of candidate intensities λ.



Define Mt = Nt − t, put H = λ− 1 and assume that
E(H ·M) is an UI martingale. Define Q = E(H ·M)∞ · P.
Under P, M is a martingale. By the Lenglart-Girsanov
Theorem, under Q, Mt − 〈M,H ·M〉t is a martingale.
However,

Mt − 〈M,H ·M〉t = Nt − t − ((λ− 1) · 〈M〉)t
= Nt − t − ((λ− 1) · Π∗p[M])t

= Nt −
∫ t

0
λs ds.

Therefore, under Q, N is a point process with intensity λ.
Thus, our candidate local martingale is (λ− 1) ·M.



Lemma. Let M be a local martingale with ∆M > −1, and
let ε > 0. If E(Mnε −M(n−1)ε) is an UI martingale for all n,
then E(M) is a martingale.

Proof. By the supermartingale property, it suffices to show
that EE(M)nε = 1, n ≥ 1. By elementary results on the
quadratic covariation, the processes Mnε −M(n−1)ε have
pairwise zero quadratic covariation. Therefore,

E(M)nε =
n∏

k=1

E(Mkε −M(k−1)ε).



Using that E(Mkε −M(k−1)ε) is Fnε measurable for k ≤ n,
and E(Mkε −M(k−1)ε)(k−1)ε = 1, we may show using our
assumptions about the martingale properties of
E(Mnε −M(n−1)ε) that

E
n∏

k=1

E(Mkε −M(k−1)ε) = E
n−1∏
k=1

E(Mkε −M(k−1)ε)

for all n ≥ 1. Therefore, EE(M)nε = 1. �



Lemma. Let L = H ·M, Mt = Nt − t. Put

Bt =
1

2
[Lc ]t +

∑
0<s≤t

(1 + ∆Ls) log(1 + ∆Ls)−∆Ls .

Then Π∗pBt =
∫ t
0 (1 + Hs) log(1 + Hs)− Hs ds.

Proof. Since M has paths of finite variation, Lc = 0. The
result follows by recalling that Π∗pNt = t and making the
observation that ∆Lt = Ht∆Nt . �



Theorem. Assume that λt ≤ αNt− + β for some α, β > 0.
Then E((λ− 1) ·M) is a martingale.

Proof. Define Ln = (H ·M)nε − (H ·M)(n−1)ε and
H = λ− 1. Then Ln = H1]](n−1)ε,nε]] ·M. It suffices to prove
that there is ε > 0 such that E(Ln) is an UI martingale for all
n. By the Lepingle-Mémin result and the preceeding lemma,
it suffices to prove

E exp

(∫ nε

(n−1)ε
λs log λs ds

)
<∞.



Since x 7→ x log x is nonpositive on x ≤ 1 and increasing on
x ≥ 1, we find by λt ≤ αNt− + β and elementary inequalities
that ∫ nε

(n−1)ε
λs log λs ds

≤
∫ nε

(n−1)ε
(αNs− + β) log(αNs− + β) ds

≤ ε(αNt + β) log(αNt + β)

≤ 4εαNt logNt .



Thus, it suffices to prove

E exp(4εαNt logNt) <∞

for some ε > 0. As N has a Poisson distribution, this holds if
we pick ε > 0 small enough so that 4εα < 1. �



The result obtained:

When N is a standard Poisson process and λ is positive
predictable with λt ≤ αNt− + β, we can find a measure
change Qt such that under Qt , N has intensity λ on [0, t],
and we have an explicit expression for the likelihood.



Observations:

1 This reveals that the Lepingle-Mémin criterion is strong:
the result is not true when λ has greater than linear
growth in N.

2 A benefit of working in the general theory is that λ may
depend on other processes than N, for example
diffusions. Such constructions are not always trivial
when working on canonical spaces.



Open problems



1. The results yield existence of many point processes on
[0, t] through a measure change, but does not yield any point
processes on [0,∞). Since distributiosn of point processes on
[0,∞) are in general not equivalent, measure changes cannot
be used to obtain the full existence. Is it possible to find a
way to construct point processes on [0,∞) using the general
theory instead of manipulations on canonical spaces?



2. The results obtained are sufficient (probably) to construct
point processes on [0, t] with an intensity which is the
absolute value of an Ornstein-Uhlenbeck process. What
diffusions, in general, can be used as intensities?



3. Consider a prospective intensity process which has the
jump-diffusion specification

dλt = µ(t, λt) dt + σ(t, λt) dWt − (λt− − c) dNt ,

that is, the intensity is reset to a constant level c at every
jump. Does there exist a point process process with such an
intensity, and is the distribution equivalent to the standard
Poisson process on [0, t]? This is not at all clear from current
results.



Thank you


