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Consider an Ornstein-Uhlenbeck process

Xt = x0 +

∫ t

0
B(Xs − A) ds + σWt ,

where B, σ ∈M(p, p) and A ∈ Rp.

Main question: How do we estimate B in the case where B
is sparse, or when B may be decomposed into sparse
components?

Applications: Gene regulation networks, et cetera.



Agenda:

1 A nonlinear least squares estimate of B

2 L1-penalized estimation of B

3 Estimation in the case of symmetric B



A nonlinear least squares estimate of B



The OU process given by dXt = B(Xt −A) dt + σ dWt has a
pathwise unique solution which is a homegeneous Markov
process, and the transition probability P(h, x , ·) of transition
from state x over time h is a normal distribution with mean
and variance

ξ(h, x) = A + exp(hB)(x − A)

Σ(h) =

∫ h

0
exp(sB)σσt exp(sBt) ds.

We assume that A and σ are known and take interest in
estimating B.



Assume equally spaced observations t0, . . . , tn, t0 = 0, with
step size ∆. We consider the loss function

L(B) =
1

2

n∑
k=1

‖Xtk − ξ(∆,Xtk−1
)‖22

=
1

2

n∑
k=1

‖(Xtk − A)− exp(∆B)(Xtk−1
− A)‖22,

which is loosely related to the minus log likelihood. Even
though L is not convex and in general may have nonunique
global minima, we may estimate B as a minimizer of L.



We consider an example with p = 20, A = 0, x0 = 0 and
σ = Ip, and B is the following sparse matrix.
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We simulate observations with T = 100 and n = 10000 and
estimate B as a minimizer of L(B).



The result of the numerical minimization:
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Conclusions:

The many zero entries of the true parameter are not zero in
the estimate.

We would like to estimate B in a manner wherein the
estimation method actually yields sparse estimates.



L1-penalized estimation of B



In L1-penalized estimation, we estimate B as the argument
minimum of L(B) + λ‖B‖1, where ‖ · ‖1 is the entrywise
L1-norm. The addition of the penalization term has a
tendency to yield argument minima which are sparse.

The penalty term implies that we are no longer facing an
ordinary nonlinear least squares problem. Nonetheless,
linearization of the least squares term combined with the
results from L1-penalized linear regression yields a useful
cyclic coordinate algorithm.



The result of the algorithm:

lambda =  1
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The result of the algorithm:

lambda =  0.9
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The result of the algorithm:

lambda =  0.8

Dimensions: 20 x 20
Column

R
ow

5

10

15

20

5 10 15 20

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5



The result of the algorithm:

lambda =  0.7
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The result of the algorithm:

lambda =  0.6
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The result of the algorithm:

lambda =  0.5
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The result of the algorithm:

lambda =  0.45
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The result of the algorithm:

lambda =  0.4
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The result of the algorithm:

lambda =  0.35
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The result of the algorithm:

lambda =  0.3
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The result of the algorithm:

lambda =  0.25
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The result of the algorithm:

lambda =  0.2

Dimensions: 20 x 20
Column

R
ow

5

10

15

20

5 10 15 20

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5



The result of the algorithm:

lambda =  0.15
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The result of the algorithm:

lambda =  0.1
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The result of the algorithm:

lambda =  0.05
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The result of the algorithm:

lambda =  0.025
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The result of the algorithm:

lambda =  0
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Conclusions:

1 The L1-penalized estimates recreate the sparsity of the
true parameter at no significant extra numerical cost.

2 In both the ordinary and the L1-penalized minimization
problems, the main computational cost is the calculation
of the matrix exponential and its Fréchet derivative.

3 The R package expm calculates these using Al-Mohy &
Higham (2009), not taking advantage of sparsity.

4 A new R interface to the Fortran library Expokit speeds
up the computation of the matrix exponential for large
sparse B-matrices.
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Estimation in the case of symmetric B



In order to avoid the computational cost of the matrix
exponential, we now assume that B is symmetric with
B = PDPt , so the loss function becomes

L(P,D) =
1

2

n∑
k=1

‖(Xtk − A)− P exp(∆D)Pt(Xtk−1
− A)‖22.

The diagonalization makes L(P,D) simple to calculate, but
introduces the problem of optimization of P over the
orthogonal group Op.

While ultimately interested in L1-penalized estimation, our
first step is unpenalized estimation for P and D.



For convenience, consider L(P,De) = 1
2‖W − PDeP

tV ‖22,
where W ,V ∈M(p, n) and De = exp(∆D). We want to
minimize L(P,De) over P ∈ Op and De ∈ diagp.

For fixed P, L(P,De) has a unique minimum over De given
by, with de denoting the vector of diagonal entries,

(de)k =
〈(PtV )k·, (P

tW )k·〉
‖(PtV )k·‖22

The main problem is therefore minimization over P ∈ Op.



A gradient descent algorithm for minimizing L(P,De) over
P ∈ Op:

1 Pick initial guess P∗ ∈ Op.

2 Calculate the gradient DPL(P∗) as if the domain were

M(p, p) and not Op. Calculate projection DOp

P L(P∗)
onto the tangent space of P∗. Pick step size by
“inexact” minimization of L(P∗ − hDOp

P L(P∗)).

3 Use singular value decomposition to update P∗ as the
projection of P∗ − hDOp

P L(P∗) onto Op.

4 Repeat step 2 and step 3 until convergence.



We consider a symmetric example with p = 20, A = 0,
x0 = 0 and σ = Ip, and B is the following matrix.
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We simulate observations with T = 100 and n = 10000.



Estimate from gradient descent algorithm, 1000 iterations,
given true De :
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Current status:

1 Parametrization by (P,D) avoids expensive matrix
exponentiation.

2 Problems with estimation without fixed eigenvalues.

3 There are many aspects of estimation over Op which are
open to questioning, such as nonconnectivity of Op,
optimization along geodesics, step size selection etc.

4 Practical solutions under L1-penalization still lacking.



Thank you


