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Preface

This monograph concerns itself with the theory of continuous-time martingales and the theory
of stochastic integration with respect to general semimartingales. One primary question in

the theory of stochastic integration is the following: For what integrators X and integrands

t
/ H,dX;
0

be defined in a sensible manner? As many stochastic processes of interest as integrators, for

H can the integral

example the Brownian motion, have paths which almost surely are of infinite variation, this
integral cannot immediately be defined by reference to ordinary Lebesgue integration theory.
Therefore, another approach is necessary. It turns out that the proper notion of integrator X
is that of a semimartingale, which is the sum of a local martingale and a process with paths
of finite variation, while the natural measurability requirement on the integrand H is that it
be measurable with respect to the predictable o-algebra, which is the o-algebra on R} x €2
generated by the left-continuous and adapted processes. That these are the correct answers

is by no means self-evident, and builds on the deep insights of many people.

Once the stochastic integral has been constructed, its properties may be investigated, leading
for example to [t6’s formula, the change-of-variables theorem for stochastic calculus, the entry
point for making stochastic calculus an operational theory applicable to both other fields of

probability theory and to practical statistical modeling.

Several introductory accounts of the theory of stochastic integration exist. One of the first
complete accounts is given in Dellacherie & Meyer (1978). Good alternative books are He et
al. (1992), Rogers & Williams (2000b), Kallenberg (2002), Jacod & Shiryaev (2003) and
Protter (2005), for example. The purpose of this monograph is to apply certain techniques
to simplify the theory so as to present a very direct path to the fundamentals of martingale

theory, the general theory of processes and the stochastic integral.
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As prerequisites, the reader is assumed to have a reasonable grasp of basic analysis, measure
theory and discrete-time martingale theory, as can be obtained through the books Carothers
(2000), Ash (2000) and Rogers & Williams (2000a). Familiarity with continuous-time
stochastic processes and the theory of stochastic integration with respect to continuous semi-
martingales as in Karatzas & Shreve (1991) is also beneficial, though not strictly required.

I would like to extend my warm thanks to Lars Lynne Hansen for pointing out many misprints
and errors in previous versions of this manuscript, as well as for giving numerous suggestions

for improvements.

Finally, I would like to thank my own teachers in probability theory, Ernst Hansen and
Martin Jacobsen, for teaching me probability theory.

Alexander Sokol
Kgbenhavn, 2013



Chapter 1

Continuous-time stochastic

processes

In this chapter, we develop the basic results of stochastic processes in continuous time,
covering mostly some basic measurability results as well as the theory of continuous-time
martingales. The results of this chapter form an essential part of the fundament for the

theory to be developed in the following chapters.

In Section 1.1, we concern ourselves with the measurability properties of stochastic processes
in continuous time, introducing the most frequently occurring path properties, as well as reg-
ularity properties such as being measurable, adapted and progressive. We introduce stopping
times and prove that several classes of frequently occurring random variables are stopping

times.

Section 1.2 concerns itself with continuous-time martingales. Applying the results from
discrete-time martingale theory, we show the supermartingale convergence theorem, the op-

tional sampling theorem and related results.

Section 1.3 introduces square-integrable martingales. Using the results developed in this
section, we prove the existence of the quadratic variation process for bounded martingales,
a particular case of the much more general construction to be carried out in Chapter 3. The

construction made in this section, however, is remarkable for requiring almost no advanced
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theory.

In Section 1.4, we introduce the Lebesgue integral process with respect to a process with
paths of finite variation, and ensure that we may always obtain a version of such an integral
process satisfying certain measurability properties. The results of this section are elementary,
yet will be important for the development of the theory of local martingales in Chapter 3, as

well as for the development of the stochastic integral in Chapter 4.

1.1 Measurability and stopping times

We begin by reviewing basic results on continuous-time stochastic processes. We will work
in the context of a filtered probability space (2, F, (F:), P). Here, Q denotes some set, F is
a o-algebra on Q, P is a probability measure on (2, F) and (F;)¢>o is a family of o-algebras
such that F;, C F; whenever 0 < s < t and such that 7; C F for all t > 0. We refer to
(Ft)t>0 as the filtration of the probability space. We will require that the filtered probability
space satisfies certain regularity properties given in the following definition. Recall that a P
null set of F is a set F' C Q with the property that there exists G € F with P(G) = 0 such
that F C G.

Definition 1.1.1. A filtered probability space (2, F, (Fi)i>0, P) is said to satisfy the usual
conditions if it holds that the filtration is right-continuous in the sense that Fy = Ngs Fs for
allt >0, and for all t > 0, F; contains all P null sets of F. In particular, all P null sets of

F are F measurable.

We will always assume that the usual conditions hold.

We define Foo = 0(Ui>0F:). A stochastic process is a family (X;);>o of random variables
taking values in R. The sample paths of the stochastic process X are the functions X (w) for
w € Q.

In the following, B denotes the Borel-o-algebra on R. We put R = [0, 00) and let B, denote
the Borel-c-algebra on R, and we let B; denote the Borel-o-algebra on [0,¢]. We say that
two processes X and Y are versions if P(X; =Y;) =1 for all t > 0. In this case, we say that
Y is a version of X and vice versa. We say that two processes X and Y are indistinguishable
if their sample paths are almost surely equal, in the sense that the set where X and Y are
not equal is a null set, meaning that the set {w € Q| It > 0: X¢(w) # Yi(w)} is a null set.
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We then say that X is a modification of Y and vice versa. We call a process evanescent
if it is indistinguishable from the zero process, and we call a set A € B, ® F evanescent
if the process 14 is evanescent. We say that a result holds up to evanescence, or up to
indistinguishability, if it holds except perhaps on an evanescent set. We have the following
three measurability concepts for stochastic processes.

Definition 1.1.2. Let X be a stochastic process. We say that X is adapted if X; is Fy
measurable for allt > 0. We say that X is measurable if (t,w) — X (w) is BL ®F measurable.
We say that X is progressive if, for t > 0, the restriction of (t,w) — X¢(w) to [0,t] x Q is
B; ® F; measurable.

If a process X has sample paths which are all continuous, we say that X is continuous, and
likewise for right-continuity, left-continuity, having right-continuous paths with left limits and
having left-continuous paths with right limits. We refer to a mapping with right-continuous
paths and left limits as a cadlag mapping, and we refer to a mapping with left-continuous
paths and right limits as a caglad mapping. We refer to a process with cadlag paths as a
cadlag process and we refer to a process with caglad paths as a caglad process. Note that we
always require that path properties hold for all paths and not only almost surely.

For a cadlag process X, the left limit lim,_,,— X is well-defined for all ¢ > 0 and is denoted
by X;_. We use the convention that Xo_ = Xo. Writing (X_); = X;_, the process X_ is
then well-defined on all of R;. We also introduce AX = X — X_ and refer to AX as the
jump process of X. Note that by our conventions, AX always has initial value zero, so that
there is no jump at the timepoint zero. Also, we define AX,, = 0. For any cadlag process,
AX; is then defined for all ¢ € [0, 00]. Next, we introduce the progressive o-algebra £™ and

consider its basic properties.

Lemma 1.1.3. Let X7 be the family of sets A € By @ F such that AN[0,t] x Q € By @ F;
forallt € Ry. Then X7 is a o-algebra, and a process X is progressively measurable if and

only if it is X" -measurable.

Proof. We first show that X7 is a o-algebra. It holds that ¥™ contains Ry x Q. If A € X7,
we have AN[0,t] xQ € B,®F, forall t > 0. As A°N[0,¢] x Q2 = ([0,¢] x Q) \ (AN]0,¢] x Q),
A°N[0,¢t] x Q is the complement of AN[0,¢] x Q relative to [0, t] x 2. Therefore, as B; ® F; is
stable under complements, we find that A°N[0,¢] x Q is in B; ® F; as well for all ¢ > 0. Thus,
3™ is stable under taking complements. Analogously, we find that ™ is stable under taking

countable unions, and so X" is a o-algebra. As regards the statement on measurability, we
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first note for any A € B the equality
{(s,w) e Ry x Q| X(s,w) € A} N[0,1] x Q= {(s,w) € [0,t] x Q| X|jp,x(s,w) € A}.

Now assume that X is progressive. Fix a set A € B. From the above, we then obtain
{t,w) e Ry x Q| X(t,w) € A}N[0,t] x Q € B, ® Fy, so that X is ™ measurable. In order
to obtain the converse implication, assume that X is X™ measurable. The above then shows
{(s,w) € [0,1] x Q| Xjj0,yx0(s,w) € A} € B; ® F;. Thus, being progressive is equivalent to

being ¥ measurable. O

Lemma 1.1.4. Let X be left-continuous. Define XJ* = Y77 KXo Lpa—n, (kt1)2-n) ().

Then X™ converges pointwise to X.

Proof. Fix w € Q. It is immediate that Xo(w) = lim, X' (w), so it suffices to prove that
Xi(w) = limy, XJ"(w) for t > 0. Fix t > 0. Let ¢ > 0, and take § > 0 with § < ¢ such that
| X¢(w) — Xs(w)| < e whenever s € [t — ,t]. Take n so large that 27" < §. We then obtain
X' (w) = Xpo-n(w) for some k with k27" <t < (k+1)27", 80 k27" € [t —27",t] C [t — 4, ]
and thus | X} (w) — X¢(w)| < e. We conclude that X;(w) = lim,, X;*(w), as desired. O

Lemma 1.1.5. Let X be right-continuous. Fix t > 0. For s > 0, define a process X"

by puttzng XZL = XOI{O}(S) + 22:01 Xt(kJrl)Q—n 1(tk27",t(k‘+1)27"](S)' Then XS = hmn X:’
pointwise for 0 < s < t.

Proof. Fix w € Q and ¢t > 0. It is immediate that Xo(w) = lim,, X{'(w), so it suffices to
consider the case 0 < s <t and prove X (w) = lim,, X7 (w). To this end, let € > 0, and take
0 > 0 such that | Xs(w) — X, (w)| < € whenever u € [s,s + §]. Pick n so large that 127" < 4.
Then X7 (w) = Xy(kt1)2- (W) for some k < 2" —1 with k27" < s < t(k+1)27". This yields
t(k+1)27" € [s,s+t27"] C [s,s + d] and thus | X7 (w) — Xs(w)| < e. From this, we obtain
Xs(w) = lim, X'(w), as desired. O

Lemma 1.1.6. Let X be an adapted process. Assume that X either is left-continuous or

right-continuous. Then X is progressive.

Proof. First consider the case where X is adapted and has left-continuous paths. By Lemma
1.1.4, X; = lim,, X" pointwise, where X[ = 37" | Xpo-nLjgo-n (541)2-n)(t). Therefore, using
the result from Lemma 1.1.3 that being progressive means measurability with respect to the
o-algebra X7, we find that in order to show the result, it suffices to show that the process
t = Xpo—nlpa—n (k41)2-n)(t) is progressive for any n > 1 and k > 0, since in this case, X
inherits measurability with respect to 3™ as a limit of 3™ measurable maps. In order to show
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that t — Xpo-nlpa-—n (k+1)2-7)(t) is progressive, let A € B with 0 ¢ A. For any t > 0, we
then have

{(S,UJ) € [O,t] x 0 | sz—n 1[k2*",(k+1)2*"’)(5) € A}
= [k27n7 (k + 1)27”’) ﬂ [O7t] X (XkQ—n 6 A)

If k2™ > t, this is empty and so in B; ® F;, and if k27" < ¢, this is in B; ® F; as a product
of a set in B; and a set in F;. Thus, in both cases, we obtain an element of 5; ® F;, and from
this we conclude that the restriction of ¢ > Xjpo-n1jpa—n (k41)2-7)(t) to [0,2] x Q is B; @ Fy

measurable, demonstrating that the process is progressive. This shows that X is progressive.

Next, consider the case where X is adapted and has right-continuous paths. In this case, we
fix t > 0 and define, for 0 < s <, X' = Xol{oy(s) + Zilgl Xi(et1y2- Ligha—n t(k1)2-] (5)-
By Lemma 1.1.5, X = lim,, X' pointwise for 0 < s < ¢. Also, each term in the sum defining
X™is By ® F; measurable, and therefore, X™ is B; ® F; measurable. As a consequence, the
restriction of X to [0,t] x Q is By ® F; measurable, and so X is progressive. This concludes
the proof. O

Lemma 1.1.7. Let X be right-continuous or left-continuous. If X; is almost surely zero for

allt > 0, X is evanescent.

Proof. We claim that {w € Q| Vit >0: X, (w) =0} = Ngeg, {w € Q| Xy(w) = 0} in
both cases. The inclusion towards the right is immediate. In order to show the inclusion
towards the left, assume that w is such that X (w) is zero for all ¢ € Q4. Let t € Ry. If
X is left-continuous, we can use the density properties of Q. in relation to Ry to obtain a
sequence (g,) in Q4 converging upwards ¢, yielding X;(w) = lim,, X, (w) = 0. If X is right-
continuous, we may instead pick a sequence converging downwards to ¢t and again obtain that
Xt(w) = 0. This proves the inclusion towards the left. Now, as a countable intersection of
almost sure sets again is an almost sure set, we find that Ngeq, {w € Q| Xy(w) = 0} is an
almost sure set. Therefore, {w € Q| V¢ > 0: X;(w) = 0} is an almost sure set, showing

that X is evanescent. O

Lemma 1.1.8. Let X be progressive. Then X is measurable and adapted.

Proof. That X is measurable follows from Lemma 1.1.3. To show that X is adapted, recall
that when X is progressive, the restriction of X to [0,t] x Q is By ® Fi-measurable, and
therefore w — X¢(w) is Fi-measurable. O
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Next, we define stopping times in continuous time and consider their interplay with mea-
surability on Ry x Q. A stopping time is a random variable T : © — [0, 00| such that
(T <t) € F; for any t > 0. We say that T is finite if T maps into R;. We say that T is
bounded if T maps into a bounded subset of R;. If X is a stochastic process and T is a
stopping time, we denote by X7 the process X/ = X7; and call X7 the process stopped
at T. Furthermore, we define the stopping-time o-algebra Fp of events determined at T
by putting Fr = {A € F| An(T <t) e Fforalt¢ > 0} It is immediate that Fr is
a o-algebra, and if T is constant, the stopping time o-algebra is the same as the filtration
o-algebra, in the sense that {A € F | AN(s <t) € F; for all t > 0} = F,.

Lemma 1.1.9. The following statements hold about stopping times:

(1). Any constant in [0,00] is a stopping time.

(2). A nonnegative variable T is a stopping time if and only if (T <t) € F; fort > 0.
(8). If S and T are stopping times, so are SAT, SVT and S+ T.

(4). If T is a stopping time and F' € Fr, then Tp = T1lp 4+ colpe also is a stopping time.

(5) ]fS S T, then .7:3 g fT.

Proof. Proof of (1). Let ¢ be a constant in Ry.. Then (c < ¢) is either §) or 2, both of which

are in J; for any ¢t > 0. Therefore, any constant ¢ in R, is a stopping time.

Proof of (2). Assume first that 7 is a stopping time. Then (T' < t) = U (T < t—1) e 7,
proving the implication towards the right. Conversely, assume (7' < t) € F; for all t > 0. We
then obtain (7' < ¢) = N2, (T < t + 1) for all n. This shows (T' < t) € Fiyr forall n > 1.
Since (F;) is decreasing and n is arbitrary, (T' < t) € N2 Fyy1 = NpZyNysyy 1 Fo = Nt Fs.
By right-continuity of the filtration, F; = Ng>¢Fs, SO we concﬁ1de (T<t)e ]fnt, proving that

T is a stopping time.

Proof of (3). Assume that S and T are stopping times and let ¢ > 0. We then have
(SAT <t)=(S<t)U(T <t) € Fiy s0 SAT is a stopping time. Likewise, we obtain
(SvT<t)=(S<t)N(T <t) € Fy, s0o SV T is a stopping time as well. Finally, consider
the sum S+ 7. Let n > 1 and fix w. If S(w) and T'(w) are finite, there are ¢,¢ € Q4 such
that ¢ < S(w) < ¢+ L and ¢ < T(w) < ¢ + . In particular, ¢ + ¢’ < S(w) + T(w) and
S(w) 4+ T(w) < g+ ¢ + 2. Next, if S(w) + T(w) < ¢, it holds in particular that both S(w)
and T'(w) are finite. Therefore, with ©; = {q,¢' € Q4+ | ¢ + ¢ < t}, we find

(S+T <t) =M Uggreo, (S<q+2)N (T <q +4).
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Now, the sequence of sets U(g 41co, (S < ¢+ %) N(T < ¢+ %) is decreasing in n, and therefore
we have for any k > 1 that (S+7T < t) = N2, Uggneo, (S<q+2)N(T <¢+21) € Fiyp1.
In particular, (S + T < t) € F, for any s > ¢, and so, by right-continuity of the filtration,
(S+T <t) €NgstFs = Fi, proving that S + T is a stopping time.

Proof of (4). Let T be a stopping time and let F' € Fr. Then (Tr <t)= (T <t)NF € F,

as was to be proven.

Proof of (5). Let A € Fg, so that AN (S <t¢) € F, for all ¢ > 0. Since S < T, we have
(T<t)C(S<t)andso AN(T<t)=AN(S<t)N(T <t) € F, yielding A € Fr. O

For the next result, we recall that for any nonempty A C R, it holds that sup A < t if and
only if s <t for all s € A, and inf A < t if and only if there is s € A such that s < .

Lemma 1.1.10. Let (T},) be a sequence of stopping times, then sup,, T,, and inf, T, are

stopping times as well.

Proof. Assume that T, is a stopping time for each n. Fix ¢ > 0, we then then have that
(sup,, Tn < t) = N224(T,, < t) € Fy, so sup,, T, is a stopping time. Likewise, using the
second statement of Lemma 1.1.9, we find (inf, T,, < t) = US2 (T, < t) € Fy, so inf,, T, is
a stopping time. ]

Lemma 1.1.11. Let T and S be stopping times. Assume that Z is Fs measurable. It then
holds that both Z1(s<r)y and Z1(s<T) are Fsar measurable.

Proof. We first show (S < T) € Fgar. To prove the result, it suffices to show that the
set (S <T)N(SAT <t)isin F for all ¢ > 0. To this end, we begin by noting that
(S<T)NSAT <t)=(S<T)N(S <t). Consider some w € €2 such that S(w) < T'(w) and
Sw) <t. Ift < T(w), S(w) <t <T(w). If T(w) <t, there is some ¢ € Q N [0,¢] such that
S(w) < q < T(w). We thus obtain (S <T)N(SAT <t) = Ugeqnioquier(S < q)N (g <T),
which is in F%, showing (S < T') € Fsar. We next show that Z1(s<T) is Fsar measurable.
Let B € B with B not containing zero. As this type of sets generate B, it will suffice to show
that (Z1(g<1) € B)N (S AT <t) € F; for all t > 0. To obtain this, we rewrite

(Zl(sery EB)N(SAT <t) = (Z€B)N(S<T)N(SAT <t)
= (ZeB)N(S<T)N(S<H).

Since Z is Fs measurable, (Z € B)N (S <t) € F;. And by what we have already shown,
(S<T)e Fsg,s0 (S<T)N(S <t) € Fi. Thus, the above is in Fy, as desired.
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Finally, we show that Z1(g<7) is Fsnr measurable. Let B € B with B not containing zero.
As above, it suffices to show that for any t > 0, (Z1(g<1) € B)N(SAT <t) € F;. To obtain
this, we first write

(Zls<ry € B)N(SAT <t) = (ZeB)N(S<T)N(SAT <t)
= (ZeB)NS<H)HNS<T)N(SAT <t).

Since Z € Fg, we find (Z € B)N (S < t) € F. And since we know (T' < S) € Fras,
(S <T)= (T < 8)° € Fspr,s0o (S <T)N(SAT < ¢) € F. This demonstrates

(Z1(s<m) € B)N(SAT <t) € Fy, as desired. O

Lemma 1.1.12. Let X be progressively measurable, and let T be a stopping time. Then

X1l(r<o0) 18 Fr measurable and X7 is progressively measurable.

Proof. We first prove that the stopped process X7 is progressively measurable. Fix t > 0,
we need to show that X fo,t]xﬂ is By ® F; measurable, which means that we need to show
that the mapping from [0, ] x © to R given by (s,w) = Xp(,)rs(w) is By ® F-B measurable.
To this end, note that whenever 0 < s <,

{(w,0) €10, x Q| TW)Au<s) = ([0, x (T <s)U(0,s] x Q) € B, @ F,

so the mapping from [0,¢] x §2 to [0,¢] given by (s,w) — T'(w) A s is By ® F-B; measurable.
And as the mapping from [0,¢] x Q to Q given by (s,w) — w is B; @ F;-F; measurable, we
conclude that the mapping from [0,¢] x £ to [0,¢] x Q given by (s,w) — (T'(w) A s,w) is
B: ® Fi-B; ® F; measurable, since it has measurable coordinates. As X is progressive, the
mapping from [0, ] x 2 to R given by (s,w) — X¢(w) is By ® Fz-B measurable. Therefore, the
composite mapping from [0, ¢] x Q2 to R given by (s, w) = Xp)as(w) is B;® F-B measurable.
This shows that X7 is progressively measurable.

In order to prove that Xp is Fr measurable, we note that for any B € B, we have that
(Xrl(rcooy € B)N(T < t) = (X! € B)N (T < t). Now, X{ is F; measurable since X is
progressive and therefore adapted by Lemma 1.1.8, and (7' < t) € F; since T is a stopping
time. Thus, (X71(r<s0) € B) N (T < t) € F4, and we conclude (X7lipeoy € B) € Fp. [

The remaining results of the section give some results on stopping times related to cadlag

adapted stochastic processes and their jumps.

Lemma 1.1.13. Let X be an adapted cadlag process, and let U be an open set in R. Define
T=inf{t >0| X; € U}. Then T is a stopping time.
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Proof. Note that if s > 0 and (s,,) is a sequence converging downwards to s, we have by right-
continuity that X converges to X, and so, since U is open, (X; € U) C US2, (X, € U).
Using the density properties of Q4 in relation to Ry, we then find

(T<t) = (FseRi:s<tand X;€U)
(35€Qy:s<tand X, € U) = Useq,,s<t(Xs € U),

and since X is adapted, we have (X; € U) € Fs C F; whenever s < t, proving that
(T < t) € F;. By Lemma 1.1.9, this implies that T is a stopping time. O

Lemma 1.1.14. Let X be a cadlag adapted process, and let U be an open set in R. Define
T=inf{t >0| AX; € U}. Then T is a stopping time.

Proof. As X is cadlag, AX is pathwisely zero everywhere except for on a countable set,
and so T is identically zero if U contains zero. In this case, it is immediate that T is a
stopping time. Thus, it suffices to prove the result in the case where U does not contain zero.
Therefore, assume that U is an open set not containing zero. By Lemma 1.1.9, it suffices to
show (T' < t) € F; for t > 0. To this end, fix t > 0. As AXy =0 and U does not contain

zero, we have
(T'<t) = (Fse(0,00):s<tand X;—X,_ €U).

Let F,, = {z e R |VyeU*: |x—y| >1/m}, F, is an intersection of closed sets and
therefore itself closed. Clearly, (F,,,)m>1 is increasing, and since U is open, U = USS_, F),.
Also, F,,, C F2,, where F?_; denotes the interior of Fy,11. Let Oy be the subset of Q?
defined by O = {(p,q) € Q> | 0 < p < g < t,[p—q| < +}. We will prove the result by
showing that

(Is € (0,00):s<tand Xg— X;_ €U)
= U%:l Unzy mﬁn Up,g)e0r (X(I —Xp€ Fm)

To obtain this, first consider the inclusion towards the right. Assume that there is 0 < s <t
such that X, — X,_ € U. Take m such that X, — X,_ € F,,,. As F},, C F;, |, we then have
X, — X, € Fqaswell. As F;,, is open and as X is cadlag, it holds that there is ¢ > 0
such that whenever p,q > 0 with p € (s —¢,s) and g € (s,5s+¢), X, — X, € F}; ;. Take
n € N such that 1/2n < e. We now claim that for k¥ > n, there is (p,q) € O such that
Xq— Xp € Fpyy1. To prove this, let k¥ > n be given. By the density properties of Q4 in R4,
there are elements p, ¢ € Q with p, ¢ € (0,t) such that p € (s —1/2k,s) and q € (s, s+ 1/2k).
In particular, then 0 < p < g <tand [p—q| < |p—s|+|s—¢q| < 1/k, s0 (p,q) € O. As



10 Continuous-time stochastic processes

1/2k <1/2n <&, we have p € (s —¢,s) and g € (5,5 +¢), and so X; — X, € F . C Fipya.

This proves the inclusion towards the right.

Now consider the inclusion towards the left. Assume that there is m > 1 and n > 1 such
that for all k& > n, there exists (p,q) € O with X, — X, € F,,. We may use this to
obtain sequences (pg)k>n and (gx)r>n with the properties that px,qr € Q, 0 < pp < g < t,
|pk — qi| < % and Xy, —X,, € Fy,. Putting p, = p, and qx = ¢, for k < n, we then find that
the sequences (pr)k>1 and (gx)r>1 satisfy pg,qr € Q, 0 < pi, < g < t, limy, |pr, — gr| = 0 and
Xg. — Xp, € Fiy. As all sequences of real numbers contain a monotone subsequence, we may
by taking two consecutive subsequences and renaming our sequences obtain the existence of
two monotone sequences (pg) and (gx) in Q with 0 < pr < qx < ¢, limg |px — gx| = 0 and
Xq. — Xpp € Fn. As bounded monotone sequences are convergent, both (py) are (gi) are

then convergent, and as limg, [pr, — gx| = 0, the limit s > 0 is the same for both sequences.

We wish to argue that s > 0, that X,_ = lim, X,,, and that X, = limy X,,. To this end,
recall that U does not contain zero, and so as F;,, C U, F,, does not contain zero either.
Also note that as both (py) and (gx) are monotone, the limits limy X, and limg X,, exist
and are either equal to X, or Xs_. As X, — X,, € F,, and F,, is closed and does not
contain zero, limy Xy, — limy X, = limy X, — X, # 0. From this, we can immediately
conclude that s > 0, as if s = 0, we would obtain that both lim; X, and limy X,, were
equal to Xy, yielding limy X4, — limy X,, = 0, a contradiction. Also, we cannot have that
both limits are X or that both limits are X,;_, and so only two cases are possible, namely
that X, = limy X,;, and X,_ = limy X, or that X, = lim; X, and X,_ = lim; X,,. We
wish to argue that the former holds. If X, = X,_, this is trivially the case. Assume that
Xs # Xs— and that X, = limy X, and X, = limy Xy, . If g > s from a point onwards
or pi < s from a point onwards, we obtain X; = X;_, a contradiction. Therefore, ¢ < s
infinitely often and py > s infinitely often. By monotonicity, ¢; < s and py > s from a point
onwards, a contradiction with p; < g;. We conclude X = lim; X, and X, = limy X, , as

desired.

In particular, X, — X,_ = limy Xo, — X,,. As Xy, — X, € F), and F;, is closed, we obtain
Xs—X,_ € F, CU. Next, note that if s = ¢, we have pg, g < s for all k, yielding that both
sequences must be increasing and X, = lim X,, = X,_, a contradiction with the fact that
Xs— Xs— #0as Xs — Xs— € U. Thus, 0 < s < t. This proves the existence of s € (0,00)
with s < t such that X, — X,_ € U, and so proves the inclusion towards the left.

We have now shown the announced equality. Now, as X, is F; measurable for all 0 < s <'¢,
it holds that the set US_; Up2 1 NP2, Uy g)co, (Xq — Xp € F,) is Fy measurable as well. We
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conclude that (T' < t) € F; and so T is a stopping time. O

In order to formulate and prove the next lemma, we introduce the notion of stochastic
intervals. Let S and T be two stopping times. We then define the subset |5, T] of Ry x Q by
putting | S, T] = {(t,w) e Ry xQ | S(w) <t < T(w)}. We define [S,T], ]S, T[ and [S, T in
analogous manner as subsets of R} x 2. Note in particular that even if T is infinite, the sets
1S, T] and [S,T] do not contain infinity. We also use the notational shorthand [T = [T, T7]
and refer to [T as the graph of the stopping time T.

Lemma 1.1.15. Let X be a cadlag adapted process. Define Tf = inf{t > 0 | [AX,| > +}
for k > 1, and recursively for n > 2, TF = inf{t > TF_, | |AXy| > +}. Then TF is a
stopping time for all k > 1 and n > 1, |AXT:§| > % whenever T¥ is finite and it holds that
{(tw) € Ry x Q| |AX,] £ 0} = U, U2, [TH].

Proof. First note that by Lemma A.2.3, since X has cadlag paths, it holds that the set
{t > 0||AX;| > }} always has finite intersection with any bounded interval. From this, we
conclude that for all £ > 1 and n > 1, [AXpx| > + whenever T is finite.

Next, fix k > 1. We will prove by induction that T* is a stopping time for all n > 1. The
induction start follows from Lemma 1.1.14. Fix n > 2 and assume that the results have been
proven for 1,...,n — 1. Define a process Y*" by putting Y*" = Z?;ll AXTikl[[Tf’oo[[. As
{t > 0] |AX,| > 1} has finite intersection with any bounded interval, the set {Tf,...,T%_,}
contains all jump times of X with absolute value strictly larger than % on [0,TF). Therefore,
the process X — Y*" has no jumps strictly larger than % on [0,7%), and so it holds that
TF =inf{t > 0| |A(X =Y*"),| > 1}. Thus, if we can show that X —Y*" is cadlag adpated,
Lemma 1.1.14 will yield that T* is a stopping time.

To this end, note that X is cadlag adapted, it suffices to show that Y*" is cadlag adapted.
The cadlag property is immediate, we prove adaptedness. Fixing ¢t > 0 observe that we have
v =yl AXrrligrey = S AXprLirkcoo)l(rr<y- By our induction assumptions,
the variables T, ..., T* | are stopping times. Therefore, for i < n — 1, Lemma 1.1.12 shows
that X7x 17k o) is Frr measurable, and so Lemma 1.1.11 shows that Xor 1k ooy Liph<y) is
F; measurable. Thus, Y,*" is F; measurable, proving that Y*" is adapted. Applying Lemma
1.1.14, we conclude that T¥ is a stopping time, concluding the induction proof.

Finally, again from the fact that the set {¢ > 0 | |AX;| > +} always has finite intersection
with any bounded interval, we have {t > 0 | [AX;| > +} = {T¥|n > 1,T¥ < oo}, and this
shows the identify for the jump set {(t,w) € Ry x Q| |[AXy| # 0}. O
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Lemma 1.1.16. Let X be a cadlag adapted process. If it holds for all bounded stopping

times T that AXt is almost surely zero, then X is almost surely continuous.

Proof. Assume that AX7p is almost surely zero for all bounded stopping times. Let T be
any stopping time. On the set (T' < c0), T'= T A n for n large enough, depending on w.
Therefore, AX7 = AX71(1<o0) = limy AX7anl(7<o0), and so AXr is almost surely zero for
all stopping times T'. By Lemma 1.1.15, there exists a countable family of stopping times (T,)
such that {(t,w) € Ry x Q| [AX,| # 0} = Uy, [T,], yielding AX = > | AX7, 1fr,]- By
what we already have shown, this is almost surely zero, and so X is almost surely continuous.

This concludes the proof. O

The following lemma shows that all continuous adapted processes are bounded in a local
sense. That this is not the case for cadlag adapted processes is part of what makes the

theory of general martingales more difficult than the theory of continuous martingales.

Lemma 1.1.17. Let X be any continuous adapted process with initial value zero. Defining
T, = inf{t > 0| |X¢| > n}, (T)) is a sequence of stopping times increasing pointwise to

infinity, and the process X is bounded by n.

Proof. By Lemma 1.1.13, (T},) is a sequence of stopping times. We prove that X 7= is bounded
by n. If T}, is infinite, X; < n for all t > 0, so on (T, = c0), X™» is bounded by n. If T},
is finite, note that for all ¢ > 0, there is ¢ > 0 with T;, < ¢t < T, + ¢ such that | X;| > n.
Therefore, by continuity, | X7, | > n. In particular, as X has initial value zero, T}, cannot take
the value zero. Therefore, there is ¢ > 0 with ¢ < T,,. For all such ¢, | X;| < n. Therefore,
again by continuity, | X7, | < n, and we conclude that in this case as well, X7 is bounded

by n. Note that we have also shown that | X7, | = n whenever T,, is finite.

It remains to show that 7T, converges pointwise to infinity. To obtain this, note that as X
is continuous, X is bounded on compacts. If for some samle path we have that T,, < a for
all n, we would have | X7, | = n for all n and so X would be unbounded on [0, a]. This is
a contradiction, since X has continuous sample paths and therefore is bounded on compact
sets. Therefore, (7;,) is unbounded for every sample path. As T, is increasing, this shows

that T,, converges to infinity pointwise. O
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1.2 Continuous-time martingales

In this section, we consider cadlag martingales in continuous time. We say that a process M is
a continuous-time martingale if M is adapted and for any 0 < s < t, E(M|Fs) = M, almost
surely. In the same manner, if M is adapted and for any 0 < s < ¢, we have E(M;|Fs) < M
almost surely, we say that M is a supermartingale, and if M is adapted and for any 0 < s < ¢,
E(M|Fs) > M almost surely, we say that M is a submartingale. =~ We are interested in
transferring the results known from discrete-time martingales to the continuous-time setting,
mainly the criteria for almost sure convergence, £! convergence and the optional sampling
theorem. The classical results from discrete-time martingale theory are reviewed in Appendix
A.4. We will only take interest in martingales whose sample paths are cadlag. This is not
a significant restriction, as we have assumed that our filtered probability space satisfies the
usual conditions, so all martingales will have a cadlag version, see for example Theorem
I1.67.7 of Rogers & Williams (2000a).

We will for the most part only take interest in martingales M whose initial value is zero,
meaning that My = 0, in order to simplify the exposition. We denote the space of martingales
in continuous time with initial value zero by M. By M", we denote the elements of M which
are uniformly integrable, and by M?, we denote the elements of M? which are bounded in
the sense that there exists ¢ > 0 such that [M;| < ¢ for all t > 0.  Clearly, M and M?"
are both vector spaces, and by Lemma A.3.4, M" is a vector space as well. Subspaces of
continuous martingales are denoted by adding a c¢ to the corresponding spaces, such that
cM denotes the subspace of elements of M with continuous paths, cM" is the space of
continuous processes in M* and cM? is space of the continuous processes in MP.

The main lemma for transferring the results of discrete-time martingale theory to continuous-

time martingale theory is the following.

Lemma 1.2.1. Let M be a continuous-time martingale, supermartingale or submartingale,
and let (ty) be an increasing sequence in Ry. Then (Fy, )n>1 is a discrete-time filtration,
and the process (My, )n>1 is a discrete-time martingale, supermartingale or submartingale,

respectively, with respect to the filtration (Fy, )n>1-

Proof. This follows immediately from the definition of continuous-time and discrete-time

martingales, supermartingales and submartingales. O

Lemma 1.2.2 (Doob’s upcrossing lemma). Let Z be a cadlag supermartingale bounded in
LY. Define U(Z,a,b) =sup{m | 30 <51 <t1 < 8 < tm : Zs, < a,Zy, >bk <m} for
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any a,b € R with a < b. We refer to U(Z,a,b) as the number of upcrossings from a to b by
M. Then U(Z,a,b) is F measurable and it holds that

EU(Z a b) < |Cl| +SuptE‘Zt|
= b—a

Proof. We will prove the result by reducing to the case of upcrossings relative to a countable
number of timepoints and applying Lemma 1.2.1 and the discrete-time upcrossing result of
Lemma A.4.1. For any D C R, we define

U(Z,a,b,D) =sup{m | 30< 81 <t1 <+ -8$m <tm :8,ti € D, Zs, < a,Zy, >bi <m},

and we refer to U(Z, a,b, D) as the number of upcrossings from a to b at the timepoints in
D. Define D, = {k27" | k > 0,n > 1}, we refer to D as the dyadic nonnegative rationals.
It holds that D, is dense in R;. Now, as Z is right-continuous, we find that for any finite
sequence 0 < s1 < t1 < ---8y < tpy, such that s;,t; € Ry with Z;, < a and Z;, > b for
¢ < m, there exists 0 < p; < ¢1 < ---pm < @m such that p;,¢q; € Dy with Z,, < a and
Zy, > b for i < m. Therefore, U(Z,a,b) = U(Z,a,b,D;). In other words, it suffices to
consider upcrossings at dyadic nonnegative rational timepoints. In order to use this to prove

that U(Z, a,b) is F measurable, note that for any m > 1, we have

(F0<s1 <ty <+ 8 <t 85t €Dy, Zs, <a,Zy, >b,i <m)
= W(Zs, <a,Zy, >bforalli <m)|0<s1 <t1 < 8y <tpm:sit; €Dy}

which is in F, as (Zs, < a, Zy, > b for all i < m) is F measurable, and all subsets of Up2 D"}
are countable. Here, D" denotes the n-fold product of D, . From these observations, we
conclude that the set (30 < 51 <t1 <+ 8 <t @ 85, €Dy, Zg, < a,Zy, > b0 <m) is
F measurable. Denote this set by A,,, we then have U(Z,a,b)(w) =sup{m € N |w € A,,},
so that in particular (U(Z,a,b) <m) =N, . A} € F and so U(Z, a,b) is F measurable.

It remains to prove the bound for the mean of U(Z, a,b). Putting ¢} = k2~" and defining
D,, ={t} | k > 0}, we obtain D} = U2, D,,. We then have

sup{m | 30 <51 <t1 <+ 8 <l :8i,t; €Dy, Zs, < a,Zy, > byi < m}
= supUpl {m | F30< 51 <ty <+ Sy <tm:Siyt; € Dp, Zs, <a,Zy;, >b,i <m}
= supsup{m | F30<51 <ty < 8y <tm: 8t € D, Zs, < a,Zy, >byi < m},
n

soU(Z,a,b,D ) =sup, U(Z,a,b,D,). Now fix n € N. As (t})r>0 is an increasing sequence,
Lemma 1.2.1 shows that (Zt;g)kzo is a discrete-time supermartingale with respect to the
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filtration (Fiz)r>0. As (Z;)i>0 is bounded in L', s0 is (Zin)r>0. Therefore, Lemma A.4.1

yields

lal +supy E|Zep| _ |a] + sup, B|Zi|
b—a - b—a

As (D,,) is increasing, U(Z, a, b, D,,) is increasing, so the monotone convergence theorem and

EU(Z,a,b,D,) <

our previous results yield

EU(Z,a,b) = FEU(Z,a,b,Dy)= EsupU(Z,a,b,D,)
E|Z
— ElmU(Z a,b,D,) = lim EU(Z,a,b, Dy) < M.
n n —a
This concludes the proof of the lemma. O

Theorem 1.2.3 (Doob’s supermartingale convergence theorem). Let Z be a cadlag super-
martingale. If Z is bounded in L', then Z is almost surely convergent to an integrable limit.
If Z is uniformly integrable, then Z also converges in L', and the limit Zo, satisfies that
for allt > 0, E(Zxo|Ft) < Z almost surely. If Z is a martingale, the inequality may be
exchanged with an equality.

Proof. Assume that Z is bounded in £'. Fix a,b € Q with a < b. By Lemma 1.2.2, the
number of upcrossings from a to b made by Z has finite expectation, in particular it is almost
surely finite. As Q is countable, we conclude that it almost surely holds that the number of
upcrossings from a to b made by Z is finite for any a,b € Q. Therefore, Lemma A.2.19 shows
that Z is almost surely convergent to a limit in [—o0, 00]. Using Fatou’s lemma, we obtain
E|Zy| = Eliminf, |Z;| < liminf; F|Z;| < sup,q E|Z;|, which is finite, so we conclude that
the limit Z., is integrable.

Assume next that Z is uniformly integrable. In particular, Z is bounded in £, so Z; converges
almost surely to some variable Z.,. Then Z; also converges in probability, so Lemma A.3.5
shows that Z; converges to Z,, in £'. We then find that for any ¢ > 0 that, using Jensen’s
inequality, E|E(Zwo|F:) — E(Zs|Fi)| < E|Zo — Zs|, so E(Zs|F;) tends to E(Zuo|F;) in L1 as
s tends to infinity, and we get F(Zoo|Ft) = lims—so0 E(Zs|F:) < Z;. This proves the results

on supermartingales.

In order to obtain the results for the martingale case, next assume that Z is a cadlag sub-
martingale bounded in £'. Then —Z is a continuous supermartingale bounded in £'. From
what we already have proved, —Z is almost surely convergent to a finite limit, yielding that
Z is almost surely convergent to a finite limit. If Z is uniformly integrable, so is —Z, and

so we obtain convergence in £! as well for —Z and therefore also for Z. Also, we have
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E(—Zw|Ft) < —=Z;, 50 E(Zoo|Ft) > Z;. Finally, assume that Z is a cadlag martingale. Then

Z is both a cadlag supermartingale and a cadlag submartingale, and the result follows. [

Theorem 1.2.4 (Uniformly integrable martingale convergence theorem). Let M € M. The

following are equivalent:

(1). M is uniformly integrable.
(2). M is convergent almost surely and in L.

(3). There is some integrable variable & such that My = E(§|F;) almost surely for t > 0.

In the affirmative, with My, denoting the limit of M; almost surely and in L', we have for
allt > 0 that My = E(My|F;) almost surely, and Mo, = E(§|Foo), where Foo = 0(Ui>0Ft)-

Proof. We show that (1) implies (2), that (2) implies (3) and that (3) implies (1).

Proof that (1) implies (2). Assume that M is uniformly integrable. By Lemma A.3.3, M
is bounded in £!, and Theorem 1.2.3 shows that M converges almost surely and in £

Proof that (2) implies (3). Assume now that M is convergent almost surely and in L.
Let M., be the limit. Fix F € F, for some s > 0. As M, converges to My, in L', 1xM,

converges to 1My, in £ as well, and we then obtain
ElpM,, = tlim ElpM,; = tlim ElpE(M|Fs) = E1pMs,
—00 —00
proving that E(My|Fs) = My almost surely for any s > 0.

Proof that (3) implies (1). Finally, assume that there is some integrable variable ¢ such
that M; = E(¢|F;). By Lemma A.3.6, M is uniformly integrable.

It remains to prove that in the affirmative, with M., denoting the limit, it holds that for all
t >0, My = E(Mx|F;) almost surely, and My, = E({|F). By what was already shown,
in the affirmative case, M; = E(M|F:). We thus have E(Mu|F;) = E(£|F;) almost surely
for all t > 0. In particular, for any F' € U;>oFy, we have EMo1p = EE(§|Fx)lp. Now let
H={F € FIEMxlp = EE(§|Fo)lr}. We then have that H is a Dynkin class containing
Ui>oFt, and Ug>oF: is a generating class for Foo, stable under intersections. Therefore,
Lemma A.1.1 shows that Foo C H, so that EM.1p = EE({|Fs)1F for all F' € Fu. Since
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My, is Fs measurable as the almost sure limit of F,, measurable variables, this implies

Mo = E(€|Fx) almost surely, proving the result. O

Lemma 1.2.5. If Z is a cadlag martingale, supermartingale or submartingale, and ¢ > 0,
then the stopped process Z¢ is also a cadlag martingale, supermartingale or submartingale,
respectively. Z¢ is always convergent almost surely and in L' to Z.. In the martingale case,

Z¢ is a uniformly integrable martingale.

Proof. Fix ¢ > 0. It holds that Z¢ is adapted and cadlag. Let 0 < s < ¢ and consider the
supermartingale case. If ¢ < s, we also have ¢ < ¢t and the adaptedness of Z allows us to

conclude that
E(Z{\Fs) = E(Zipe|Fs) = E(Ze|Fs) = Zo = ZE,

and if instead ¢ > s, the supermartingale property yields
E(Ztc|f8) = E(ZtAclfsAc) S Zs/\c = Z‘g

This shows that Z¢ is a supermartingale. From this, it follows that the submartingale and
martingale properties are preserved by stopping at ¢ as well. Also, as Z¢ is constant from a
deterministic point onwards, Z¢ converges almost surely and in £' to Z,. If Z is a martingale,
Theorem 1.2.4 shows that Z¢ is uniformly integrable. O

Theorem 1.2.6 (Optional sampling theorem). Let Z be a cadlag supermartingale, and let
S and T be two stopping times with S < T. If Z is uniformly integrable, then Z is almost
surely convergent, Zg and Zr are integrable, and E(Zr|Fs) < Zg. If Z is nonnegative, then
Z is almost surely convergent as well and E(Zr|Fs) < Zg. If instead S and T are bounded,
E(Zr|Fs) < Zg holds as well, where Zg and Zr are integrable. Finally, if Z is a martingale
in the uniformly integrable case or the case of bounded stopping times, the inequality may be

exchanged with an equality.

Proof. Assume that Z is a cadlag supermartingale which is convergent almost surely and in
L', and let S < T be two stopping times. We will prove E(Zr|Fs) < Zg in this case and
obtain the other cases from this. First, define a mapping S,, by putting S,, = co whenever
S =00, and S, = k27" when (k—1)27" < § < k27". We then find

(Sn<t) = Uo(Sn=k27")N (k27" <¥)
Unto((E=1)27" < S <k27")n (k27" < 1),

which isin F, as ((k—1)27" < .S < k27") isin F; when k2™ < . Therefore, S, is a stopping
time. Furthermore, we have S < S,, with S,, converging downwards to .S, in the sense that
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Sy, is decreasing and converges to S. We define (7},) analogously, such that (73,) is a sequence
of stopping times converging downwards to T', and (T}, = k27") = (k—1)27" < T < k27").
We then obtain that (T, = k27") = ((k—1)27" < T < k2™") C (S < k2™") = (S, < k27"),
from which we conclude S,, < T,.

We would like to apply the discrete-time optional sampling theorem to the stopping times
Sy, and T;,. To this end, first note that with ¢} = k27", we obtain that by by Lemma 1.2.1,
(Zt';;)kzo is a discrete-time supermartingale with respect to the filtration (.7-};;);620. As Z
is convergent almost surely and in £!, so is (Zip)k>0, and then Lemma A.3.5 shows that
(th)kzo is uniformly integrable. Therefore, (Ztg) k>0 satisfies the requirements in Theorem
A.4.5. Furthermore, it holds that th converges to Zo,. Putting K,, = 5,2", K,, takes its
values in NU {oo} and (K, < k) = (S, < k27") € Fin, so K, is a discrete-time stopping
time with respect to (]:tﬁ) k>0. As regards the discrete-time stopping time o-algebra, we have

Fo.. = {FeF|FN(Ky,<k)€ Fy forall k >0}
= {FeF|Fn(S,<ty)e Fp forall k> 0}
= {FeF|Fn(S,<t)e F foralt>0}=Fg,

where Fin . denotes the stopping time o-algebra of the discrete filtration (.7-};;) k>0 Putting
L, = T,2", we find analogous results for the sequence (L,). Also, since S, < T, we
obtain K,, < L,,. Therefore, we may now apply Theorem A.4.5 with the uniformly integrable
discrete-time supermartingale (Z;r )x>o to conclude that Zs, and Zr, are integrable and that
E(Zr, |Fs,) = E(thn |}—t?<n) < Zyy =g,

Next, we show that Z7, converges almost surely and in £! to Zr. This will in particular show
that Zr is integrable. As before, (Z tzﬂ)kzo is a discrete-time supermartingale satisfying the
requirements in Theorem A.4.5. Also, (2L, < k) = (2T,2" < k) = (T, < k2-(+1),
which is in ]:t';:+17 so 2L, is a discrete-time stopping time with respect to (ftz+1)k20, and
it holds that L, ; = T,,112""! < T;,2"*! = 2L,,. Therefore, applying Theorem A.4.5 to
the stopping times 2L, and L,y1, E(Zr,|Fr,,,) = E(Zt;’;i |]~'t2:i1) < th:il = 27, .,
Iterating this relationship, we find that for n > k, Zp, > E(Zrp |Fr,). Thus, (Zr,) is
a backwards submartingale with respect to (Fr, )n>0. Therefore, (—Z7, ) is a backwards
supermartingale. Furthermore, as Zr, > E(Zg |Fr,) for n > k, we have EZy, > EZp,,
so E(—~Zr,) < E(—Zr,). This shows that, sup,,~; E(—Z7,) is finite, and so we may apply
Theorem A.4.6 to conclude that (—Z7, ), and therefore (Zr, ), converges almost surely and in
L. By right-continuity, we know that Zz. also converges almost surely to Z7. By uniqueness
of limits, the convergence is in £' as well, which in particular implies that Z7 is integrable.

Analogously, Zs, converges to Zg almost surely and in £!.



1.2 Continuous-time martingales 19

Now fix F' € Fg. As S < S, we have Fg C Fg, . Using the convergence of Zr to Zr and
Zs, to Zg in L', we find that 1pZ7r, converges to 1pZr and 1pZg, converges to 1pZg in
L, so that ElpZr = lim,, E1pZr, = lim, E1pE(Zr,|Fs,) < lim, E1rZs, = ElpZg, and
therefore, we conclude F(Zr|Fs) < Zg, as desired.

This proves that the optional sampling result holds in the case where Z is a supermartingale
which is convergent almost surely and in £! and S < T are two stopping times. We will now

obtain the remaining cases from this case.

If Z is a uniformly integrable supermartingale, it is in particular convergent almost surely
and in £!, so we find that the result holds in this case as well. Next, consider the case where
we merely assume that Z is a supermartingale and that S < T are bounded stopping times.
Letting ¢ > 0 be a bound for S and T, Lemma 1.2.5 shows that Z¢ is a supermartingale, and
it is clearly convergent almost surely and in £!. Therefore, as Zr = Z%, we find that Z7 is
integrable and that E(Zr|Fs) = E(Z%|Fs) < Z§ = Zg, proving the result in this case.

Finally, consider the case where Z is nonnegative and S < T are any two stopping times.
We then find that E|Z;| = EZ; < EZy, so Z is bounded in £'. Therefore, Theorem 1.2.3
shows that Z is almost surely convergent and so Zp is well-defined. From what we already
have shown, Zra, is integrable and E(Zran|Fsan) < Zsan. For any F € Fg, we find
FnN(S <n)e Fsap for any n by Lemma 1.1.11. Therefore, we obtain

ElpZran = FElrls<p)Zran + Elrl(ssn)Zran
< Elrls<pnyZsan + Elpl(ssn)Zsan = ElpZspn,

and so, by Lemma A.1.19, E(Zran|Fs) < Zsan- Applying Fatou’s lemma for conditional

expectations, we obtain
E(ZT|fs) = E(hmlnf ZT/\n|]:S) S lim inf E(ZT/\nLFS) S lim inf ZS/\n == Zs,

as was to be shown. We have now proved all of the supermartingale statements in the
theorem. The martingale results follow immediately from the fact that a martingale is both

a supermartingale and a submartingale. O

Lemma 1.2.7. Let T be a stopping time. If Z is a cadlag supermartingale, then Z7 is a
cadlag supermartingale as well. In particular, if M € M, then MT € M as well, and if
M e M*, then MT € M* as well.

Proof. Let a cadlag supermartingale Z be given, and let T be some stopping time. Fix two
timepoints 0 < s < t, we need to prove E(Z]'|F,) < ZI almost surely, and to this end, it



20 Continuous-time stochastic processes

suffices to show that E1pZ] < E1pZT for any F € F,. Let F € F, be given. By Lemma
1.1.11, FN (s < T) is Fsar measurable, and so Theorem 1.2.6 applied with the two bounded
stopping times T'A s and T' At yields

E1pZ] = Elpae<rZra + Elpast)Zrne
< Elpns<r)Zras + ElpassT)Zrat

= Elpni<r)Zrrs + Elpnsst)ZrAs
= FE1pz7%.

Thus, E(ZF|Fs) < ZT and so Z7 is a supermartingale. From this it follows in particular
that if M € M, it holds that MT € M as well. And if M € M%, we find that MT € M
from what was already shown. Then, by Theorem 1.2.4, Ml = E(M|Fra¢), so by Lemma
A.3.6, M7 is uniformly integrable, and so MT € M*, O

Next, we prove two extraordinarily useful results, first a criterion for determining when a
process is a martingale or a uniformly integrable martingale, and secondly a result showing

that a particular class of martingales are evanescent.

Lemma 1.2.8 (Komatsu’s lemma). Let M be a cadlag adapted process with initial value
zero. It holds that M € M if and only if My is integrable with EMp = 0 for any bounded
stopping time T'. If the limit limy_, o, M, exists almost surely, it holds that M € M™ if and
only if Mp is integrable with EMp = 0 for any stopping time T.

Proof. We first consider the case where we assume that the limit lim;_, o, M; exists almost
surely. By Theorem 1.2.6, we have that if M € M", Mr is integrable and EMp = 0 for any
for any stopping time 7. Conversely, assume that My is integrable and EMp = 0 for any
for any stopping time T. We will prove that My = E(My|F;) for any ¢ > 0. To this end,
let F' € F; and note that by Lemma 1.1.9, tr is a stopping time, where tr = t1p + ool pe,
taking only the values ¢ and infinity. We obtain EM;, = E1pM; + Elp- My, and we also
have EM,, = FlpMy + ElpcM,,. By our assumptions, both of these are zero, and so
ElpM; = ElpMy. As M, is F; measurable by assumption, this proves M; = E(Mqo|F).
From this, we see that M is in M, and by Theorem 1.2.4, M is in M".

Consider next the case where we merely assume that M is a cadlag adapted process with
initial value zero. If M € M, Theorem 1.2.6 shows that My is integrable with EMp = 0 for
any bounded stopping time. Assume instead that Mrp is integrable and EMp = 0 for any
bounded stopping time 7. From what we already have shown, we then find that M? is in
M for any t > 0 and therefore, M € M. O
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For the next result, we say that a process X is of finite variation if it has sample paths which
are functions of finite variation, see Appendix A.2 for a review of the properties of functions
of finite variation. If the process X has finite variation, we denote the variation over [0, ]
by (Vx)t, such that (Vx); = supd>_,_, |Xt, — Xt, |, where the supremum is taken over
partitions 0 =to < --- < t, =t of [0,1].

Lemma 1.2.9. Let X be cadlag adapted with finite variation. Then the variation process

Vx is cadlag adapted as well.

Proof. By Lemma A.2.8, Vx is cadlag. As for proving that Vx is adapted, note that from
Lemma A.2.15, we have (Vx); =sup > ,_; | Xq. — Xg._, |, where the supremum is taken over
partitions of [0,¢] with elements in in Q4 U {¢}. As US2,(Q4+ U {t})™ is countable, there are
only countably many such partitions, and so we find that (Vx); is F; measurable, since X,
is F; measurable whenever g < t. Therefore, Vx is adapted. O

Lemma 1.2.10. Let X be cadlag adapted with finite variation. Then (Vx)T = Vxr.

Proof. Fix w € Q. With the supremum being over all partitions of [0,T'(w) A t], we have

Vx)f W) = (Va)renw) =sup Y [ X, (@) = Xip (@)
k=1

SUPZ ‘ij; (w) — XtTk,l(WN = (Vx7)irr(w)(w) < (Vxr)e(w).
k=1

Conversely, with the supremum being over all partitions of [0, ¢], we also have

(Vxr)e(w) = sup Y |X{(w) = Xf (@)
k=1
= SUPZ |thAT(w) (w) — th,lAT(w)(WN < (VX)tAT(w) (w).
k=1
Combining our conclusions, the result follows. O

Lemma 1.2.11. Assume that M € M is almost surely continuous and has paths of finite
variation. Then M is evanescent.

Proof. Let M € M be almost surely continuous and have paths of finite variation. Let F' be
the null set where M is not continuous and put N = 1gp<M. As the usual conditions hold,
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F € Fy C F. Therefore, N € M as well, N has paths of finite variation and N is continuous.
And if N is evanescent, M is evanescent as well. We conclude that it suffices to prove the

theorem in the case where M € cM and M has paths of finite variation.

We first consider the case where M € cM?® and the variation process Vj is bounded, (Viy);
being the variation of M over [0,t]. Fix ¢ > 0 and let ¢} = kt27". Now note that by the
martingale property, EMtg,l(Mtz — Mtz,l) = EMtg,lE(Mtg — Mtz71|ft};71) = 0, and by
rearrangement, MQZ _M2Z_1 =2Mp (Mtk —Mtz71)+(Mt£ —Mt£71)2. Therefore, we obtain

o o o
2 2 2 _ 2
EM{ = EY (Mj— Mg )=28% My (Mg =My )+EY (Mg - Mg )
k=1 k=1 k=1
-
= E) (Mg — My )? < E(Var)e max My — M|
k=1 -

Now, as M is continuous, (Vas): maxg<p |Mt2, —M;»_ | tends pointwisely to zero as n tends to
infinity. The boundedness of M and V}; then allows us to apply the dominated convergence
theorem and obtain

EM; < lim E(Vig), max |My, — My, | < B lim (Vig)e max [My, — M, | =0,

so that M, is almost surely zero by Lemma A.1.20, and so by Lemma 1.1.7, M is evanescent.
In the case of a general M € cM, define T, = inf{t > 0 | |(Vas):] > n}. By Lemma
1.1.17, (T},) is a sequence of stopping times increasing almost surely to infinity, and (V)
is bounded by n. By Lemma A.2.10, |[M™| < |(Vas)I"| < nforallt > 0. As (Vo)™ = Vyr,
by Lemma 1.2.10, M™ is a bounded martingale with bounded variation, so our previous
results show that M7» is evanescent. Letting n tend to infinity, T}, tends to infinity, and so
we almost surely obtain M; = lim,, MtT " = (), allowing us to conclude by Lemma 1.1.7 that

M 1is evanescent. O

We end the section by introducing two types of processes which will serve as instructive
examples for most of the theory to follow. Often, properties of these two types of processes
may be elegantly derived by the application of martingale methods. First, we introduce the

concept of an F; Brownian motion.

Definition 1.2.12. A p-dimensional F; Brownian motion is a continuous process W adapted
to Fi such that for any t, the distribution of s — Wy, — Wy is a p-dimensional Brownian

motion independent of Fy.

Essentially, the difference between a plain p-dimensional Brownian motion and a p-dimensional
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F: Brownian motion is that the p-dimensional F; Brownian motion possesses a certain reg-
ular relationship with the filtration. The independence in Definition 1.2.12 means the fol-
lowing. Fix ¢ > 0 and let X be the process defined by Xy = W;,s — W;. The process
X is then a random variable with values in C'(R4,RP), the space of continuous functions
from R4 to RP, endowed with the o-algebra C(Ry,RP) induced by the coordinate map-
pings. The independence of X and J; means that for any A € C(R4,RP) and any B € F,
P((X e A)nB) = P(X € A)P(B).

The following basic result shows that the martingales associated with ordinary Brownian

motions reoccur when considering J; Brownian motions.

Theorem 1.2.13. Let W be a p-dimensional F, Brownian motion. For i < p, W' and
(W§)? — t are martingales, where W* denotes the i’th coordinate of W. For i,j < p with
i # 7, WZWtJ is a martingale.

Proof. Let i < p and let 0 < s < t. W' is then an F; Brownian motion, so W} — W¢ is
normally distributed with mean zero and variance ¢ — s and independent of F;. Therefore,
we obtain E(W}|Fs) = E(W} — WiFs) + Wi=EW; - W) +W! =W, proving that W*
is a martingale. Furthermore, we find
E((Wi)? =t|F) = BE(W] =W —(W))? + 2WW{|F) —t
= B((W] = W2 Fs) — (W)? + 2W E(W{|Fy) —t = (W) —
o (W})? —t is a martingale. Next, let i, j < p with i # j. We then obtain that for 0 < s < t,

using independence and the martingale property,

E(WiW}|F) = EWW] - WiWIF,)+Wiwi
= BWIW] = WiW] + WiW] = WIW|F) + WW]
= E(W}(W} - WJ) = WI(W} — WH|F,) + WiW?
- E(Wt<Wj Wi)|F.) + Wi
= B((W] = WH(W] — WI)|F.) + EWIW] — Wi)|F,) + Wiw!
= W§W§7

where we have used that the variables E(WJ(W{—Wi)|F,), E(Wi—-W& (W} —Wi)|F,) and
E(W{W] —W3i)|F,) are all equal to zero, because s — Wiy, — W, is independent of F, and

has the distribution of a p-dimensional Brownian motion. Thus, W*W/ is a martingale. [

Furthermore, when W is a p-dimensional F, Brownian motion, W? has the distribution of a

Brownian motion, so all ordinary distributional results for Brownian motion transfer verbatim
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to (F;) Brownian motion, for example that the following results hold almost surely:

lim sup Wi = 1,liminf Wi —1, lim Wi

L —t =1, =0.
t—oo V/2tloglogt t—oo 4/2tloglogt t—oo ¢t

Next, we introduce (F:) Poisson processes in a manner similar to that of (F;) Brownian

motions.

Definition 1.2.14. An F; Poisson process is an increasing cadlag process N adapted to Fy
such that Ny = ZO<s§t AN, where AN only takes the values zero and one, and such that
for any t, the distribution of s — Niys — Ny is a Poisson process independent of Fy.

Similarly to Definition 1.2.12, the difference between an F; Poisson process and a Poisson
process is that an an F; Poisson process has regularity propeties ensuring that the process
interacts properly with the filtration of the probability space.

Theorem 1.2.15. Let N be an F; Poisson process. Then Ny —t is a martingale.

Proof. Let 0 < s < t. Using independence, we obtain
E(Ny —t|Fs) = E(Ny — Ng|Fs) + Ns —t = E(N; — Ng) + Ny —t = N, — s,

which proves the result. O

Also, note the following. Letting N be an F; Poisson process, we may define Ty = 0 and for
n>1,T,=inf{t > 0| N; =n}. As N is cadlag, is the sum of its jumps and only has jumps
of size one, it holds that the sequence (T3,) is strictly increasing and covers the jumps of N. As
we also have T,, = inf{t > 0 | N; > n—1/2}, Lemma 1.1.13 shows that each T, is a stopping
time. And as N has the distribution of a Poisson process, the sequence (T}, — Tj,—1)n>1 is is
and independent and identically distributed sequence of standard exponentially distributed

variables, and we have N; = > | 1<7,).

1.3 Square-integrable martingales

In this section, we consider the properties of square-integrable martingales, and we apply
these properties to prove the existence of the quadratic variation process for bounded mar-

tingales. We say that a martingale M is square-integrable if sup,- EM}? is finite. The space
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of cadlag square-integrable martingales with initial value zero is denoted by M?2. It holds

that M? is a vector space. By cM?, we denote the space of continuous elements of M?2.

For the following theorem, we introduce some further notation. For any process X, we put
X} =sup,<; | X,| and X7, = sup,q | X¢|. We write X;? = (X7)?, and likewise X2 = (X% )%

Theorem 1.3.1. Let M € M?. Then, there exists a square-integrable variable M., such
that My = E(My|F:) for all t > 0. Furthermore, My converges to Moo almost surely and in
L2, and EM? < 4AEM?Z.

Proof. As M is bounded in £2, M is in particular uniformly integrable by Lemma A.3.4,
so by Theorem 1.2.4, M; converges almost surely and in £! to some variable M., which is
integrable and satisfies that M; = E(M|F;) almost surely for ¢ > 0. It remains to prove
that M, is square-integrable, that we have convergence in £2 and that EM*2? < 4EM?
holds.

Put ¢t} = k27" for n,k > 0. Then (Mtg)kzo is a discrete-time martingale for n > 0 with
SUPg>0 EMEZL finite. By Lemma A.4.4, M;; converges almost surely and in £? to some
square-integrable limit as k tends to infinity. By uniqueness of limits, the limit is M., so we
conclude that My, is square-integrable. Lemma A.4.4 also yields Esups MEZ < 4EM2.
We then obtain by the monotone convergence theorem and the right-continuity of M that

EM3} = E lim sup M, = lim Esup Mj <AEMZ,.

n—oo k>0 k n—oo k>0

This proves the inequality EM*? < 4EM?2. . Tt remains to show that M; converges to My, in
L£2. To this end, note that as we have (M; — M.)? < (2M %)% = 4M*2, which is integrable,
the dominated convergence theorem yields lim; E(M; — My,)? = Elimy(M; — My.)? = 0, so

M, also converges in £2 to M, as desired. 0

Lemma 1.3.2. Assume that M € M?. Then MT € M? as well.

Proof. By Lemma 1.2.7, M7 is a martingale. Furthermore, we have

sup E(MT)? < Esup(M)? < Esup M? = EM*?,
>0 >0 >0

and this is finite by Theorem 1.3.1, proving that M” € M?2. O

Theorem 1.3.3. Assume that (M™) is a sequence in M? such that (M%) is convergent in
L? to a limit My,. Then there is some M € M? such that for allt > 0, M; = E(My|F).
Furthermore, E sup,sq(M* — My)? tends to zero.
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Proof. The difficulty in the proof lies in demonstrating that the martingale M obtained by
putting M; = E(M|F;) has a cadlag version. First note that M™ — M™ € M? for all n
and m, so for any 6 > 0 we may apply Chebychev’s inequality and Theorem 1.3.1 to obtain,
using (@ + y)? < 422 + 492,

P((M" = M™)%, >0) < §2E(M"—M™):2
< 46°E(MZL — MZ)?
< 165 2(B(MD — My)? + E(My — MIY)?)
< 32672 sup E(ME — M2

k>mAn

Now let (n;) be a strictly increasing sequence of naturals such that for each 4, it holds that

32(279 7% sup BE(ME — M,.)? <277,
k>n;
this is possible as supy>.,, E(MF — M,.)? tends to zero as n tends to infinity. In particular,
P((Mmi+r — M™): > 27%) < 27 for all i > 1. Then Y ;o P((M™+1 — M™)% > 277
is finite, so therefore, by the Borel-Cantelli Lemma, the event that (M™i+1 — M™i)* > 27
infinitely often has probability zero. Therefore, (M™i+1 —M"i)* < 27% from a point onwards
almost surely. In particular, it almost surely holds that for any two numbers & < m large

enough, depending on w,

(M =M™ )i < Y (MM =M™ )5 < Y 27t =27k,
i=k+1 i=k+1

Thus, it holds almost surely that M™ is Cauchy in the uniform norm on R, and therefore
by Lemma A.2.6 almost surely uniformly convergent to some cadlag limit. Define M to be
the uniform limit when it exists and zero otherwise, M is then a process with cadlag paths.
With F being the null set where we have uniform convergence, our assumption that the usual
conditions hold allows us to conclude that F' € F; for all t > 0. As uniform convergence
implies pointwise convergence, we have M; = 1x lim;_, o, M;"*, so M is also adapted. We now
claim that M € M?2. To see this, note that by Jensen’s inequality, we have

E(M]' — E(My|Fy))? = E(E(ML|F:) — E(Mx|F))? = EE(MZ — My |F;)?
< EE(MI — My)?|F) = E(M?, — M..)?,

which tends to zero, so for any ¢t > 0, M} tends to E(My|F;) in £2. As M tends to
M, almost surely, we conclude that M; = E(My|F:) almost surely by uniqueness of limits.
This shows that M is a martingale, and as EM? < EE(M2 |F;) = EM2

%, which is finite,

we conclude that M is bounded in £2. As M clearly has initial value zero, we then obtain
M e M?. Finally, limsup,, Esup,sq(M* — M;)? < 4lim,, E(M!, — My)? = 0 by Theorem
1.3.1, yielding the desired convergence of M™ to M. O
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We now introduce a seminorm || - |2 on the space M2 by putting |M|, = (EMZ2)z, this
is possible as we have ensured in Theorem 1.3.1 that for any M € M?, M; = E(My|F;)
for some almost surely unique square-integrable M., so that the limit determines the entire
martingale. Note that || - |2 is generally not a norm, only a seminorm, in the sense that
||M]|2 = 0 does not imply that M is zero, only that M is evanescent.

Theorem 1.3.4. The space M? is complete under the seminorm || - ||, in the sense that any

Cauchy sequence in M? has a limit.

Proof. Assume that (M™) is a Cauchy sequence in M?2. By our definition of the seminorm on
M2, we have (E(M™ — M™)2)z = |[M™ — M™||3, and so (M™) is a Cauchy sequence in £2.
As £? is complete, there exists M, such that M7 converges in £2 to M,,. By Theorem 1.3.3,
there exists M € M? such that for any t > 0, M; = E(My|F;) almost surely. Therefore,
M™ tends to M in M?2. O

Theorem 1.3.5 (Riesz’ representation theorem for M?). Let M € M?2. Then, the mapping
o : M? = R defined by p(N) = EMy Ny is linear and continuous. Conversely, if it
holds that ¢ : M? — R is linear and continuous, there exists M € M?, unique up to
indistinguishability, such that p(N) = EM. N4 for all N € M?>.

Proof. First consider M € M? and define ¢ : M? — R by putting ¢(N) = EMs N,. The
mapping ¢ is then clearly linear, and |@(N — N')| = |EMy(Noo — N2J)| < |M||2|N — N'||2
for all N,N’ € M? by the Cauchy-Schwartz inequality, showing that ¢ is Lipschitz with

Lipschitz constant ||M]|2, therefore continuous.

Conversely, assume given any ¢ : M? — R which is linear and continuous, we need to
find M € M? such that ¢(N) = EMy Ny for all N € M2, If ¢ is identically zero, this
is trivially satisfied with M being the zero martingale. Therefore, assume that ¢ is not
identically zero. In this case, there is M’ € M? such that o(M’) # 0. Define the set
CCM*by C={LeM?|p(L)=|M|2}. As p is continuous, C is closed. And as ¢ is

linear, C' is convex.

We claim that there is M” € C such that such that | M"||2 = infrec ||L]|2. To prove this, it
suffices to put a = infrcc ||L||3 and identify M € C such that || M” |3 = a. Take a sequence
(L™) in C such that |[L"||* converges to . Since (L™ + L™) € C by convexity, we have

IL™ = L™ = 2L™5+ 2 L"5 — 12™ + L3
2[IL™I3 + 2L |5 — 4l 5 (L™ + LM)3 < 2 L5 + 2| L"]3 — 4o
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As m and n tend to infinity, ||L™||2 and ||L"||3 tend to a, so |[L™ — L"||% tends to zero.
Therefore, (L™) is Cauchy. By Theorem 1.3.4, (L™) is convergent towards some M"”. As C

is closed, M" € C, and we furthermore find ||[M" |3 = lim,, | L"||3 = «, as desired.

We next claim that for any N € M? with p(N) = 0, EM Ny = 0. This is clearly
true if NV is evanescent, assume therefore that N is not evanescent, so that ||N||z # 0. By
linearity, p(M"” — tN) = o(M") for any ¢ € R, so that M” —tN € C. We then find
|M"||3 = infrec||L]|3 < infier |[M” — tN||3 < |[|[M”||3, so that ||[M"||3 is the minimum
of the mapping ¢ — ||M" — tN|3, attained at zero. However, we also have the relation
| M"—tN||3 = t?|N||3—2tEM/ Noo+||M||3, so t = || ML —tN||3 is a quadratic polynomial,
and as || N2 # 0, it attains its unique minimum at ||N||;2EM/. No.. As we also know that

the minimum is attained at zero, we conclude EM N, = 0.

We have now proven the existence of a process M” in M? which is nonzero and satisfies
EM! N, = 0 whenever p(N) = 0. We then note for any N € M? that, using the linearity
of ¢, (p(M")N — p(N)M") = o(M")o(N) — p(N)p(M") = 0, yielding the relationship
0 = EMZ(o(M")Noo — @(N)YMZ) = o(M")EM!. N, — o(N)||M" |3, so that we finally
obtain the relation

M// M//

o0
N,
[ .

which proves the desired result using the element (p(M")M")|M"|5? of M?. Tt remains
to prove uniqueness. Assume therefore that M, M’ € M? such that EM. Ny, = EM! N
for all N € M2, Then E(M,, — M/ ,)N, = 0 for all N € M2, in particular we have
E(My—M!,)? = 0so that M, = M/ almost surely and so M and M’ are indistinguishable.
This completes the proof. O

Finally, we apply our results on M? to prove the existence of the quadratic variation process
for bounded martingales. We say that a process X is increasing if its sample paths are
increasing. In this case, the limit of X; exists almost surely as a variable with values in
[0, 00] and is denoted by X.. We say that an increasing process is integrable if its limit X,
is integrable. In this case, X is in particular almost surely finite. We denote by A’ the
set of stochastic processes with initial value zero which are cadlag, adapted, increasing, and
integrable.

Theorem 1.3.6. Let M € MP". There exists a process [M] in A', unique up to indistin-
guishability, such that M? — [M] € M? and such that A[M] = (AM)? almost surely. We

call [M] the quadratic variation process of M.
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Proof. We first consider uniqueness. Assume that A and B are two processes in A* such
that M2 — A and M? — B are in M? and AA = AB = (AM)? almost surely. In particular,
A — B is in M2, is almost surely continuous and has paths of finite variation, so Lemma
1.2.11 shows that A — B is evanescent, such that A and B are indistinguishable. This proves

uniqueness.

Next, we consider the existence of the process. Let t}} = k27" for n,k > 0, we then find

) ) )
MP = Mjyy = Miye =2 Mg (Mg — Mynp )+ > (Mynsp — Mingp )%,
k=1 k=1 k=1
where the terms in the sum are zero from a point onwards, namely for such k that t}_; > t.
Define N =237, Miner  (Mingyp — MtAt;Ll)~ Our plan for the proof is to show that N™
is in M? and that (N2),>1 is bounded in £2. This will allow us to apply Lemma A.3.7 in
order to obtain some N € M? which is the limit of appropriate convex combinations of the
(N™). We then show that by putting [M] = M? — N, we obtain, up to indistinguishability,

a process with the desired qualities.

We first show that N™ € M by applying Lemma 1.2.8. Clearly, N™ is cadlag and adapted
with initial value zero, and so it suffices to prove that N} is integrable and that EN; = 0
for all bounded stopping times 7. To this end, note that as M is bounded, there is ¢ > 0
such that |M;| < ¢ for all ¢ > 0. Therefore, |2Mt/\t271(MtMZ — MtAtZ,1)| < 4¢? for any k. As
T is also bounded, N7 is integrable, as it is the sum of finitely many terms bounded by 4¢?,

and the martingale property of M7 yields

ENz EY " Mray_ (Mpag — Mrpgy_ )
k=1

k—1

_ T T T N _ T T T .
= D BMj (Mg - My ) =3 EMj E(Mg - My |Fy,)=0,
k=1 k=1

where the interchange of summation and expectation is allowed, as the only nonzero terms
in the sum are for those k such that ¢}}_; < T, and there are only finitely many such terms.
Thus, by Lemma 1.2.8, N™ € M.

Next, we show that (N%),>1 is bounded in L£2. Fix k > 1, we first consider a bound for the

second moment of Nﬁ]z. To obtain this, note that for ¢ < j,
EMyy (Mg — Mgy )Mep (Myp — Mez )
= EMyp  (My — My )E(Mgn_ (Mg — Myn_ )| Fir))
E(Myp  (Myp — Myp )Myn  E(Myn — Myn | Fir)),
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which is zero, as E((Mt; — Mt?71)|ft?) = 0, and by the same type of argument, we obtain
E(Myy — My )(Myn — Myn_ ) = 0. Therefore, we obtain

k 2k
2
E(Nt”ib)z — E <Z Mt?,l(Mt? - Mt?l)> == ZE (Mt;bfl(Mt? - Mt?—l))
i=1 i=1
2

k k
B0t gt = 5 (oo -, ) =t

i=1 i=1

IN

Now, finally note that for any 0 < s < t, E(N")? = E(E(N}!|Fs)?) < E(N}*)? by Jensen’s
inequality, so t — E(N}*)? is increasing, and as we also have EMEA < EM? for all k > 1,
we get sup,sq E(N[")? = supys, E(N{il)2 < Supg>g c2EMt22 < 4c®EM?2,, and the latter is

finite. Thus, N" € M?, and in particular, E(NZ)? = lim; E(N])? < 4c?EM2,, so (N2)n>1
is bounded in £2.

Now, by Lemma A.3.7, there exists a sequence of naturals (K,) with K, > n and for
each n a finite sequence of reals A7, ..., A% in the unit interval summing to one, such that
ZZK:n AN is convergent in £? to some variable No,. By Theorem 1.3.3, it then holds
that there is N € M? such that Esup,>q(N; — ZZK:% APNH? tends to zero. Picking a
subsequence and relabeling, we may in addition to the properties already noted assume that
sup;>q |Vt — Zfi"n A" N}| also converges almost surely to zero. Define A = M? — N, we claim
that there is a modification of A satisfying the criteria of the theorem.

To prove this, first note that as M? and N are cadlag and adapted, so is A. We want
to show that A is almost surely increasing, that the almost sure limit A, is integrable
and that AA = (AM)? almost surely. We first consider the jumps of A. To prove that
AA = (AM)? almost surely, it suffices by Lemma 1.1.16 to show that AAr = (AMr)?
almost surely for any bounded stopping time T. Let T be any bounded stopping time. Since

K .
sup;>q [Ny — 22,20 AP IN{| converges almost surely to zero, we find

Kon Kn oo ) ;
Av= M7 =Ny = lim 3N (MF =N = lim 3N D (M = M
i=n i=n =1

with the limits being almost sure, uniformly over ¢ > 0. In particular, we obtain

oo

Kn i i i i
Adr = lim 3NN (ME — My = (Mg = M),
n—oo
i=n k=1



1.3 Square-integrable martingales 31

again, the limit being almost sure. Fix ¢ > 1 and k > 0. Note that
(M5 — M2 (M ME Y2 =0 whent <t ort >t
i , )
(Mt’“ - M) = (My - My )? when t} | <t <t}
(My* — M) = (M- — M, )*  whenty_; <t <t}
From these observations, we conclude that with s(t,i) denoting the unique ¢{ , such that
ti <t <ti wehave AAp = lim, o0 Z " AN (Mp— Myr,3y)? — (Mp— — My(r,4))?). Here,
it holds that
(Mr — My(r,i))* — (Mr— — Myr,)?
= M} = 2Mp Mgz + Mq ) — (M- — 2Mp_Mq i) + M7 )
= MT — MT7 — QAMTMS(TJ-) = (MT — MT,>(MT + MT,) — ZAMTMs(T,i)
= (AMT)2 + QAMT(MT, - Ms(T 1))
yielding AAr = (AMr)? + 2AMr lim,, Z nAF(Mp_ — Mg(rs)). Now, we always have
s(T,i) < T and |s(T,i) — T| < 27%. Therefore, given € > 0, there is n > 1 such that for all
i>n, |MT_ —Myr,i)| < e. Asthe (A} )n<i<k, are convex weights, we obtain for n this large

that Ko T——Mgrn)l < e. is allows us to conclude that 3" X~ T —Mgr,;
h AT (M- M1, This all lude th A (M- M(1.4)

i=n i=n
converges almost surely to zero. Combining this with our previous conclusions, we obtain
AAr = (AM7)? almost surely. Since this holds for any arbitrary stopping time, we now
obtain AA = (AM)? up to indistinguishability.

Next, we show that A is almost surely increasing. Put Dy = {k27"|k > 0,n > 1}, D, is
dense in Ry. Let p,q € D4 with p < ¢, we will show that A, < A, almost surely. There
exists j > 1 and naturals n, < n, such that p = n,277 and ¢ = n,277. By what we already

have shown, we then find, with the limit being almost sure, that

o0 .
ti th_1\2
A, = lim E )\"g My* — MF~)2.
P s 00 p p )
i=n k=1

Now note that for i > j, we have pAtt = n,2 I Ak270 = n, 207927 A k270 = (n, 2079 N k)2
and analogously for ¢ A t};, so we obtain that almost surely,
np2tJ
t
1 » 2= w (Myi — M, )?
n;ﬂ;oZA Z M) ,L;H;OZA kZl LMy )
i=n i=n

217

J;H;OZA" S (M - by
k=1

_ nlggoz/\mz M;Iic—l)Q’

=n k=1

IN
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allowing us to make the same calculations in reverse and conclude that A, < A, almost
surely. As D, is countable, we conclude that A is inceasing on D, almost surely, and by
continuity, we conclude that A is increasing almost surely. Furthermore, as Ao, = M2 — N,
and both M2 and N, are integrable, we conclude that A, is integrable.

We have now shown that A is almost surely increasing, that AA = (AM)? almost surely
and that M? — A is in M?. Now let F be the null set where A is not increasing and put
[M] = Alp.. As we have assumed that all null sets are in F; for ¢ > 0, [M] is adapted as
A is adapted. Furthermore, [M] is cadlag, increasing and [M], exists and is integrable, so
[M] € A'. Also, A[M] = (AM)? almost surely. As M? — [M] = N + Alp, where Alp is

evanescent and cadlag and therefore in M2, the theorem is proven. O

Let M € M". As the process [M] constructed in Theorem 1.3.6 satisfies A[M] = (AM)?
almost surely, we obtain 0 < > _,(AM;)? < [M] almost surely. As [M] is integrable,
it is almost surely finite. Therefore, a nontrivial corollary of Theorem 1.3.6 is that almost
surely, >, (AM;)? is finite. In Chapter 3, we will show that this result in fact extends to
all M € M2

1.4 Finite variation processes and integration

In this section, we prove a few results on the properties of processes with finite variation. We
begin by introducing some additional notation. In the previous section, we defined A as the
space of increasing and integrable cadlag adapted stochastic processes with initial value zero.
We now define A as the space of increasing cadlag adapted stochastic processes with initial
value zero, and we define V as the space of cadlag adapted stochastic processes with initial
value zero and paths of finite variation. Note that for a process in V, the variation process
is in A. We say a process in V is integrable if the variation process is in A%, and denote this
subspace of V by V. 'We then have the inclusions A C A, V' CV, A* C V' and A C V.

We begin by proving a lemma which shows that elements of V' can be decomposed in a
measurable way, meaning that we may write elements of V as differences of elements of A.

Lemma 1.4.1. Let A € V. There exists processes AT, A~ € A such that A= AT — A~. An
explicit such decomposition is given by putting AT = $(Va + A) and A~ = £(Va — A).

Proof. With AT and A~ defined as in the statement of the lemma, it is immediate that
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A= AT — A~. Furthermore, by Lemma 1.2.9, the processes AT and A~ are both cadlag and
adapted, and by Theorem A.2.9, AT and A~ are both increasing. This proves the result. O

Next, recall from Section A.2 that there is a bijective correspondence between mappings
of finite variation and pairs of nonnegative, singular measures, so that mappings of finite
variation may be used as integrators. For mappings with bounded variation, the two singular
measures may be subtracted to obtain a signed measure, so that for such mappings, we obtain
a correspondence with signed measures instead of paris of nonnegative, singular measures. We
next seek to show that under certain measurability requirements for the integrand, we may
construct the integral of a stochastic process with respect to elements of V in a measurable
manner. This result will be important in Chapter 3. Recall from Section A.1 that a P-
integrable (€, F) kernel on a countably generated measurable space (E, £) is a family (v, )wen
of signed measures on (F, ) such that w — v,(A) is F measurable for all A € £ and such
that [, v, |(E)dP(w) is finite. Note also that as (R, By ) is generated by the open intervals
with rational endpoints, (R4, By) is countably generated.

Lemma 1.4.2. Let A € V' and assume that (Va)oo(w) is finite for all w. For each w,
let va(w) be the signed measure on (Ry,By) induced by A(w). The family (va(w))weq s
a P-integrable (2, F) kernel on (Ry, By ), and the restricted family (va(w)jjo4)wen is a P-
integrable (Q, Fy) kernel on ([0,t], Bt).

Proof. We first show the result on the family of restricted measures. Fix ¢ > 0. The result is
trivial for ¢ equal to zero, so we may assume that ¢ is positive. Let 1% (w) be the restriction
of va(w) to ([0,t], B:). We first show that for any B € By, the mapping w +— v (w)(B) is
F: measurable. The family of B € B; for which this holds is a Dynkin class, and it will
therefore suffice to show the claim for intervals of the type (a,b] for 0 < a < b < t. Let
0 <a<b<tbegiven. Then v4(w)((a,b]) = Ap(w) — As(w), and by the adaptedness of
A, this is F; measurable. Finally, also note that [, [ (w)[([0,t]) dP(w) = E(Va)¢, which is
finite by our assumptions. We conclude that (v4(w)|j0,¢])weq is a P-integrable (€2, F;) kernel
on ([0,t], By).

Now consider the unrestricted case. Let B € By. Then va(w)(B) = lim; v%(w)(B) and
|va(w)|(B) = lim; v (w)|(B). By what we already have shown, we find that w — v4(w)(B)
is F measurable for all B € By. As [, [va(w)|(Ry)dP(w) = E(Va)o, we conclude that
(va(w))weq is a P-integrable (2, F) kernel on (R, By). O

Theorem 1.4.3. Let A € V and assume that H is progressive and that almost surely, H is
integrable with respect to A. There is a process H - A € V, unique up to indistinguishability,
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such that almost surely, (H - A); is the Lebesgue integral of H with respect to A over [0,t] for
allt > 0. If H is nonnegative and A € A, then H - A € A.

Proof. First note that as the requirements on H - A define the process pathwisely almost
surely, it is immediate that H - A is unique up to indistinguishability. As for existence, we
prove the result in three steps, first considering bounded A in A, then general A in A and

finally the case where we merely assume A € V.

Step 1. The case A € A, A bounded. First assume that A € A and that A is bounded.
Let F be the null set such that when w € F, H(w) is not integrable with respect to A(w).
By our assumptions on the filtration, F' € F; for all ¢ > 0, in particular we obtain that
{(s,w) € [0,¢] x Q| lp(w) = 1} = [0,¢] X F € By ® Fy, and so the process (t,w) — 1p(w)
is progressive. Therefore, the process (t,w) — 1pec(w) is progressive as well. Thus, defining
K = Hlpe, K is progressive, and K (w) is integrable with respect to A(w) for all w. We may
then define a process Y by putting Y3 (w) = fot K(w)dA(w)s. We claim that Y satisfies the
properties required of the process H - A in the statement of the lemma. Clearly, Y; is almost
surely the Lebesgue integral of H with respect to A over [0,¢] for all ¢ > 0, it remains to
prove Y € V. As Y is a pathwise Lebesgue integral with respect to a nonnegative measure,
Y has finite variation. We would like to prove that Y is cadlag. As Y is zero on F, it suffices
to show that Y is cadlag on F°. Let w € F° and let ¢t > 0. For h > 0, we obtain by Lemma
A.2.12 that

Yen(w) = Yi(w)| =

t+h t+h
/t H,(w) dA(w),| < / ()] dA@)].

We may then apply the dominated convergence theorem with the dominating function given
by s+ [Hg(w)|1(t,¢4¢](s) for some € > 0 to obtain

t+h
limsup |Yiqn(w) — Vi(w)| < lim |Hs(w)|| dA(w)|s = 0,
h—0 t

showing that Y (w) is right-continuous at ¢. As Y has paths of finite variation, it is immediate
that Y has left limits. This proves that Y is cadlag. Furthermore, by construction, Y has
initial value zero. Therefore, it only remains to prove that Y is adapted, meaning that Y; is
JF: measurable for all ¢ > 0.

This is clearly the case for ¢ equal to zero, therefore, assume that ¢ > 0. Let v (w) be the
restriction to B; of the nonnegative measure induced by A(w) according to Theorem A.2.9.
By Lemma 1.4.2, (va(w)|j0,q)weq is a P-integrable (€2, F;) kernel on ([0,t],B;). Now, as K
is progressive, the restriction of K to [0,¢] x Q is B; ® F; measurable. Theorem A.1.17 then
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yields that the integral fot K (w)dA(w)s is JF; measurable, proving that Y; is adapted. We
conclude that Y € V.

Step 2. The case A € A. We now consider the case where A € A. Define a sequence
(T},) of positive stopping times by putting T,, = inf{t > 0 | |4:] > n}. As A has cadlag
paths and has initial value zero, the sequence (7),) is positive and increases to infinity. For
0 <t < Ty, it holds that |A4;| < n. Define AT»~ by putting A7"~ = A, when 0 < t < T}, and
Al"~ = Ap _ otherwise. AT»~ is then a bounded element of A. By what was already shown,
there exists a process H - AT»~ in V such that almost surely, (H - A7), is the integral of
H with respect to AT»~ over [0,t] for all t > 0. Let F be the null set such that on F€¢, T},
converges to infinity, H is integrable with respect to A and (H - AT»~); is the integral of H
with respect to AT~ over [0,¢] for all + > 0 and all n. As before, we put K = H1pc and
conclude that K is progressive, and defining Y; = f(f Ky dA,, we find that Y; is almost surely
the Lebesgue integral of H with respect to A over [0,¢] for all ¢ > 0. Furthermore, whenever

w € F° we have

t t t
Y, :/ H,dA, = lim / Loz (8)Hs dAs = lim [ HydAI"™ = lim (H - A™7),,
0 n—r oo 0 n—oo 0 n—oo
where the second equality follows from the dominated convergence theorem, as H is assumed
to be integrable with respect to A on F¢. In particular, Y; is the almost sure limit of a
sequence of F; measurable variables. Therefore, Y; is itself F; measurable. Also, it follows
that Y is cadlag with paths of finite variation and has initial value zero. We conclude that

Y €V and so Y satisfies the requirements of the process H - A in the theorem.

Step 3. The case A € V. Finally, assume that A € V. Recalling Theorem A.2.9, we know
that by putting A" = 2((Va): + A¢) and Ay = 2((Va): + A¢), H is almost surely integrable
with respect to AT and A~. By Lemma 1.4.1, AT and A~ arein Aand A= AT — A~

By what was already shown, there are processes H - AT and H - A~ in V such that almost
surely, these processes at time ¢ are the Lebesgue integrals of H with respect to AT and A~
over [0,¢] for all t > 0. The process H-A = H - A" — H- A~ then satisfies the requirements
of the theorem. O

Theorem 1.4.3 shows that given a progressively measurable process H and A € V such that
H is almost surely integrable with respect to A, which as in Section A.2 means that H is
integrable with respect to the nonnegative singular measures induced by the increasing and
decreasing parts of A on [0,¢] for any ¢ > 0, we may define the integral pathwisely in such a

manner as to obtain a process H - A € V, where it holds for almost all w that for any ¢ > 0,
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(H-A)(w) = fg Hy(w)dA(w)s. The stochastic integral of H with respect to A thus becomes
another stochastic process.

1.5 Exercises

Exercise 1.5.1. Let (2, F,P) be a probability triple and let (Gn)n>0 be a discrete-time
filtration on (2, F,P). Forn € Ng and n < t < n+ 1, define F; = G,. Show that the

filtration (Fy)i>o is right-continuous.

Exercise 1.5.2. Let X be an adapted stochastic process. Assume that for all e > 0, X is
progressive with respect to the filtration (Fiye)i>o0. Show that X is progressive with respect
to (]:t)tZO-

Exercise 1.5.3. Let X be continuous and adapted, and let F be a closed set. Define a
mapping T by putting T = inf{t > 0| X; € F'}. Show that T is a stopping time.

Exercise 1.5.4. Let X be cadlag and adapted, and let F' be a closed set. Define a mapping
T by putting T =inf{t > 0| X; € F or X;_ € F}. Show that T is a stopping time.

Exercise 1.5.5. Let X be a continuous and adapted stochastic process, and let a € R. Put
T =inf{t > 0| X; = a}. Prove that T is a stopping time and that X7 = a whenever T < co.

Exercise 1.5.6. Let S and T be two stopping times. Show that Fsyr = o(Fs, Fr).

Exercise 1.5.7. Let (T,,) be a decreasing sequence of stopping times with limit T. Show that
T is a stopping time and that Fpr = NS Fr,, .

Exercise 1.5.8. Let W be a one-dimensional F; Brownian motion. Put M; = WE —t. Show

that M is not uniformly integrable.

Exercise 1.5.9. Let M be a cadlag adapted process with initial value zero and assume that
M, is almost surely convergent. Show that M € M™" if and only if My is integrable with
EMy =0 for all stopping times T which take at most two values in [0, 00].

Exercise 1.5.10. Let W be a one-dimensional F; Brownian motion and let « € R. Show
that the process M defined by M = exp(aW; — %oﬁt) is a martingale. Let a € R and define
T =inf{t > 0| Wy = a}. Show that for any 8 > 0, Eexp(—pT) = exp(—|a|v/20).

Exercise 1.5.11. Let W be a one-dimensional F; Brownian motion. Show by direct calcu-
lation that the processes W — 3tW; and W} — 6tW2 + 3t2 are in cM.



1.5 Exercises 37

Exercise 1.5.12. Let W be a one-dimensional F; Brownian motion and define T by putting
T =inf{t > 0| Wy > a+ bt}. Show that T is a stopping time and that for a >0 and b > 0,
it holds that P(T < 00) = exp(—2ab).

Exercise 1.5.13. Let W be a one-dimensional F; Brownian motion. Let a > 0 and define
T =inf{t > 0| W2 >a(l—t)}. Show that T is a stopping time. Find ET and ET?.

Exercise 1.5.14. Let N be an (F;) Poisson process. Define My = NZ —2tNy +t2 —t. Show
that M is a martingale.

Exercise 1.5.15. Let N be an F; Poisson process and let oo € R. Show that the process M*
defined by M = exp(aN; — (e® — 1)t) is a martingale.
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Chapter 2

Predictability and stopping

times

In this chapter, we introduce the predictable g-algebra and the related concept of predictable
stopping times, and we also introduce two further subclasses of stopping times, namely
accessible and totally inaccessible stopping times. Using the results of this chapter, we will
in Chapter 3 see that martingales have a special interplay with predictable stopping times
and the predictable o-algebra, and this interplay is the reason for the importance of the

predictable o-algebra and predictable stopping times.

The main result of this chapter is a characterisation of measurability with respect to the
predictable o-algebra for cadlag adapted processes in terms of the behaviour at jump times.
This result will be used repeatedly in Chapter 3.

The structure of the chapter is as follows. In Section 2.1, we introduce the predictable o-
algebra P and predictable stopping times. We identify generators for 3P, and prove the
elementary stability properties of predictable stopping times. The main result is Theorem
2.1.12, which gives a precise characterisation of predictable stopping times in terms of their

graphs.

Next, in Section 2.2, we introduce the o-algebra Fp_ of events strictly prior to T" and consider

its elementary properties. Using this o-algebra, we are able to prove some miscellaneous
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results on predictable stochastic processes, results which will be used to demonstrate the
main results of the following section. In the final section, Section 2.3, we show that all
stopping times may be decomposed into two parts, named the accessible and the totally
inaccessible parts. We argue that the jumps times of any cadlag process may be covered
by a countable family of such stopping times. Finally, in Theorem 2.3.9, we characterize

predictability of adapted cadlag processes in terms of their behaviour at jump times.

2.1 The predictable o-algebra

In this section, we introduce and investigate the predictable o-algebra on Ry x 2, as well
as predictable stopping times, which are stopping times interacting with the predictable
o-algebra in a particular manner. We begin by defining the predictable o-algebra and iden-
tifying a few generators for the o-algebra. Recall that a mapping f : Ry — R is said to be
caglad if it is left-continuous on (0, co) with right limits on R. Also, a process is said to be

caglad if its sample paths are caglad.

Definition 2.1.1. The predictable o-algebra ¥ is the o-algebra on Ry x Q generated by the

adapted caglad processes.

By T, we denote the family of all stopping times. In the following lemmas, we work towards

identifying some generators for >?.

Lemma 2.1.2. Let X be left-continuous. Define a process X™ by putting
oo
XP = 1oy () Xo(w) + Y Xpa—n (W)L (k2-n (41127 (£)-
k=0

Then X™ converges pointwise to X.

Proof. Fix w € Q. It is immediate that X{(w) converges to Xo(w), so it suffices to show
that X}'(w) converges to X¢(w) for ¢ > 0. Fix such a t > 0. Take ¢ > 0 and pick 6 < ¢
such that |X;(w) — Xs(w)| < e when s € [t — d,t]. Take n so large that 27" < §. There is k
satisfying k27" < t < (k+1)27" such that X' (w) = Xj2-» (w). In particular, we obtain that
k27" e[t —2""t] C [t —6,t], so | Xi(w) — XJ*(w)| < e. This shows that X*(w) converges to
Xi(w) and thus proves the lemma. O
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Lemma 2.1.3. X? is also generated by the set families {{0} x F' | F' € Fo} U{]T, oo[|T € T}
and {{0} x F' | F € Fo} U{]S,T]|S,T € T}.

Proof. Let S and T be stopping times. Noting that [T, co[= US2,]T, T + n] , where T +n
is a stopping time by Lemma 1.1.9, and ]S, T] =] S, co[\]T, o[, we obtain that the two
families generate the same o-algebra. It will therefore suffice to show that 3P is generated
by, say, {{0} x F' | F € Fo} U{]S,T]|S,T € T}. Let H be the o-algebra generated by this
set family, we wish to show X = H.

We first argue that H C 3P, and to this end, we show that 3P contains a generator for H.
To this end, first consider ' € Fy. Define X¢(w) = 1p(w)lfoy(¢). Then X is caglad and
adapted, so X is ¥P measurable. Therefore, {0} x F' € ¥P. Next, consider two stopping
times S and 7', and put X = 1jg 7). Then X is caglad, and as X; = 1(s<t<7), Lemma 1.1.9
shows that X is adapted. Therefore, X is ¥¥ measurable, implying that ]S, 7] € ¥?. Thus,
3P contains a generator for H, so H C XP.

It remains to prove the other inclusion. To do so, it will suffice to prove that any caglad
adapted process is H-measurable. To this end, we first consider some simple caglad adapted
processes. First off, note that 1 (w)1{oy(t) is H measurable when F' € Fp. Since any bounded
Fo-measurable variable can be approximated by simple functions, it follows that Z(w)10(t)
is H measurable for any bounded Fjy measurable Z. Since any Fy measurable variable can be
approximated by bounded Fy measurable variables, we finally conclude that any Z(w)10}(t)
is H measurable for any Z which is Fy measurable. Next, consider a process of the type
1H(w)1(s’u] (t), where H € Fs. Using the notation of Lemma 1.1.9, consider the stopping
times S = sy and T = uy, meaning that S is equal to s on H and infinity otherwise. We
then have

{(t,w) € Ry x Q| 1pz(w) (o (t) = 1} {(tw) ERy x Q| s <t<uwe H}
{(tw) €Ry x Q| S(w) < t < T(w)}

]]SvT]L

50 1p(w)1(sy(t) is H-measurable. By approximation arguments as for the previous class of
processes, Z1(, ] is H-measurable whenever Z € Fs. Finally, let X be any caglad adapted
process. Define X" = 1101(t) Xo(w) + 1(0,00)(t) D opeg Xko—n (W)L (ka—n,(k+1)2-»](t). Since X
is adapted, the above is an infinite sum of processes which all are H measurable according
to what already has been shown. By Lemma 2.1.2, X™ converges pointwise to X. Thus, as
X" is ‘H measurable, X is H measurable. Ergo, P C H, as desired. O
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The above result, modulo considerations about the timepoint zero, shows that P is generated
by [T, 00[ for T € T. By analogy, B is generated by the family of sets (¢, 00) for ¢ > 0, but
also by [t,00) for ¢ > 0. It is therefore natural to ask whether [T, co[ also would generate
¥P. The immediate idea for the proof of such a claim would be to make the approximation
1T, cof= NS4 [T — %, oof. However, T — % may not be a stopping time, and therefore this

avenue of proof fails. Motivated by these remarks, we now introduce the notion of predictable

stopping times.

Definition 2.1.4. Let T be a stopping time. We say that T is predictable if there is an
sequence of stopping times (T,,) increasing pointwise to T such that whenever T(w) > 0 it
holds that T, (w) < T'(w) for all n. We say that (T},) is an announcing sequence for T. The
set of predictable stopping times is denoted by Tp.

The following lemma yields a few stability properties of predictable stopping times.

Lemma 2.1.5. If T is a predictable stopping time and and F' € Fy, then Tr is a predictable
stopping time. If S and T are predictable stopping times, so are SAT, SVT and S +T.
Finally, for any constant ¢ € [0,00] and F € Fy, cp is a predictable stopping time.

Proof. We already know from Lemma 1.1.9 that all the variables mentioned are stopping

times, so it will suffice to prove predictability.

Consider first the case where T is a predictable stopping time and F' € Fy. We want to show
that Tr is a predictable stopping time. Let (7},) be an announcing sequence for T', and put
Sp =n A (Ty)r. We claim that (S,,) is an announcing sequence for Tr. To show this, first
note that as F' € Fy C Fr,, we find that (7},)r and thus S,, are stopping times by Lemma
1.1.9. It is immediate that (S,,) is increasing. On F', we have S,, =n AT, and Tr =T, and
on F°, we have S,, = n and Tr = oo. Therefore, S,, increases to Tr, and if T > 0, then
Sp < Tg. This proves the result. As an immediate corollary, we also obtain that cg is a
predictable stopping time for any ¢ € [0, 0] and F € Fyp.

Next, let S and T be two predictable stopping times, and let (S,,) and (7},) be announcing

sequences for S and T, respectively.

Considering S A T, we will argue that (S, A T,) is an announcing sequence for S A T. Tt
is immediate that S, A T,, increases to S A T, so it suffices to argue that S, AT,, < SAT
whenever S AT > 0. However, when S AT > 0, we have that both S and T are positive.
Therefore, both S, and T,, are strictly less than S and T', respectively, and so S,, AT, < SAT,
as desired. Thus, (S, AT;,) is an announcing sequence for S AT and so S AT is predictable.
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Regarding S V T, we claim that (S,, V T,,) is an announcing sequence for SV T. As in the
previous case, S, VT, increases to SV T, so it suffices to argue that S, VT, < SVT whenever
SV T > 0. In this case, S VT > 0 implies that either S >0o0or T >0. If S >0and T > S,
we obtain SVT =T, T > 0 and thus S, < S <T and T,, < T, yielding S, VT, < SVT.
IfS >0and T < S, we obtain SVT = S and so S, < Sand T, < T < §, yielding
Sn VT, < SVT in this case as well. The cases T >0, S > T and T > 0, S < T may be
handled similarly, in total demonstrating that whenever SVT > 0, we have S, VT, < SVT.
Consequently, (S, V T;,) is an announcing sequence for SV T, so SV T is predictable.

Finally, we consider S+ T. Here, we wish to show that (S,, +T},) is an announcing sequence
for S+ T. It is immediate that S,, + T}, increases to S+ 7. If S+ T is positive, at least one
of S and T is positive. If S is positive, S, < S and thus S, + T,, < S + T. Similarly, we
obtain S, + T,, < S+ T when T is positive. We conclude that (S, + T,) is an announcing
sequence for S + T and thus S + T is predictable. O

Lemma 2.1.6. 7 is generated by {[T,o0[|T € T,} and by {[S,T[|S,T € T,}.

Proof. Since the constant infinity is a predictable stopping time by by Lemma 2.1.5, we
immediately obtain o({[T, oo[|T € T,}) C o({[S,T[|S,T € Tp}). The other inclusion follows
from the relation [S,T[= [S,o00[\ [T, o0[, where S,T € 7T,. Therefore, the two families

generate the same o-algebra, and it will suffice to prove that this o-algebra is in fact XP.

We will prove that ¥? is generated by {[T,0o[|T" € T,}. Let H be the o-algebra generated
by {[T,o0][|T € T,}. We need to show ¥P = H. Assume first that T is predictable and let
(T},) be an announcing sequence. Then [T, co[= {0} x (T = 0) U NS, [Ty, o0]. Since the
first part of the union is in {{0} x F'| F' € Fo}, we can use Theorem 2.1.3 to conclude that
the above is in ¥.P. Therefore, H C >P. To prove the other inclusion, we recall from Theorem
2.1.3 that X7 is generated by {{0} x F' | F € Fo} and {]T,oo[|T € T}. First note that for

any F' € Fy, we have
{0} xF = {(t,w)eR xQ|weFI\{(t,w) eRy xQ|t>0,weF}
= {(tw) eRLxQ|we FI\U {(t,w) eRy xQ |t > T we F}
= [0p, 00l \ UpZy [(5)F, o[-
Now, by Lemma 2.1.5, 0p and (%)F are both predictable stopping times. Therefore, the
above is in H. This proves {{0} x F' | F' € Fp} C H. Next, letting 7" be any stopping time,
we have [T, oo[= U2, [T + %, oof. The stopping time T + % is predictable with announcing
11

sequence T + max{ — #,0} for £ > 1, and therefore also the above is in H. This proves

{IT, o[|T € T} C H and therefore finally X7 C H. O
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Lemma 2.1.6 shows that predictable stopping times have a natural interplay with the pre-
dictable o-algebra. Also, while the generators obtained in Lemma 2.1.3 contained the un-

wieldy {{0} x F' | F € Fy} term, the generators of Lemma 2.1.6 are easier to work with.

In the remainder of the section, we will prove some results on predictable stopping times. We
will show some further stability properties of the class of predictable stopping times, and at
the end of the section, in Theorem 2.1.12, we will show that a stopping time T is predictable

if and only if its graph [T] is a predictable set in the sense of being an element of 3?.

Lemma 2.1.7. Let T be a stopping time and let T;, be a sequence of stopping times such that
almost surely, T, increases to T, and almost surely, when T >0, T,, < T for alln. Then T

1s predictable.

Proof. The nontrivial part of the lemma is that the properties of the sequence T, only
hold almost surely. Let F' be the almost sure set such that for w € F, T, (w) increases
to T, and if T(w) > 0, T,(w) < T(w). Define S, = (Tn)r A (max{T — L,0})pc. We
claim that (S,) is an announcing sequence for T. To this end, first note that as F° is a
null set and we have assumed the usual conditions, both F' and F¢ are in Fy. Therefore,
(T,,)F is a stopping time by Lemma 1.1.9, and (max{T — %, 0})Fe is a stopping time as it
is almost surely zero. Thus, (S,,) is a sequence of stopping times. It is immediate that (.S;,)
is increasing. Also, for w € F, we have that lim,, o S, (w) = lim, o Ty (w) = T(w), and
if we Fe limy, o Sp(w) = limy, o max{T — %, 0} = T'(w). Thus, S, increases to T'. Now
assume T'(w) > 0. If w € F, we have S,(w) = T, (w) < T(w), and if w € F°, we have
Sp(w) = max{T'(w) — +,0} < T(w). Thus, S, < T whenever T > 0. We have now shown
that (S,) is an announcing sequence for T, so T is a predictable stopping time. O

Lemma 2.1.8. Let S and T be two nonnegative variables and assume that S and T are equal
almost surely. If T is a stopping time, so is S. If T is predictable, so is S.

Proof. We have
(S<t)=(<t,5=T)U(S<tS#T)=((T<t)N(S=T)U(S<t,S#T).

Now, F; contains all P null sets, and therefore also all P almost sure sets. In particular,
(S=T)e Fand (S<t,S#T)e€ F. Since T is a stopping time, (T < t) € F; and so S is
a stopping time. And if T is predictable, Lemma 2.1.7 shows that S also is predictable. [

Lemma 2.1.9. Let (T,) be a sequence of predictable stopping times. Then sup,, T, is a
predictable stopping time. If T, is decreasing such that pointwisely, T, is constant from some

point onwards, then inf, T, is a predictable stopping time.
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Proof. As we know from Lemma 1.1.10 that sup,, 7}, and inf,, T}, both are stopping times, we
merely need to show predictability. Consider the case of the supremum. Put T' = sup,, T5,.
As T = sup,, maxy<y, T} and maxy<y, I} is a predictable stopping time by Lemma 2.1.5, it
suffices to prove that sup,, T, is a predictable stopping time under the extra condition that
T,, increases. Let (T*) be an announcing sequence for T},. Define S,, = max;<, MaXk<n TF.
We claim that S,, announces T'. It is immediate that S,, is an increasing sequence of stopping
times, and as

lim S, = supmaxmaxTilC = sup suprf =supT, =T,
n i<n k<n n  k n

S, in fact increases to T'. It remains to show that if 7' > 0, then S,, < T for all n. To this
end, first note that for any i and k, it holds that if T* > 0, then T; > 0 and thus T} < T; < T.
Thus, whenever T > 0, then 7 < T. Now assume that 7' > 0 and consider some n > 1. If
S, = 0, we immediately have S, < T. If S,, > 0, we have S,, = Tf for some i,k < n, and
thus S,, < T by what was already shown. Thus, (.5,,) announces T'.

Next, assume that T}, decreases such that T,, pointwisely is constant from some point onwards
and put T = inf, T}, we want to show that T is predictable. For each n, let (T*) be an
announcing sequence for T,,. Define a metric d on [0, 00] by d(z,y) = |e”* — e~ Y|, with the
convention that e” = 0 when z is infinite. We then have lim,, d(7},,T) = 0 pointwisely, and
for each n, limy d(T%,T,,) = 0 pointwisely. In particular, Lia(rr,1,)>¢) converges pointwisely

to zero. Applying the dominated convergence theorem, we then get for all n and € > 0 that
lim P(d(Ty;, Tn) > €) = lim Bl qrs 7,)>e) = Elim Ly 1,)5e) = 0.

Now choose p,, such that P(d(T¢~,T,) > %) < 27", and define S,, = infy>, T}*. We claim

that S, almost surely announces T

Since S, is the infimum of a sequence of stopping times, it is clear that S, is a stopping
time as well. As the set over which the infimum is taken decreases with n, S, increases
with n, in particular the limit always exists. To show that S, in fact increases to T almost
surely, first note that by construction, Y °°, P(d(T?",T,) > 1) is finite, and therefore
P(N3e, Upe, (d(TP*,Ty) > 1)) = 0 by the Borel-Cantelli lemma. In particular, it holds for
any € > 0 that

PNy WS, (d(T*, Tk) > €)) < P(M0Zy VRS, (d(TF*, Tk) > 1)) = 0.

n=1

As T, is equal to T from some point onwards pointwise, we then obtain for any € > 0 that

P(d(lim S, T) > &) = Plimd(S,,T) > ¢) < P05y U, (d(S, T) > <))

n=1

< P(ORLy URZ, (d(TR", Ti) > €)) = 0.
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As e was arbitrary, we conclude P(d(lim S,,,T") > 0) = 0 and thus T is the almost sure limit
of Sy,. It remains that show that S,, < T whenever T > 0. To this end, assume that T'(w) > 0
and let n > 1, we want to show S, (w) < T'(w). Let N(w) be the first natural such that for any
k> N(w), Tix(w) = T(w). As the infimum is smaller than each of the elements the infimum
is taken over, we have S, (w) = infy>, T}* (w) < TSC?VAE;”)) (w). As Thun(w)(w) > T(w) > 0,

this implies Sy, (w) < T:C/;VN(S’)) (W) < ThuN(w) (W) = T(w), as desired. Lemma 2.1.7 now yields

that T is predictable. O

Lemma 2.1.10. Let S and T be stopping times. If S is predictable, S(s<r) is a predictable
stopping time. If S and T are both predictable, S(s<T) is a predictable stopping time.

Proof. First assume merely that S is a predictable stopping time, we wish to show that
S(s<r) is a predictable stopping time. As (S <T) € Fsar € Fs by Lemma 1.1.11, Lemma
1.1.9, shows that S(s<7) is a stopping time. We need to prove that it is predictable. To
this end, let (S,) be an announcing sequence for S and define U, = n A (Sy)(s,<7). We
claim that (Uy,) is an announcing sequence for Sig<r). To show this, first note that as S,
is increasing, the sequence of sets (S, < T) is decreasing, so (S,)(s,<r) is increasing and

therefore, U, is increasing. Furthermore,

supU, = supnA (Sn)s,<r) = sup(Sn)(s,<1) = sup Snl(s, <) + 00l(s, <7)e

= (supSn)lnxe (s, <) +00lux (s,<1)e = Sl(s<r) + 0l(s<m)e = S(5<7),
n=1 n=1

so Uy, increases to S(s<r). We need to prove that if Ss<r) > 0, then U,, < S(s<r). To this
end, note that on (S < T), if § > 0, we have S,, < S and so U, < (Sy)(s<7) < S(s<1)- On

(S < T)¢, it holds that U, is finite while S g<7y is infinite, so U,, < S(g<r) as well. This
shows that S(s<r) is predictable when S is predictable.

Now assume that S and T" are both predictable, we wish to show that S(s<r) is a predictable
stopping time. Again by Lemma 1.1.11 and Lemma 1.1.9, we know that S(s7) is a stopping
time, so we merely need to show that it is predictable. To this end, let (7},) be an announcing
sequence for 7" and define U, = S(p>0,5<71,). We claim that (U,,) is a sequence of predictable
stopping times decreasing to S(g<7) which pointwisely is constant from a point onwards, if

we can prove this, Lemma 2.1.9 will show that S(s.7y is predictable.

We first show that U, is predictable. To this end, define V), = S(s<7,) and note that
Un = (Va)(r>0)- As V;, is predictable from what we already have shown, Lemma 2.1.5 yields
that U, is predictable as well. We next show that (U,) decreases to S(g<7) and pointwisely
is constant from a point onwards. To see this, first note that as T;, is increasing, the sequence
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of sets (T > 0,5 < T,) is increasing as well. Therefore, (U, ) is decreasing, and

lIéfUn = ilrllfSI(T>0,S§Tn)+001(S§Tn)6
- Sluoo

n=1

(T>0,5<Tn)e = SUx_ (T>0,5<T,)-

n=1

(T>0,5<T,) T 001nee

n=1

Now, on the set US2 (T > 0,5 < T,,), it holds that T,, < T and so S < T. Conversely, if
S < T, we have in particular T" > 0 and there is n such that S < T,,. Thus, we conclude

o (T'>0,8 <T,) = (S <T), and so inf,, U, = Sg<r). Finally, as U, only takes the
values S and oo and the sequence of sets (T' > 0,5 < T,,) is increasing, U,, is constant from

a point onwards. Lemma 2.1.9 now shows that S(s<r) is predictable. O

We now begin to work towards the final result of this section, namely the equivalence between
being a predictable stopping time and having [T] predictable. To prove this result, we
introduce the concept of the debut of a set. Let A be a subset of Ry x €2. The debut D4 of
A is the mapping from  to [0, 00] defined by Dy(w) = inf{t > 0| (t,w) € A}.

Also, let I, denote the family of finite unions of sets of the form [S,T[, where S and T
are predictable stopping times with S < T. By Lemma A.1.7, I, is an algebra generating
the predictable o-algebra. We let (I,)s denote the sets which may be obtained as countable
intersections of elements of I,. By Lemma A.1.8, it holds for any bounded nonnegative
measure p on the predictable g-algebra that all elements of the predictable g-algebra can be
approximated in p-measure from the inside by elements of (I,)s.

Lemma 2.1.11. Consider some A € (I,)s. Then the debut Dy is a predictable stopping
time, and for w € (D4 < 00), it holds that (Da(w),w) € A.

Proof. Let A € I, be given. Assume that A = N5, A, where (A4,,) is a family of sets in I,,.
Specifically, assume that A,, = U™ [Snk, Tnk[, where S, and T, are predictable stopping
times with Sy < Thk.

We first argue that for w € (D4 < 00), it holds that (D4(w),w) € A. To this end, assume
that w € (D4 < 00). Define A(w) = {t > 0| (t,w) € A}. There is a sequence (a,(w)) such
that a,(w) € A(w) and o, (w) converges downwards to Dy(w). As ap(w) € A(w), we have
Sk (W) < ap(w) < Thr(w) for all n > 1 and k& < m,,. Therefore, S,;(w) < Dy(w) < Thi(w)
for all n > 1 and all £ < m,, as well, proving that D4(w) € A(w) and thus (D4 (w),w) € A,

as desired.

Next, we prove that D4 is a predictable stopping time. To this end, define H by putting
H ={S € T,|S < D4 almost surely}. We always have that H contains the constant zero,
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and so ‘H is a nonempty family of variables. Therefore, by Theorem A.1.18, there exists an
essential upper envelope T' of H, meaning a random variable T" such that S < T for all S € ‘H
and if U is another random variable with this property, then T" < U almost surely. Also by
Theorem A.1.18, there is a sequence of variables (S,,) in H such that T = sup,, S,, almost
surely. By Lemma 2.1.9 and Lemma 2.1.8, T is a predictable stopping time. As the usual
conditions hold, we may modify T on a set of measure zero to ensure that T is a predictable
stopping time, that T is an essential upper envelope of H and that T(w) < D4(w) for all
w. We claim that T and D4 are equal almost surely, if we can prove this, Lemma 2.1.8 will
allow us to conclude the proof.

Note that by construction, T' < D 4. Thus, it will suffice to prove D4 < T almost surely.
To show this, we first show that A is equal to a set whose debut is more easily seen to be
less than 7. Defining B,, = U [Sni V T, Tni V T[[, we may apply Lemma 2.1.5 to see that
B,, € I,. Furthermore, by considering the cases Tp;(w) < T(w), Spi(w) < T(w) < Thg(w)
and T'(w) < Spr(w) separately, we also obtain B, = U [Snk, Tnk[N[T, co[= A, N [T, 00],
proving that N2, B,, = (NS, A,) N [T, 00[= AN [T, 00[. Now, as T'(w) < D4(w) for all w,
we obtain A C [T, oo, and so A C B,,, proving N2 ; B, = A. Furthermore, we find that the
debut Dp, is given by Dp, = min{(Snx VT)(s,,vr<T,,v1)lk < My}, which is a predictable
stopping time by Lemma 2.1.5 and Lemma 2.1.10.

As A C B,,, it holds that Dp, < D4. As we also know that Dp, is a predictable stopping
time, we conclude that Dp, € H, and therefore Dp, < T almost surely. On the other hand,
as Sy VI > T for all k < m,, we also find that Dg, > T. Therefore, Dp, is almost surely
equal to T. Now fix w € € such that T'(w) is finite and Dp, (w) = T'(w) for all n, this is almost
surely the case on (T' < o0). As (Dp, (w),w) € B, for all n, we find that (T'(w),w) € B,
for all n, and so (T'(w),w) € A. In particular, D4 < T. Thus, we conclude that Dy < T
almost surely. As we have by construction that T < D4 almost surely as well, we conclude
that T = D4 almost surely. Therefore, Lemma 2.1.8 shows that D 4 is a predictable stopping
time, as desired. O

Theorem 2.1.12. Let T be a stopping time. The following are equivalent:

(1). T is predictable.
(2). [T] is a predictable set.

(3). 1jr,00] 18 @ predictable process.
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Proof. First note that as 1j7 o[ = 1[7]+1)7,00[, Where the process 1j7 [ is predictable for all
stopping times because it is left-continuous and adapted, the equivalence between (2) and (3)
follows immediately. And if T is predictable, Lemma 2.1.6 shows that [T, o[ is predictable,
0 1[7,o0[ is a predictable process. In order to complete the proof of the theorem, it therefore
suffices to show that if [T7] is a predictable set, then T is predictable.

To this end, assume that [T7] is predictable. Let A € ¥P. Noting that T is F-B measur-
able, we find that w — (T'(w),w) is F-B4 ® F measurable. As (t,w) — 14(t,w) is XP-B
measurable, it is in particular B, ® F-B; measurable. Therefore, the composite mapping
w 14(T(w),w) is F-By measurable. From these observations, we conclude that by putting
WA) = [14(T(w),w)l(7<o0)(w) dP(w) for any A € XP, we obtain a well-defined mapping
from XP to [0, 00]. It is immediate that 4 is a nonnegative measure concentrated on [T and
bounded by P(T < o0).

We now find that by Lemma A.1.8, there exists a sequence (A,,) in (I,)s with A, C [T] such
that u([T]) — L < u(An) < p([T]). Let S, be the debut of A,, we know from Lemma 2.1.11
that S, is a predictable stopping time. Furthermore, we know that whenever S,,(w) is finite,
(Sn(w),w) € A,. Now define T, = min{S1,...,S,} and let U = inf,, T,,. We claim that U is
a predictable stopping time which is almost surely equal to T

We first use Lemma 2.1.9 to show that U is a predictable stopping time. To this end, first
note that 7T, is decreasing. Also, note that if Sy is finite, we have (Sg(w),w) € Ay, C [T7], so
Sk(w) = T'(w). Therefore, Sk(w) is equal to either T'(w) or co. As a consequence, T), is also
equal to either T'(w) or co. As T, is decreasing, it follows that T), is constant from a point
onwards. As S, is a predictable stopping time, so is T,, by Lemma 2.1.5, and Lemma 2.1.9
then shows that U is a predictable stopping time.

It remains to show that 7" and U are almost surely equal. To this end, note that

P(T#U) = PT#UU=00)+P(T#U,U < )
= P(T#U,S,=o0foralln)+ P(T #U,S, < oo for some n)
= P(T <,8, =00 foralln)+ P(T #U,S, < oo for some n).
We claim that each of the two terms above are zero. We first consider the second term.
Recall that T;,(w) is constant from a point onwards and is equal to either T'(w) or co. If

Sp(w) < oo for some n, then T, (w) is finite and thus equal to T'(w), yielding U(w) = T(w).
This proves that P(T # U, S,, < oo for some n) = 0.

It remains to show P(T < o0, S,, = oo for all n) = 0. To this end, fix some k > 1.
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Note that when Si(w) = oo, it holds that {t > 0| (t,w) € Ax} is empty. Now, if T'(w) < oo
and (T'(w),w) € Ag, {t > 0| (t,w) € A} would not be empty. Thus, we conclude that
either T(w) = 0 or T(w) < oo and (T(w),w) ¢ Ag. Thus, as p is concentrated on [T and
Aj, C [T, we obtain

P(T < OOaSk; = OO) = /1(T(w)<oo,Sk:oo) dP(w) < /1((T(w),w)€A2)1(T(w)<oo) dP(oJ)
u(AR) = p(IT] N A7) = u(IT]) — n(Ar) < 3

As it holds that P(T < 00,5, = oo for alln) < P(T < 00,S; = o0) for all k > 1, this
implies P(T < 00,5, = oo for all n) = 0. We conclude that 7" and U are almost surely

equal. Applying Lemma 2.1.8, we then find that T is predictable. O

An immediate useful application of Theorem 2.1.12 is the following.

Lemma 2.1.13. Let T be a stopping time. Assume that there is a predictable set A such
that T is the debut of A, and assume that whenever T'(w) is finite, then (T (w),w) € A. Then
T is predictable.

Proof. Note that when T'(w) < 00, it holds that (t,w) ¢ A for 0 <t < T'(w). Combining this
with our assumption that (T(w),w) € A whenever T(w) < 0o, we obtain

[7]

{t,w) ERy xQ |t =T(w) < oo}
{t,w) eRy x Q| (t,w) € At <T(w) < o0}
= An(o,T7].

Since [0,T] =]T, co[¢, the set [0,T] is predictable by is predictable by Lemma 2.1.3. And
by our assumptions, A is predictable as well. We conclude that [T is a predictable set, and
so Theorem 2.1.12 shows that T is predictable. O

2.2 Stochastic processes and predictability

In this section, we investigate the connection between stochastic processes, the predictable
o-algebra and predictable stopping times. These results will pave the way for the results in
Section 2.3, where we characterize predictable cadlag processes in terms of their behaviour
at particular stopping times. We begin by introducing a new oc-algebra related to a given

stopping time.



2.2 Stochastic processes and predictability 51

Definition 2.2.1. Let T be a stopping time. We define the strictly pre-T o-algebra Fr_ by
putting Fr— = o(FoU{FN(T >t)|t >0,F € F}).

We think of Fr_ as the o-algebra of events strictly prior to T'.

Lemma 2.2.2. Let S and T be stopping times.

(1). T is Fr_-measurable.

(2). Fpr_ C Fr.

(8). If S <T, then Fs_ C Fr_.

(4). If S <T and S < T whenever T > 0, then Fs C Fp_.

(5). If T is predictable with announcing sequence (T},), then Fr_ = o(UsZ,Fr,).

Proof. Proof of (1). Since (T > t) € Fr_ for t > 0 by definition, it follows immediately

that T' is measurable with respect to Fp_.

Proof of (2). Letting F' € Fy, we have FN (T <t) € Fy as (T <t) € F, so Fo C Fr.
Next, let s > 0 and F € Fs, we then obtain FN (T > s)N (T <t) =0 € F; when t < s
and FN (T >s)N(T <t) € F; when ¢t > s. Thus, FN (T > s) € Fr and we have shown
Fr— C Fr.

Proof of (3). Assume that we have S < T, let ¢ > 0 and let F € F;. We then obtain
Fn(S>t)=Fn(S>t)n(T >t), which is in Fp_ since F'N (S > t) € F;. This shows
Fs_ C Fp_.

Proof of (4). Assume S < T and S < T when T > 0. Let A € Fg, so that AN(S <) € F
for all t > 0. We find

A = (ANT=0)UAN(T>0))
= ( (S=0N(T=0)U(AN(S<T))
= (AN(S=0NT=0)UUgeg. AN(S<q)N(g<T).

Here, AN(S = 0)N(T =0) € Fop C Fr—. Since AN(S < q) € Fy, AN(S < ¢)N(g < T) € Fr_.
We conclude A € Fr_.
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Proof of (5). Let T be predictable with announcing sequence (7},). From the previous
step, we know Fr, C Fr_, so clearly o(US2, Fr,) C Fr—. On the other hand, letting ¢t > 0
and F € Ft, we have FN (T > t) = UX FN (T, >t) € o(US 1 Fr,—) C o(US2,Fr,), SO
Fr— Co(Use,Fr,), as was to be proved. O

Lemma 2.2.3. If T is a predictable stopping time and F € Fr_, then Tr is a predictable

stopping time.

Proof. Define H = {F € Fr_|TF is predictable }. We will show that H is a o-algebra
containing a generator for Fr_. In order to obtain that H is a o-algebra, first note that
clearly, Q € H. Assume F' € H, then

[Te] = 710 (Ry x F%) = [7] 1 (Ry x F)°
[T10 (IT] "Ry x F)°* = [T] N [TF]"

As both T and Tr are predictable by assumption, Theorem 2.1.12 shows that [T and [TF]°
are predictable. Therefore, [Tr.] is predictable and thus Tre is a predictable stopping time,
again by Theorem 2.1.12. Next, let (F),) be a sequence in H and define F' = U2, F,,. We
then have [Tp] = [T]NR4y x F = [T] N UL Ry x F, = U324[TF,], and by the same
arguments as before, this shows that [Tr] is a predictable stopping time. We conclude
that H is a o-algebra. Next, we show that H contains a generator for Fp_. By definition,
Fr_ is generated by Fy and the sets F' N (T > s) where s > 0 and F € F,. If F € Fy,
[Tr] = [T]NRy x F = [T]N[0F, oo, which is predictable since O is a predictable stopping
time by Lemma 2.1.5, so Fy C H. Let s > 0 and F' € F;, then

Mool = {(tw) € Ry x Ot = T(w)w € FO(T > 5))
{(t,w) e Ry x Qt =T (w),t > s,w e F} = [T]N]sr, 0.

Since both [T] and ]sp,oo[ are predictable, [Trn(rs)] is predictable and so Trn(rss) is
predictable. Thus, FF'N (T > s) € H. We may now conclude Fr_ C H, proving the

lemma. O
The following useful lemma corresponds to a version of Lemma 1.1.11, using Fp_ instead of
Fr.

Lemma 2.2.4. Let S and T be stopping times.

(1). If Z is Fs measurable, Z1(s<T) 18 Fr— measurable.
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(2). If Z is Fs— measurable and S is predictable, Z1(s<ry is Fsar)— measurable.

(3). If Z is Fs— measurable and S and T are predictable, Z1 g7y is F(gar)— measurable.

In particular, if S and T are stopping times, (S < T) is in Fr_. If S is predictable,
(S <T) e Fsary—, and (S <T), (S<T) and (S =T) are in Fr_. If S and T both are
predictable, (S <T), (S <T) and (S =T) are in Fsar)—-

Proof. Proof of (1). In this case, we merely assume that S and T are stopping times.
Let Z be Fs measurable. Let B be a Borel set not containing zero. We then obtain that
(Zls<ry € B)=(Z € B)N(S<T)=Ugeq, (Z € B)N(S < q)N(q<T), which is in Fr_,
since (Z € B) € Fg such that (Z € B)N (S < q) € F,. This shows that Z1 g7y is Fr_
measurable.

Proof of (2). Now assume that S and T are stopping times, where S is predictable. Also
assume that Z is Fg_ measurable. We want to show that Z1(s<7) is F(sa1)— measurable.
As Z1(s<t) = Z1(s<snT), it suffices to show that Z1(g<7) is Fr— measurable. To this end,
as in the proof of the first claim, it suffices to show that F N (S <T) € Fp_ for F' € Fg_.

To prove this, define H = {F € Fs_ | FN (S <T) € Fr_}. It will suffice to argue that
‘H is a Dynkin class containing a generator for Fs_ which is stable under intersections. We
begin by proving that H contains such a generator. As S is predictable, it holds by Lemma
2.2.2 that U2, Fg, is a generator for Fg_, where (S,,) denotes an announcing sequence for
S. We will prove that US2  Fg, is in H.

To this end, fix m > 1 and let F € Fg,,. We will prove that F N (S <T) € Fr_. Note that
FNS<T)=(FNIS<T)N(S>0)U(FN(S=0)). Here, FN(S=0) € Fo C Fr_, so
it suffices to show FN (S <T)N(S >0) € Fr_. As S, is strictly less than S on (S > 0), we
find FN(S<T)N (S >0) =N, FN(S>0)N(Sk <T). As (S,) is increasing, F' € Fg,
whenever k > m. As (S > 0) € Fy, FN(S > 0) € Fg, as well, and so, by what was already
proven, FN(S > 0)N(Sx < T) € Fr—_. From this, we conclude FN(S <T)N(S >0) € Fr_.
From this, we obtain Fg C ‘H. As a consequence, US>, Fg, C H.

It remains to show that # is a Dynkin class. As U2 Fs, C H, we find Q € H. It is
immediate that H is stable under countable unions. Next, assume that F,G € H with
F C G, we want to argue that G\ F € H. We have

(G\F)N(S<T)=GN(S<T)N(FN(S<T)".
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Here, GN(S < T)and FN(S <T) are in Fpr_ by asumption, so (G\ F)N (S <T) is in
Fr_ as well, yielding G \ F € H. We conclude that H is a Dynkin class, so Lemma A.1.1
now allows us to conclude that F N (S <T) € Fr_ for all F € Fg_, as desired.

Proof of (3). Finally, we consider the case where both S and T are predictable. We are
to show that Z1(s<r) is F(sar)— measurable. As in the previous cases, it suffices to show
that for F' € Fs_, it holds that F'N (S < T) is in Fgary—. To this end, first note that
FN(S<T)=Fn(S<T)N(S <T). From our previous results, we find that as S is
predictable, FN(S < T) € Fgar)—, and as T'is predictable, (S < T) = (S > T)¢ € Fgar)—-
The result follows.

Proof of remaining claims. From (1), it follows that (S < T) € Fr_ when S and T are
stopping times. Now assume in additaion that S is predictable. From (2) it follows that
(S <T) € Fisar)—- And from Lemma 2.2.2, it follows that (S < T') € Fr_. Therefore,
(S=T) e Fr_ as well. Finally, if S and T both are predictable, it follows from (2) and (3)
that (S <T) and (S <T) are in Figar)—, and so (S =1T) is in Fgar)— as well. O

Using the previous results, we may now obtain some fundamental results on the interplay

between predictable processes and the strictly pre-T' o-algebra Fp_.

Lemma 2.2.5. IfT is a stopping time and Z is Fr measurable, then Z1yr o[ is predictable.
If T is a predictable stopping time and Z is Fr— measurable, then Z1 o[ is predictable.

Proof. Assume first that T is a stopping time. For any F' € Fr, T is a stopping time as well,
so since 1p1y7 o] = 1j7p,00[, We find that 1p1j7 o is predictable as [T, oo is predictable
by Theorem 2.1.3. By stability of measurability under elementary operations and pointwise

limits, it follows that Z1jr o is predictable whenever Z is Fr measurable.

Now assume that 7" is a predictable stopping time. For any F' € Fr_, we obtain by Lemma
2.2.3 that Tr is a predictable stopping time. As 1plip o[ = l[7p,00[ and the latter is
predictable by Theorem 2.1.12, we conclude that for any F' € Fr_, 1pljp o[ is predictable.
Again by stability of measurability under elementary operations and pointwise limits, we
obtain that Z1jr o[ is predictable whenever Z is Fp_ measurable. O

Lemma 2.2.6. Let T be a stopping time. If X is a predictable process, then X11l(1<x0) 18

Fr_-measurable.

Proof. First consider the case where X = 1g o for some predictable stopping time S. In
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this case, X71l(rco) = 1(s<T<o0)- By Lemma 2.2.4, (S < T') is Fr_ measurable, and by
Lemma 2.2.2, (T' < co) is Fr_ measurable. Therefore, we conclude that X71(r<n) is Fr—
measurable in this case.

Now let H be the class of B € XP such that with X = 15, Xrlir<ooy is Fro measurable
for all stopping times 7. We have just shown that A contains [S, oo[ for all stopping times
S, and by Lemma 2.1.6, this family is a generating class for ¥P, stable under intersections.
Therefore, if we can show that H is a Dynkin class, it follows that H = XP. It is immediate
that Ry x 2 € H. That H is stable under set subtraction and increasing unions then follow
from the stability properties of measurability under elementary operations. We conclude that
H is a Dynkin class and so by Lemma A.1.1, it holds that whenever X = 1g and B € P,
X11(7<0) is Fr— measurable. By approximation with simple ¥? measurable functions, we
now obtain the result of the lemma. O

Lemma 2.2.7. Let X be a cadlag adapted process, and let T be predictable. Then X1 1 (7<)

1s Fr_ measurable.

Proof. Defining Y = X_, it holds that X7 1(7<o) = Yrli7<oo). As Y is caglad and
adapted, it is predictable. Therefore, the result follows from Lemma 2.2.6. O

Lemma 2.2.8. Let X be a predictable process, and let T be a stopping time. Then the

stopped process X7 is predictable as well.

Proof. Note that XT = X117 + X1l (1<00)1y7,00[- The first term is predictable, since X is
predictable and [0, T] =] T, cc[¢ is predictable according to Lemma 2.1.3. The second term
is predictable since X71(7<o) is Fr—-measurable by Lemma 2.2.6, and 80 X71(7<o0)1)7,00]
is predictable by Lemma 2.2.5. O

2.3 Accessible and totally inaccessible stopping times

Using the results of Section 2.2, we now introduce accessible and totally inaccessible stopping
times and use these to characterize cadlag predictable processes in terms of their behaviour

at jump times.

Definition 2.3.1. We say that a stopping time T is totally inaccessible if it holds for any
predictable stopping time S that P(T = S < o0) = 0. We say that a stopping time T is
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accessible if there exists a sequence of predictable stopping times (T),) with the property that
[T1 € WA (T3]

The following result shows that any stopping time can be decomposed into an accessible
and a totally inaccessible part. Recall that for two sets F,G C ), we define the symmetric
difference FAG by putting FAG = (F\ G) U(G\ F).

Theorem 2.3.2. Let T be any stopping time. There exists a set F' € Fpr_ such that we have
T = Tpr A Tpe, where Tr is accessible and Tre is totally inaccessible. The set F' is almost
surely unique in the sense that if G is another such set, then P((T < oo) N FAG) = 0.

Proof. We define H = {U52,(T = S,, < 00)|(Sy,) is a sequence in 7,}. By Lemma 2.2.4, we
know that if T is a stopping time and S is a predictable stopping time, then (T'=S) € Fp_.
Aswe have (T < o0) € Fr_ by Lemma 2.2.2, we conclude that U (T = S,, < o0) € Fr_ for
any sequence for any sequence (S,) C 7,, and so H C Fr_. Define a = sup{P(F)|F € H}.
It then holds that for each n, there is F,, € H such that P(F,) > o — % Put F = U2, F,,
then F' € H and F € Fp_. As F € H, we have in particular that F' = U2 (T = S, < o0)
for some sequence (S,) in 7,. Also, as P(F) > P(F,) > a — * for all n, we conclude that

P(F) =sup{P(G) | G € H}. We claim that T is accessible and Tr- is totally inaccessible.

To prove that Tr is accessible, we simply note that
[Tr] = {t,w) eRy xQt =T(w),w € F}
= {(thw) eRL xQt =T(w), IneN: T(w) = Sp(w) < oo} C U, [Sn],

so Tr is accessible. To prove that Tre is totally inaccessible, let S be some predictable
stopping time. Note that F U (T = S < o0) € H and we have

P(FU(T=S<o)) = PF)+PFN(T=S5< o))
= P(F)+ P(Tpe =5 < ).

As we have P(F) = sup{P(G) | G € H} by construction and FU (T = S < o) € H,
we obtain P(FU (T = S < o)) < P(F). And as F C FU(T = S < o0), also have
P(F) < P(FU(T =5 < )). Thus, P(FN(T =S < o)) = P(F), and the above then
yields P(Tpe = S < o0) = 0, proving that Tr. is totally inaccessible. This shows existence

of the decomposition.

It remains to prove uniqueness. Assume that we have two decompositions into accessible
and totally inaccessible parts, T' = Tp A Tpe and T = Tg A Tge. We wish to show that
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P((T < 00)N(FAG)) = 0. By symmetry it will suffice to prove, say, P((T' < co)NFNG°) = 0.
Assume that P((T' < co) NFNG°) > 0. With [Tr] C U2, [Sn] where S, is predictable, we
then obtain

0 < P(T<oo)NFNG°)
P(In:T=8,<o00)NFNG
S P(EInTGc:Sn<OO),

IN

so there is some n such that P(Tge = S, < 00) > 0, a contradiction with our assumption.
We conclude P((T < 00) N F'NG°) O

Next, we work towards a result allowing us to decompose a sequence of stopping times into

disjoint parts. The following extension of Lemma 2.1.8 will be useful in this regard.

Lemma 2.3.3. Let S and T be two nonnegative variables and assume that S and T are equal
almost surely. If T is a stopping time, so is S. If T is predictable, so is S. If T is accessible,

so is S. If T is totally inaccessible, so is S.

Proof. By Lemma 2.1.8, S is a stopping time if T is a stopping time, and S is predictable
if T is predictable. Assume that T is accessible, and let (T;,) be a sequence of predictable
stopping times such that [T] € U2, [T,]. Define U = Sip.s). Since T' and S are equal
almost surely, S(7+g) is almost surely equal to infinity, therefore predictable by Lemma 2.1.8,
and [S] C [TTU[U] C [UJUUSL,[T], showing that S is accessible. Assume finally that T
is totally inaccessible, and let R be any predictable stopping time. As T and S are almost
surely equal, P(S =R < o0) = P(T = R < o0) =0, so S is totally inaccessible. O

Lemma 2.3.4. Let (T,,) be a sequence of stopping times. There exists a sequence of stopping
times (Sp) with disjoint graphs such that U [T,] = US21[S.]. If the (T),) are predictable,
the (Sy) can be taken to be predictable as well.

Proof. Assuming that (7),) is any sequence of stopping times, we define S; = T} and recur-
sively F,, = ﬁz;ll(Tk #T,) and S, = (T,,)r,. Then F, € Fr, by Lemma 1.1.11, so S, is
a stopping time. If k < n with Sk(w) < oo and Sy, (w) < oo, we have Si(w) = Tx(w) and
w € ﬂ?;ll(Tk # Ty), so Sg(w) # Sp(w). Thus, the graphs [Sk] and [S,] are disjoint. It
remains to prove U3, [T5,] = US2, [Sn]. It is immediate that [S,] C [T%], so the inclusion
towards the left holds. Assume conversely that (t,w) € USZ,[T,]. Then, there exists a
smallest n > 1 with (t,w) = (T (w),w). In this case, T,,(w) # Tk(w) for k < n, so w € F,
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and thus T),(w) = Sy, (w), yielding (t,w) € [Sy]. This proves the inequality towards the right,
and so U224 [T,,] = U2, [S,] holds.

Turning to the predictable case, assume that each T, is predictable. By Lemma 2.2.4,
(T # T») € Firuarn)— € Fr,—, 80 I, € Fr,— and by Lemma 2.2.3, S,, is predictable. [

Definition 2.3.5. A reqular sequence of stopping times is a sequence (T,,) of stopping times
such that the graphs of the stopping times are disjoint and each T, is either predictable or

totally inaccessible.

Lemma 2.3.6. Let (T},) be any sequence of stopping times. There exists a reqular sequence
of stopping times (Ry) such that US2[T5,] C U [R.]-

Proof. By Lemma 2.3.4, we may assume that the (7)) have disjoint graphs. By Theorem
2.3.2, there exists F,, € Fr, _ such that with S,, = (T},)r, and U,, = (T)F,, Sn is accessible
and U, is totally inaccessible, and T, = S, A U,. We then have [U,] C [T,], so the
(U,) have disjoint graphs as well. Next, as S,, is accessible, there exists for each n > 1 a
sequence (S¥),>1 of predictable stopping times such that [S,] C U2, [SX]. Lemma 2.3.4
then yields a sequence of predictable stopping times (V,,) with disjoint graphs such that
U2, U, [SE] = use [Vi]. We then have U [T,.] € (U, [Va]) U (US4 [UL]), where
each of the stopping times are either predictable or totally inaccessible, and it holds that
(V) has disjoint graphs and (U,,) has disjoint graphs.

Next, note that P(S,, = Uy < o0) = 0 for any n and k, since S,, is predictable and Uy, is
totally inaccessible. In particular, the set F,, = U3, (S, = Uy) is a null set. Therefore, by
Lemma 2.1.8, (S,,) e is predictable, and we find [(Sn)re] = [Sn] \ URZ,[U]. Therefore, we
obtain

UnilTnl © (URLi[Sa]) U (UL [U])

= (UL (ISa] \ URLi [URD) L (URZi [UR])
(Ui [(Sn) rgl) U (UL [UR]) -

By construction, all the stopping times are disjoint, and each is either predictable or totally
inaccessible. This proves the result. O

Lemma 2.3.6 allows us to prove Theorem 2.3.8, which states that the jumps of cadlag adapted
processes can be covered by a countable sequence of positive stopping times which are either

predictable or totally inaccessible and which never take the same values, and if the process is
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predictable, all the stopping times can be taken to be predictable. This result will in several
important cases allow us to restrict our analysis of jump time behaviour to jumps occurring
at predictable or totally inaccessible jumps. To prove the theorem, we need the following

lemma.

Lemma 2.3.7. Let X be a process which is cadlag and predictable. Let U be an open set in
R such that U N [—¢e,e] = 0 for some e > 0. Define T =inf{t > 0| AX; € U}. Then T is a
predictable stopping time.

Proof. From Lemma 1.1.14, we know that T is a stopping time. We need to prove that it is
predictable. With A = {(t,w) € Ry x Q | AX;(w) € U}, it holds that T is the debut of A.
Note that as X by Lemma A.2.3 pathwisely only has finitely many jumps greater than € on
bounded intervals, our assumption on U ensures that AXp € U whenever T is finite. Also,
A is predictable as AX is predictable. Lemma 2.1.13 then shows that T is predictable. [

Theorem 2.3.8. Let X be a cadlag adapted process. There is a regular sequence of positive
stopping times (T,,) such that {(t,w) € Ry xQ | |AXy| # 0} C UL, [T7]- If X is predictable,

n=1
then each T,, can be taken to be predictable.

Proof. By Lemma 1.1.15, defining TF = inf{t > 0 | [AXy| > 1} for k > 1, and recursively
forn >2, TV =inf{t > T% | | |[AXy| > }}, T¥ is a stopping time for all k > 1 and n > 1,
|AX x| > ¢ whenever TF is finite and {(t,w) € Ry x Q | [AX;] # 0} = Up2, Up, [TF].
Then, applying Lemma 2.3.6, we obtain the existence of a regular sequence of stopping times
(R,) such that {(t,w) € Ry x Q| |[AX;| # 0} € Up2 [R,]. Putting T), = (Ry) (g, >0), We
find by Lemma 2.1.5 that (7)) is a regular sequence of positive stopping times, and as no
process jumps at time zero, we get {(¢,w) € Ry x Q | |AX,| # 0} C UL, [T5.], as desired.

Now consider the case where X is predictable. Note that with Y*" = Z?z_ll AXprlprr oo
we also have TF = inf{t > 0 | |A(X —Y*"),| > 1}, where X — Y*" is cadlag and predictable
by Lemma 2.2.6 and Lemma 2.2.5. Therefore, by Lemma 2.3.7, T} is predictable. Applying
Lemma 2.3.4, we obtain a sequence of predictable stopping times (.S,,) with disjoint graphs
such that {(t,w) € Ry xQ | [AX;] # 0} = Up2[S,]. Putting T, = (Sn)(s,>0), Lemma 2.1.5
allows us to conclude that (7},) is a sequence of positive predictable stopping times, and as
in the previous case, {(t,w) € Ry x Q | |[AX,| # 0} C U2, [T] since no process jumps at

time zero. O

Note that in the following theorem, we make use of our convention that AX., = 0 for all
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cadlag processes, yielding AXy = AX71 (7<) for all stopping times T'. This convention

allows us to formulate our result without the use of unwieldy indicator functions.

Theorem 2.3.9. Let X be an adapted cadlag process. Then X is predictable if and only if
it holds that for every totally inacessible stopping time T, AXp = 0 almost surely, and for
every predictable stopping time T, AXp is Fr_ measurable.

Proof. First assume that X is predictable. By Theorem 2.3.8, there exists a sequence of
predictable times (7},) such that {(t,w) € Ry x Q| |JAXy| # 0} C U2, [T,]. Let T be a
totally inaccessible stopping time. As T, is predictable, we obtain P(T = T,, < o0) = 0
for n > 1, and so we find P(AXy # 0) < > °  P(T =T, < o0) = 0. Thus, for every
totally inacessible stopping time T, AX; = 0 almost surely. Next, consider a predictable
stopping time 7. By Lemma 2.2.6, X71(7<o) is Fr— measurable, and by Lemma 2.2.7,
X1 1(T<o0) I8 Fr— measurable. Therefore, AX71 (7 and thus AX7 is Fr_ measurable.
We conclude that for every predictable stopping time T, AXp is Fp_ measurable. This

proves the implication towards the right of the theorem.

Conversely, assume that X satisfies the two requirements in the statement of the theorem.
By Theorem 2.3.8, there exists sequences (S,) and (7,) of stopping times with disjoint
graphs such that {(t,w) € Ry x Q | |AXy| # 0} C (US2,[Sn]) U (U4 [T%]), where S, is
predictable and 7, is totally inaccessible. By assumption, AXr, is almost surely zero. Put
Un = (Tn)(aXr, #0), it then holds that AX7, 1j1,] = AXy, 1jv,], and U, is predictable since

it is almost surely infinite. We obtain

X = X_+AX=X_+) AXgls, 1+ Y AXr 1

n=1 n=1

oo o0
X+ AXg s+ > AXy, 1,

n=1 n=1
Here, X_ is predictable because it is caglad and adapted, and the second and third terms
are predictable by Lemma 2.2.5. Consequently, X is predictable. O

Theorem 2.3.9 is the main result of this section. Its usefulness is that it will allow us to check
predictability of an adapted cadlag process merely by analyzing its behaviour at stopping

times. Two simple yet important consequence are given as the following.

Lemma 2.3.10. Let X and Y be adapted cadlag processes. Assume that X is predictable
and that Y is a modification of X. Then 'Y is predictable as well.



2.4 Exercises 61

Proof. For any stopping time T, it holds that AXy = AYr almost surely. Therefore, Y

satisfies the criteria of Theorem 2.3.9, and is therefore predictable. O

Lemma 2.3.11. Let (X™) be a sequence of predictable cadlag processes. Let Y be an adapted
cadlag process, and assume that for all stopping times T, AX7 converges almost surely to
AYr. Then'Y is predictable as well.

Proof. Fix any predictable stopping time 7. By our assumptions, AX} converges almost
surely to AYp. As X" is predictable, Theorem 2.3.9 shows that AX} is Fpr_ measurable.
Therefore, AYr is Fp_ measurable as well. Next, fix any totally inaccessible stopping time 7.
By Theorem 2.3.9, AX7 is almost surely zero. Therefore, AY7 is almost surely zero as well.
We conclude that Y satisfies the criteria of Theorem 2.3.9. Therefore, Y is predictable. [

2.4 Exercises

Exercise 2.4.1. Let ¥° denote the optional o-algebra, meaning the o-algebra on Ry x
generated by the adapted cadlag processes. Show that 3P C ¥° C 37,

Exercise 2.4.2. Let X be a continuous adapted process with initial value zero, let a € R
with a # 0 and let T = inf{t > 0 | X; = a}. Argue that T is a predictable stopping time, and
find an announcing sequence for T .

Exercise 2.4.3. Let S and T be two predictable stopping times. Show that the equality
Fisar)— = Fs— A Fr_ holds.

Exercise 2.4.4. Let T be some variable. Assume that there exists a sequence (T,,) of stopping
times such that T, < T whenever T > 0 for alln > 1 and such that sup,, T, =T. Show that
T s a predictable stopping time.

Exercise 2.4.5. Assume that S is a stopping time. Let T be a stopping time such that
T >S5 and T > S whenever S is finite. Assume that Fp = Fg. Show that T is a predictable

stopping time.

Exercise 2.4.6. Show that Fr— = o({Xr | X is predictable }) whenever T is a finite pre-
dictable stopping time.

Exercise 2.4.7. Show that Fr_ = c({Xr_ | X is cadldag adapted }) for any finite stopping
time T.
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Exercise 2.4.8. Let T be a stopping time taking only countably many values. Show that T
1s accessible.

Exercise 2.4.9. Let T be an accessible stopping time. Show that T is predictable if and only
if (T =8) € Fs— for all predictable stopping times S.

Exercise 2.4.10. Let M be a cadlag adapted process with initial value zero and assume that
My is almost surely convergent. Show that M € M if and only if My is integrable with
EMy =0 for all accessible stopping times T .

Exercise 2.4.11. Let T be a totally inaccessible stopping time. Show that there exists a

sequence (Ty,) of accessible stopping times such that T,, converges to T from above.



Chapter 3

Local martingales

In this chapter, we introduce local martingales, which essentially are processes which are
martingales when stopped at appropriate stopping times. Local martingales function as a
natural generalization of martingales which later will be seen to behave particularly pleasantly
as integrators. During the course of this chapter, the results of the previous two chapters will
be applied together to gain a coherent understanding of the space of local martingales. This
understanding will allow us in Chapter 4 to define the stochastic integral of a predictable

process with respect to a local martingale in a simple and elegant manner.

The chapter is structured as follows. In Section 3.1, we formally introduce local martingales,
and we prove some basic stability properties. Already at this point, we will be able to use

the results on predictability from Chapter 2 to prove nontrivial results.

In Section 3.2, we consider the problem of characterizing the structure of local martingales
with paths of finite variation. This understanding will be important in Section 3.3, where we
show that any local martingale can be decomposed into a locally bounded component and a
component of finite variation. Combining this result with our previous results from Chapter
1, we are able to construct the quadratic variation and quadratic covariation processes, which

are fundamental tools for working with local martingales.

Finally, in Section 3.4, we use the quadratic covariation process to introduce the space of
purely discontinuous local martingales, which is a sort of orthogonal complement to the space

of local martingales with continuous paths. We prove that any local martingales can be
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decomposed uniquely as the sum of a continuous and purely discontinuous local martingale.
This will be useful for our later construction of the stochastic integral with respect to a local

martingale.

3.1 The space of local martingales

In this section, we introduce the basic results on local martingales, a convenient extension
of the concept of martingales. We say that an increasing sequence of stopping times tending
almost surely to infinity is a localising sequence. We then say that a process M is a local
martingale if M is adapted and there is a localising sequence (T},) such that M7= is a
martingale for all n, and in this case, we say that (7},) is a localising sequence for M. The
space of cadlag local martingales with initial value zero is denoted by M,. The space of

continuous elements of M, is denoted by cM,.

Lemma 3.1.1. It holds that M® C M? C M* C M C M,.

Proof. Tt is immediate that M? C M?2. By Lemma A.3.4, M? C M", and by construction
we have M* C M. If M € M, MT € M for any stopping time by Lemma 1.2.7, and so
M C M,. O

Lemma 3.1.2. Let (S,) and (T,) be localising sequences. Then (Sp, ATy) is a localising
sequence as well. If M, N € My, with localising sequences (Sy) and (T,,), then (S, ATy,) is
a localising sequence for both M and N.

Proof. As S,, AT, is a stopping time by Lemma 1.1.9 and S,, AT,, clearly tends almost surely
to infinity, (S, A T),) is a localising sequence. Now assume that M, N € M, with localising
sequences (T},) and (S,,), respectively. Then MT#/"Sn = (M7Tn)9 is a martingale by Lemma
1.2.7, and so (T, A Sp) is a localising sequence for M. Analogously, (T, A Sy,) is also a
localising sequence for N. O

Lemma 3.1.3. M, is a vector space. If T is any stopping time and M € My, then M™T € M,
as well. If F € Fo and M € My, then 1pM is in My as well, where 1p M denotes the process
(1FM)t == ]-FMt

Proof. Let M,N € M, and let o, € R. Using Lemma 3.1.2, let (7,,) be a localising
sequence for both M and N. Then (aM + BN)T» = aM™» + BNT» is a martingale, so
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aM + BN € M, and M, is a vector space. As regards the stopped process, let M € M,
and let T' be any stopping time. Let (7},) be a localising sequence for M. As M € M, we
obtain that (MT)T» = (M™)T € M, proving that (T},) is also a localising sequence for M7,
so that MT € M,. Finally, let M € M, and F € Fy. Let (T},) be a localising sequence such
that M™» € M. For any bounded stopping time T, ElFMJZC” = ElF(EM;”LFO) = 0 by
Theorem 1.2.6, so by Lemma 1.2.8, 1M is a martingale. As (1zM)™ = 1M 1pM
is in My. O

Lemma 3.1.4. Let M and N be two cadlag adapted processes with initial value zero. If M
and N are indistinguishable and M € My, then N € My as well.

Proof. Let (T,) be a localising sequence for M. Then M7 is a martingale. As N~ is
indistinguishable from M7, we obtain that N7» is a martingale as well. As N is cadlag and

has initial value zero, we conclude that N € M. O

The following lemma shows that each local martingale is not only locally a martingale, but is
locally a uniformly integrable martingale. Also, Lemma 3.1.6 shows that a continuous local
martingale also is locally a continuous bounded martingale, and Lemma 3.1.7 shows that a
process which locally is a local martingale in fact is a local martingale. Lemma 3.1.7 includes
a result for the case where the localisation is of the form M Tnl(Tn>0) instead of M ™, this
will be useful in the course of Chapter 4.

Lemma 3.1.5. Let M € M,. Then there exists a localising sequence (T,,) such that for each
n, M € M".

Proof. Let T,, be a sequence such that M7» is a martingale for n > 1. Then M™"" is in
M by Theorem 1.2.4, since it is a martingale convergent almost surely and in £ to Mz, xp,.
This proves the result. O

Lemma 3.1.6. Let M € cM,. There exists a localising sequence (T,) such that M is in
cM? for all n. In particular, M™ € cM? and MTr € cM™.

Proof. Let T,, = inf{t > 0||M;| > n}. By Lemma 1.1.17, (T,) is a localising sequence, and
M™ is bounded. And by Lemma 1.2.7, M™ is a continuous martingale. Thus, M7 is
a bounded continuous martingale. Clearly, M= is then bounded in £2, so we also obtain
MT ¢ cM? and MT» € e M. O
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Lemma 3.1.7. Let M be a cadlag adapted process with initial value zero. If there is a
localising sequence (Ty,) such that M is in My for all n > 1, then M € M. If there is a
localising sequence (T,,) such that MTnl(Tn>0) is in My for all n > 1, then M € M.

Proof. First consider the case where M7 is in M, for all n > 1. Let (T}') be a localising
sequence such that (M7»)T% is in M. Fix n > 1, then T tends to infinity almost surely as
k tends to infinity. Therefore, it also holds that limy P(|T}'| < M) = 0 for all M > 0. For
each n > 1, choose k,, such that P(|T}? | <n) <1/2". Then ) °, P(|T}’ | < n) is finite, so
the Borel-Cantelli lemma yields that Np2; U2, (|T) | < @) has probability zero. Therefore,
17! converges almost surely to infinity. Now put S, = maxi<i<n{T; A T,z} Then S,, is a
localising sequence, and M*» € M for each n > 1. Thus, M € M,.

Next, assume that M7 11, ¢y is in M, for all n > 1. Define S, = (T,,) (1, >0) A 01, =0)-
As (T, > 0) € Fo, (Sn) is a sequence of stopping times. As (7,) almost surely increases to
infinity, the set family (7}, > 0),>1 is increasing and the set family (7,, = 0),>1 is decreasing,
and it almost surely holds that T, > 0 eventually. Therefore, (S,,) also increases almost surely

to infinity. Thus, (S,) is a localising sequence. And as M has initial value zero, we obtain
M = M{™ 1z, 50) + M 1(1,—0) = M{" (1, >0).

Therefore, the results already proven yields that M € My, as desired. O

Recall that we in Lemma 1.2.11 proved that a martingale with paths of finite variation which
is also continuous in fact is evanescent. We will now use our understanding of predictability
to prove a considerable extension of this result, namely that any martingale with paths of

finite variation which is also predictable in fact is continuous and therefore evanescent.

Lemma 3.1.8. Let M € M"“ and let T be a predictable stopping time. Then AMy is
integrable, and E(AMp|Fr_) = 0.

Proof. We first show that AMry is integrable. Let T,, be an announcing sequence for T. We
then find Mr_ = lim,, M7, , where the convergence is almost sure. As My, = E(My|Fr,)
by Theorem 1.2.4, (Mry, )p,>1 is uniformly integrable, and therefore we have convergence in
L' as well. As a consequence, we obtain in particular that Mp_ is integrable, and as My is
integrable by the optional sampling theorem, we conclude that AMy is integrable. In order
to obtain the second result of the lemma, recall from Lemma 2.2.2 that Fr_ = o(UX2 Fr, ).
As E(Mr|Fr,) = My, , we find that Mz, converges almost surely and in £ to E(Mr|Fr_).
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As we also have convergence to Mrp_, we conclude E(Mrp|Fr—) = Mp_ by uniqueness of
limits. As Mr_ is Fr_ measurable, this shows E(AMy|Fr_) = 0, as desired. O

Theorem 3.1.9. Let M € M. If M is predictable, M is almost surely continuous. If M is

predictable or almost surely continuous with paths of finite variation, M is evanescent.

Proof. We first show that if M € My is predictable, then it is almost surely continuous.
To do so, first assume that M € M" and that M is predictable. Let T be any predictable
stopping time. Applying Theorem 2.3.9 and Lemma 3.1.8, AMr is integrable and it holds
that AMp = E(AMy|Fr-) = 0 almost surely. By Theorem 2.3.8, there exists a sequence of
predicable stopping times (T,) covering the jumps of M. By what we already have shown,
AMr, is almost surely zero for each n > 1. Therefore, M is almost surely continuous. Next,
consider the case where M € M,. By Lemma 3.1.5, there is a localising sequence (T},) such
that MT» € M*. By Lemma 2.2.8, M™ is predictable as well. Therefore, M is almost
surely continuous. Letting n tend to infinity, we conclude that M is almost surely continuous.
This shows that any M € M, which is predictable is almost surely continuous.

It remains to prove that if M is predictable or almost surely continuous with paths of finite
variation, M is evanescent. We first show that if M € M, has paths of finite variation and
is continuous, then M is evanescent. Consider such an M. Using Lemma 3.1.6, let (T},)
be a localising sequence for M such that M™ € ¢M. Then M™ also has paths of finite
variation, so by Lemma 1.2.11, M is evanescent. As T}, tends to infinity, we conclude that
M is evanescent as well. In the case where M only is almost surely continuous, let F' be the
null set where M is not continuous. Putting N = 1pcM, N € M, by Lemma 3.1.4, N has
paths of finite variation and NN is continuous. Therefore, by what was already shown, IV is
evanescent. As M is a modification of N, M is evanescent as well. Finally, assume that M
is predictable with paths of finite variation. From what we already have shown, M is almost

surely continuous, and so M is evanescent. This concludes the proof. O

3.2 Finite variation processes and compensators

In Chapter 1, we introduced the following spaces: V is the space of adapted cadlag processes
with initial value zero and paths of finite variation, A is the subspace of increasing elements of
V, A is the subspace of integrable elements of A and V' is the subspace of integrable elements

of V, meaning elements such that the variation process is integrable. We now introduce two
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further spaces of this type. Let A € V. We say that A is locally integrable if there exists a
localizing sequence (T},) such that AT+ € V¢ for each n > 1. We denote the space of locally
integrable elements of V by Vi. We denote the subspace of increasing elements of Vi by Aj.
It then also holds that A} is the space of elements of A such that there exists a localizing
sequence (T),) with the property that A™ € A’ for each n > 1.

In this section, we will show that for any process A € Vé, there exists a predictable process
7A€ Vi, unique up to evanescence, such that 4 — II; A is in M,. We refer to the mapping
15+ V; — V; defined up to evanescence as the compensating projection, and we refer to
II; A as the compensator of A. The compensator will allow us to give a characterization of

elements of My with paths of finite variation.

The proof of the existence of the compensator is somewhat technical. We begin by establish-
ing some lemmas. First we prove the existence of the compensator for a particularly simple
type of elements of V}, namely processes of the form & 17,00, Where T is a positive stopping
time and £ is nonnegative, bounded and F7 measurable. Afterwards, we apply monotone

convergence arguments and localisation arguments to obtain the general existence result.

Lemma 3.2.1. Let T be a positive stopping time and let £ be nonnegative, bounded and Fr
measurable. Define A = &1 o[- The process A is then an element of A?, and there exists a
predictable process 11} A in A? such that A — 7 A is a uniformly integrable martingale.

Proof. Tt is immediate that A € A*. To prove the existence of the compensator, our strategy
will be to consider discrete-time compensators for finer and finer dyadic partitions of Ry.
Let t} = k27" for k,n > 0. We define

AY = Ag forty <t <ty and
k+1

Bl = Y E(Ap — A |Fin ) forty <t <ty
i=1

and B = 0. Note that since T is positive, both A™ and B™ have initial value zero. Also
note that A™ is cadlag adapted and B™ is caglad adapted. Put M™ = A™ — B™. Note that
M™ is adapted, but not necessarily cadlag or caglad. Also note that, with the convention
that a sum over an empty index set is zero, it holds that

k

A=Ay and B =Y E(Ap — Ap |Fin ).

i=1
Therefore, (Bt;;)kzo is the compensator of the discrete-time increasing process (At;;)kzo,
so (M}

2);@20 is a discrete-time martingale with initial value zero. Let ¢ > 0 be a bound
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for £. By Lemma A.4.7, B}fg is square-integrable and it holds that E(Bﬁl:,)2 < 2¢2. Thus,
E(M{%)2 < 4E(A?;:)2 —|—4E(Bt’%)2 < 12¢?. We conclude that (Mn)k>0 is bounded in L2, and
so by Lemma A.4.4 convergent almost surely and in £2 to a square-integrable limit M™ and

the sequence (M2 ), >0 is bounded in £? as well.

By Lemma A.3.7, there exists a sequence of naturals (K,) with K,, > n and for each n a finite
sequence of reals A7, ..., A in the unit interval summing to one such that Zfi"n APME s
convergent in £2? to some variable M,,. By Theorem 1.3.3, it then holds that there is
M € M? such that Esup,sq(M; — Zfi"n AP M})? tends to zero, M is then a cadlag version
of the process t — E(My|F;). By picking a subsequence and relabeling, we may assume
that in addition to the properties already noted, sup;~q(M; — Zfi"n AP ME)? also converges

almost surely to zero.

Define B = A — M. Note that as A and M both are cadlag and adapted, B is cadlag and
adapted, and it is immediate that A — B is in M". Therefore, if we can show that B has a

modification which is increasing and predictable, the proof of existence will be concluded.

We are now in a position to outline the remainder of the proof. Put C™ = Zfi"n AP B,
Note that C™ is caglad, adapted and increasing. In particular, C™ is predictable. Define
D, ={k27" | k > 0,n > 0}. The remainder of the proof will proceed in three parts: First,
we show that B, = limy, .0 Cff
that B is almost surely increasing. Secondly, we prove that B; = limsup,,_,., Cf* almost

almost surely for all ¢ € D, this will allow us to conclude

surely, simultaneuously for all ¢ > 0, this will allow us to show that B has a predictable

modification. Thirdly, we collect our conclusions to obtain existence of the compensator.

Step 1. B is almost surely increasing. Note that for each ¢ € D, it holds that

Ay = limy, 0 Ay pointwise. Therefore,

K, K
By = A~ M, = lim Ap =Y \'M; = lim ) A'B; = lim C,

n—o0 . 9 nooo
=N

almost surely. From this, we obtain that B is almost surely increasing on D,. Recalling that
B = A— M so that B is cadlag, this allows us to conclude that B is almost surely increasing

on all of Ry.

Step 2. B; = limsup,_,,, C} simultaneously. Next, we show that almost surely, it
holds that B; = limsup,,_,., C; for all ¢t > 0, this will allow us to show that B has
a predictable modification. To this end, note that for ¢ > 0 and ¢ € Dy with ¢t < gq,
limsup,,_, ., Cf" < limsup,,_,., Cf = By. As B is cadlag, this yields limsup,,_, . C}" < B;.
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This holds almost surely for all ¢ € R, simultaneously. Similarly, liminf,, . Cj* > B;_
almost surely, simultaneously for all ¢ > 0. All in all, we conclude that almost surely,
B; = limsup,, ., Cf* for all continuity points ¢ of B, simultaneously for all ¢ > 0. As the
jumps of B can be exhausted by a countable sequence of stopping times, we find that in
order to show the desired result on the limes superior, it suffices to show for any stopping
time S that Bg = limsup,,_,., Cg. To do so, first note that

m—r oo m—r o0

Kn Kn Kn
Jlim Cf' = lim_Cy, :mlgnooZAi Bl = lim A, —Z)\i M = Ay —Z)\i M,

so C™ has an almost sure limit C7,, which is integrable, and by our earlier bounds, we obtain

K, K,
ICollz < NAsollz + || D MMl < Aol + > AF|ML,
i=n 2 i=n
K,
= (BAL)V?+ ) NH(E(ML)*)'? < (1+V12)c,

so (C™)p>1 is bounded in £?. Now fix a stopping time S. We first note that as we have
0 < C% < C%, the sequence of variables (C%),>0 is bounded in £2 and thus in particular
uniformly integrable. Therefore, limsup,,_,., £C¢ < Elimsup,,_,. C§ < EBgs by Lemma
A3.8. As limsup,,_,. C¢ < Bg almost surely, we conclude that in order to show that
limsup,, ., C¢ = Bg almost surely, it suffices to show that FCg converges to FBg.

To this end, define a stopping time S,, by putting S,, = co whenever S = oo and putting
S, = t} whenever t7_, < S < t}. Then (S,) is a sequence of stopping times taking
values in D and infinity and converging downwards to S. Note that for all n > 1, it holds
that B¢ = ZZO:O B&+11(t2<5§t2+1) = Z;ozo B%‘+11(Sn:t2+l) = Bgn. Also, Agn = Ag,.

Therefore, recalling that (A?ZL — Bt?;)kzo is a uniformly integrable martingale for all n > 1,

we obtain

K, K, K, Ky
ECE=EY MBy=)» MNEBs => ANEA; =) XNEAs,.

i=n i=n i=n i=n

As A is cadlag and bounded, and S, converges downwards to S, the dominated conver-
gence theorem allows us to obtain that FAg, converges to EAg. Therefore, Zfin M EAg,
also converges to FAg. Combining this with the above and recalling that A — B € MY,
we conclude that lim,, o EFCE = lim, o Zfibn AMEAg, = FAg = EBg. Recalling our
earlier observations, we may now conclude that limsup,,_,., C" = B; almost surely for all
points of discontinuity of B, and so all in all, the result holds almost surely for all t € R

simultaneously.
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Step 3. The existence proof. We now collect our conclusions to obtain the existence
of the compensator. Using the two previous steps, let F' be the almost sure set where B
is increasing and B = limsup,,_,., C". Put [I;A = Blp. We claim that IIJ A satisfies the
requirements to be the compensator of A.

To prove this, first note that by Lemma 2.3.10, 1C™ is a predictable cadlag process. As
;A = limsup,,_,,, 1rC", I A is predictable. Also, it is immediate that II} A is increasing.
And as A —II; A is a modification of A — B, A —1II7 A is a uniformly integrable martingale.
We conclude that I} A satisfies all the requirements to be the compensator of A. O

With Lemma 3.2.1 in hand, the remainder of the proof for the existence of the compensator

merely consists of monotone convergence arguments.

Lemma 3.2.2. Let A" be a sequence of processes in A" such that > | A" converges point-

wise to a process A. Assume for each n > 1 that B™ is a predictable element of A* such that
A™ — B" is a uniformly integrable martingale. The process A is then in A, and S B
almost surely converges pointwise to a predictable process 113 A in A? such that A — ;A is a

uniformly integrable martingale.

Proof. Clearly, A is in A*. With B = > >° | B", B is a well-defined process with values in
[0, o0], since each B™ is nonnegative. We wish to argue that there is a modification of B
which is the compensator of A. First note that as each B" is increasing and nonnegative, so
is B. Also, as A™ — B" is a uniformly integrable martingale, the optional sampling theorem
and two applications of the monotone convergence theorem yields for any bounded stopping
time T" that

n—oo n—oQ

EBr = lim » EBj = lim Y EA} = EAr,
k=1 k=1

which in particular shows that B almost surely takes finite values. Therefore, by Lemma
A.2.7, we obtain that B is almost surely nonnegative, cadlag and increasing. Also, by another
two applications of the monotone convergence theorem, we obtain for any stopping time 7'
that EBr = limy_,oo EBrpa¢ = limy oo EATA: = EA7. This holds in particular with T' = oo,
and therefore, the limit of B; as t tends to infinity is almost surely finite and is furthermore
integrable. Lemma A.2.7 then also shows that > ;_; B* converges almost surely uniformly
to B on R,.

We now let II; A be a nonnegative cadlag increasing adapted modification of B. Then II;A
is in A’, and E(Il;A)r = EAr for all stopping times 7', so by Lemma 1.2.8, A — II;A
is a uniformly integrable martingale. Also, Y ;_, B* almost surely converges uniformly to
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II;A on Ry. Therefore, Lemma 2.3.11 shows that II A is predictable. This concludes the
proof. O

Theorem 3.2.3. Let A € Vl?, There exists a predictable process 1I; A in Vg, unique up to
indistinguishability, such that A —TI; A is a local martingale. If A € A, 7 A is in At if
AeVi I3 A is in Vi a@d if Ae Al I3 A is in Ab. Also, A— I} A is a uniformly integrable
martingale when A € V*.

Proof. We first consider uniqueness. If A € V} and B and C are two predictable processes in
Vi such that A— B and A—C both are local martingales, we find that B —C'is a predictable

local martingale with paths of finite variation. By Theorem 3.1.9, uniqueness follows.

As for existence, we first consider the case where A = {17 o[ with T" a positive stopping
time, £ € LY(Fr) and € > 0. There exists a sequence of simple, nonnegative and Fr
measurable variables &, converging upwards to £. We can assume without loss of generality
that {; = 0. Define A" by putting A" = (11 — §n) 11,00, then A™ € Al and Yo, Ak
converges pointwise to A. Furthermore, by Lemma 3.2.1, there exists a predictable process
B™ in A’ such that A™ — B™ is a uniformly integrable martingale. By Lemma 3.2.2, we then
find that there also exists a predictable process II; A in A such that A — I} A is a uniformly

integrable martingale.

Now consider a general element A € A'. By Theorem 2.3.8, there exists a sequence of
positive stopping times (7},) with disjoint graphs covering the jumps of A. For n > 1, define
A™ = AA7, 17, o[, A™ is then an element of A’. Also define A? =37 | AAq, 17, oof- As
A c A, A? is a well-defined element of A*. Furthermore, A — A¢ is a continuous element
of A*. By the results already shown, there exists predictable processes B™ in A* with the
property that AAr, 17, o[ —B" is a uniformly integrable martingale. As Sory AF converges
pointwise to A%, we find by Lemma 3.2.2 that there exists a predictable process H;Ad in A
such that A7 — H;Ad is a uniformly integrable martingale. Putting I[;A = A — Ad 4 H;Ad,
we find that since A — A¢ is a predictable element of A?, I} A is a predictable element of

A’ and A — I} A is a uniformly integrable martingale, proving existence for the case where

Ae A

Next, assume A € V. Using Lemma 1.4.1, we may decompose the process Aas A = AT —A~,
where A*, A~ € A’. Putting [T} A = IT; AT — II} A~, we obtain that II}A is a predictable
element of V' such that A — II; A is a uniformly integrable martingale. Finally, we consider
the case where A € V;. In this case, there is a localising sequence (7,) such that AT is in V'.

From what was already shown, there is a process H;AT"7 unique up to indistinguishability,
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such that AT — H;AT" is a uniformly integrable martingale. In particular, it holds that
AT — (T AT )T = (ATt — I AT1)™ s a uniformly integrable martingale, and so
(IL; ATnt1)Tn = II¥ AT up to indistinguishability. Therefore, the processes II* AT may be
pasted together to a process II5 A in V] such that for all n > 1, (II;A)"» = II5 AT almost
surely. In particular, it almost surely holds that AIIFA; = lim, e AH;A;F" for all ¢ > 0.
Lemma 2.3.11 then shows that II; A is predictable. As (A— H;‘,A)T" is a uniformly integrable

martingale, A — I} A is a local martingale. This completes the proof of existence.

As regards the properties of I} A, we have already shown that when A € A?, we have
I*A € A’, and when A € V', we have ITI} A € V'. If A € Aj, we may take a localising sequence
such that A7+ € A" and obtain H;AT” € A°. By uniqueness, we have (H;‘,A)Tﬂ = H;AT" up
to indistinguishability, so that II; A € Aj. O

Theorem 3.2.3 establishes existence and uniqueness of the compensating projection mapping.

Next, we prove some basic properties of the compensator.

Lemma 3.2.4. Let A,B € V.. Then, the following holds up to evanescence.

1. I} maps Vi into Vi, A" into A' and A} into Aj. If A€ V', A— ;A € M™.
2. For a, B € R, Il (aA + BB) = all; A + BIL5,.
3. T5(I5A) = [T A

4. For any stopping time T, (H;’;A)T = H;‘,AT.

Proof. The first property is part of Theorem 3.2.3. Let i, 3 € R and let 4, B € Vi. We then
find that aA+ BB — (I A+ I} B) is in My, so by uniqueness, 1T} (a A+ B) = oll; A+ BT
up to evanescence. Also, for A € Vj, as IIJ A is predictable, we have that I} A satisfies the
requirements for being the compensator of II} A. Finally, let T" be some stopping time and let
A eVj. Then AT — (II; A)" = (A —1I;A)" € M,. By Lemma 2.2.8, (I} A)” is predictable,

so we obtain (H;A)T = H;AT up to evanescence, as desired. O

Lemma 3.2.5. Let A € V). If A only jumps at totally inacessible stopping times, then ;A

is almost surely continuous.

Proof. First consider the case where A € A’. Fix a process 117 A satisfying the requirements

to be the compensator of A. We will argue that II;A is almost surely continuous. By
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Lemma 3.2.4, ITI7A € Ab and A — ;A € M*. By Theorem 2.3.9, it holds that II} A almost
surely only jumps at predictable times. Therefore, in order to show that IIJ A is almost
surely continuous, it suffices to show that AIIFAr is almost surely zero for all predictable
stopping times 7. Consider such a stopping time 7. Applying Lemma 3.1.8, we find that
EAN;Ar = EAAr = 0, since A only jumps at totally inaccessible stopping times. As I} A
is increasing, AIl; A7 is nonnegative and so we obtain that Al Ar is almost surely zero, as

desired. We conclude that II7 A is almost surely continuous.

Next, consider the case where A € V. Define two processes Af = Z((Va)¢ + 4;) and
A; = 3((Va)t — Ay), by Lemma 1.4.1 we then obtain A = At — A~ where AT, A~ € A"
Furthermore, AT and A~ only jump when A does, and so both of these processes only jump
at totally inaccessible stopping times. By what we already have shown, H;A+ and II; A~ are

almost surely continuous, and so I} A is almost surely continuous as well by Lemma 3.2.4.

Finally, let A € V. Let (T,) be a localising sequence such that AT» € Vi, By what we
already have shown, H;AT" is almost surely continuous. Applying Lemma 3.2.4, this yields

that II7 A is almost surely continuous. This concludes the proof. O

For our final basic property of the compensator, we require the following lemma. Note that
this result does not follow from Lemma 1.1.13, as the set [t, 00) is closed.

Lemma 3.2.6. Let A€ A, lett >0 and let T =inf{s > 0| As > t}. Then T is a stopping
time. If A is predictable, so is T.

Proof. As A is cadlag and increasing, we have (T < s) C (T < s,Ar > t) C (A > 1).
Conversely, we trivially have (A5 > t) C (T < s). Therefore, (T < s) = (A5 >1t) € Fs, 80 T

is a stopping time. In the case where A is predictable, note that
[T,0[={(s,w) ERy x Q| T(w) < s} ={(s,w) ERy x Q| As(w) >1}.

As A is predictable, the latter is a predictable set. We conclude that [T, oo[ is predictable,
and Theorem 2.1.12 then shows that T is a predictable stopping time. O

Lemma 3.2.7. Let A € A. Assume that A is square-integrable. Then 11} A is square-
integrable as well, and E(H;‘,AOO)2 <4EA? . Ifinstead A €V and (Va)oo is square-integrable,
it holds that 1T} A is square-integrable and E(I1} A )? < 8E(Va)Z,.
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Proof. We first consider the case where A € A with A, square-integrable. Fix u > 0. Put
o= H;AOO and note that

uAa
E(u/\l_I;Aoo)2 = E(u/\a)2:2E/ (uNna—t)dt
0

uNa u
2E/ (u/\Oé—lf)l(u/\,th) dt < 2/ E(Ot—t)l(QZt) dt
0 0

Now put T; = inf{s > 0 | II; A, > t}. As I} A is predictable and in A, Lemma 3.2.6 shows
that T is a predictable stopping time. Also, it holds that (T; < o) = (a > t). In particular,
on (a > t) it holds that [Ty A7, <t. Letting M = A — 11} A, we therefore have

E(a - t)l(aZt) S E(H;Aoo - H;ATg—)l(aZt)
E(As — A1, ) (azt) — E(Moo — M1, )1(7,<00)
< EAool(QZt) — E(Moo — Mth)l(Tt<oo)-

Recalling by Lemma 3.2.4 that M € M", Theorem 1.2.6 and Lemma 3.1.8 yields

E(Mo — Mr, M(r,c00) = EMool(n,co0) — EMr,_1(1,<00)
= Eligco0)(Muo|Fr,) — EMz,_1(7, <o)
= EMrp,1(1,<00) — EMr,—1(1,<o0)
= EAMgz, 11,00 = 0.

Collecting our results, the Cauchy-Schwartz inequality allows us to conclude that
E(u A H;AOO)Z < 2/ EAool(a>t) dt = QEAOO(U N Oé)
0
= 2BA(uAIlAL) < 2(BA2)Y2(E(u AT AL)?)Y?,

implying (E(u/\l_[;",Aoo)Q)1/2 < 2(EA2%)'Y/? and thus E(unIlzAy)? <4EAZ, . Letting u tend
to infinity, we obtain by the monotone convergence theorem that II} A is square-integrable
and E(II}Ay)? < 4EAZ, as desired.

It remains to consider the case where A € V and (V4)o is square-integrable. Define two
processes A = 1((Va), + A;) and A, = L((Va), — A;), by Lemma 1.4.1 we then obtain
A= A" — A~ where AT, A~ € A and AT, and A are both square-integrable. By what we
already have shown, it holds that E(IT; A% )* < 4E(A%)? and E(IT;A7)? < 4E(AZ)?. This
implies that II} A is square-integrable, and

E(I}Aw)? = EBE(IDAL —IIDAL)? < B(ITAL)? + E(ITAL)?
< 4E(AL)? +4E(AL)? <8E(Va)2,,

as desired. O
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We end the section with some general results on local martingales with paths of finite vari-
ation. By fv.M,, we denote the set of local martingales with initial value zero and paths of
finite variation. By ivM“, we denote the set of uniformly integrable martingales with initial
value zero and integrable variation. In other words, fvM,; = M, NV and ivM¥ = M*N V.

Our first lemma shows that every local martingale of finite variation locally is a uniformly

integrable martingale of integrable variation.

Lemma 3.2.8. Let M € fvM,. Then there is a localising sequence (T,,) such that M™» is

m ivMm™,

Proof. Using Lemma 3.1.5, let (S,,) be a localising sequence such that M is in M. Define
R, =inf{t > 0| (Vi) > n} and put T,, = S, A R,,. Using Lemma 1.2.10, Lemma A.2.8

and Lemma A.2.10, we then obtain
Varra )oo = V), = Vi), — + A(Va)r, <n+|AMrp,| < 2n+ |Mr,|.

As Mg, = Mg: and M5 € M" we find that Mz, is integrable. Therefore, the above
shows that M7~ has integrable variation. As we also have M™» € M", we have obtained a
localising sequence (7},) such that M7 € ivM™. O

We next apply the compensating projecting to obtain results about fv.M,. Lemma 3.2.9 gives
insight into the structure of fv.My, while Lemma 3.2.10 and Lemma 3.2.11 yields examples

of elements of fv.M, with particular jump structures.

Lemma 3.2.9. Let M € fvMy. Define a process A by putting A, = ZO<s§t AM,. The sum
defining A is absolutely convergent for allt > 0 and it holds that A € Vi. Furthermore, ;A

is almost surely continuous and M = A — 113 A up to evanescence.

Proof. As Y o< [AM,| < (Var)e, it is immediate that the sum defining A is absolutely
convergent for all t > 0. Also, we have A; = ), AM 1AM, >0) = Dgcs<t AMlam, <o),
which shows that A is the difference between two increasing processes. &‘herefore, A has
paths of finite variation. It is immediate that A has cadlag paths. As the jumps of M may
be covered by a sequence of stopping times by Theorem 2.3.8, we obtain that A is adapted,
proving that A € V. It remains to show that A is locally integrable. To this end, we use
Lemma 3.2.8 to obtain a localising sequence (7T},) such that M™» € ivM*. Then

(VA < Y 1AM < (Va)z, = (Varma )oos
0<s<Ty,
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and as the latter is integrable, we conclude that A is locally integrable. Thus, A € V}, in

particular the compensator of A is well-defined.

Next, we show that II} A is almost surely continuous. To this end, it suffices by Theorem
2.3.8 to show that ALy Ar is almost surely zero for all stopping times 7" which are either
predictable or totally inaccessible. If T' is a totally inaccessible stopping time, it holds by
Theorem 2.3.9 that AIIY A7 is almost surely zero. Next, let 1" be a predictable stopping time.
Define N = A—1II A and let (T,) be a localising sequence such that both M and N™» are
in M*. Note that N'» = AT —TI* AT, As AH;AF% is Fr_ measurable by Theorem 2.3.9,
we obtain E(AN;"|Fr_) = E(AAT"|Fr_)— AIT; AT . Furthermore, E(AN;"|Fr_) =0 by
Lemma 3.1.8, yielding AH;A?‘ = BE(AAL|Fr ) = E(AM}"|Fr_) = 0, again by Lemma
3.1.8. Next, note that AH;A? = lir<r,)All;Ar. Letting n tend to infinity, this implies
that AIL; Ar is almost surely zero. By our earlier deliberations, we may now conclude that

I} A is almost surely continuous.

It remains to show that M = A — II; A up to evanescence. However, as AII7 A is evanescent
by what was already shown, and AM = AA, we find that M — (A — I[;A) is an element
of fvM, which is almost surely continuous. Therefore, M — (A — I} A) is evanescent by

Theorem 3.1.9, proving that M = A —IIJ A up to evanescence. O

Lemma 3.2.10. Let T be a stopping time with T > 0. Let € € LY(Fr). Define Ay = §li>T)
and let M = A —TI; A. It then holds that M € M*". If T is predictable and E(§|Fr-) =0,
then IT; A is evanescent and AM = AA almost surely. If T is totally inaccessible, then 117 A
s almost surely continuous and AM = AA almost surely.

Proof. That M € M" follows from Theorem 3.2.3, as A € V'. Consider the case where
T is predictable. We claim that I} A is evanescent. To prove this, let S be any stopping
time. As T is predictable, (S > T') € Fras)— € Fr— by Lemma 2.2.4 and Lemma 2.2.2,
so we obtain FAs = F¢l(s>1) = EE(¢|Fr—)1(s>r) = 0, and by Lemma 1.2.8, A is in M".
Therefore, 11} A is evanescent and so AM = AA almost surely. In the case where 7' is totally
inaccessible, Lemma 3.2.5 shows that I A is almost surely continuous, so AM = AA almost

surely in this case as well. O

Lemma 3.2.11. Let N € My and let T be a stopping time with T > 0. Assume that T
is predictable or totally inaccesible. Define A = ANrly>t) and put M = A —1IJA. Then
AM = AA almost surely.

Proof. In the case where T is totally inaccessible, Lemma 3.2.5 implies that I[; A is almost
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surely continuous and so AM = AA almost surely follows immediately. Consider the case
where T is predictable. Let (T},) be a localising sequence such that N7» is in M*, and note
that

A" = ANr1gaz, >1) = ANT1lasm)ln,>1) = ANT L),

where ANZL" is integrable by Lemma 3.1.8, and E(ANZ"|Fr_) = 0. Therefore, Lemma
3.2.10 yields that H;AT" is almost surely continuous. As (H;A)T" = H;ATn by Lemma
3.2.4, we obtain that I} A is almost surely continuous by letting n tend to infinity. As a

consequence, AM = AA almost surely in this case as well. O

3.3 The quadratic variation process

In this section, we will prove the existence of the quadratic variation process, and more
generally, the quadratic covariation process between two elements of M,. The quadratic
covariation process will be a central tool in the construction of the stochastic integral with
respect to elements of My in Chapter 4.

We begin by proving the following essential result. Recall that fv.M, denotes the subspace
of elements of M, with paths of finite variation. We also introduce M} as the subspace of
M, such that there is a localising sequence (7},) with the property that M7~ is bounded.

We refer to ./\/lll? as the space of locally bounded local martingales.

Theorem 3.3.1 (Fundamental theorem of local martingales). Let M € M,. There exists
M® e MY and MV € fvM, such that M = M® + M almost surely.

Proof. Define Ay = > ., AM1(jan,|>e)- By Lemma A.2.3, M has only finitely many
jumps larger or equal to £ on any finite interval, yielding that A is a well-defined cadlag
process. As (Va)r = D oot [AM1(an, >e)] < Dogcs<r [AM,], we obtain by Lemma 3.2.9
that A € Vi. In particular,_the compensator of A is well-defined.

Now put M* = A —TI; A, then M" € fvM, and we have M = (M — M") + M", where M"
and M — M"Y are both in M,. We will argue that there is a localising sequence (7T;,) such
that (M — MV)T» almost surely is bounded. To this end, let (S,) be a localising sequence
such that M9 € M* and A% € V. We claim that (M — M?)%» almost surely has bounded
jumps. To show this, let T' be some stopping time. Note that

‘A(M — A)Tl = ‘AMT - AMT1(|AMT\>5)| = |AMT1(|AMT|§5)| S E.



3.3 The quadratic variation process 79

Also note that AM%‘;” = AMr1(r<s,) and analogously for other cadlag processes. Therefore,
if T is totally inaccessible, Theorem 2.3.9 yields that, almost surely,

AM = M)z | = |AM = MY)rlr<s,)| = [AMr — (AAr — AL A)7)[Lir<s,)
= |AMyp — AAT|1(T§S") <e.

Next, let T be predictable. We have A% € V  and so Lemma 3.2.4 yields H;‘;ASn € Vi,
(Mv)S» = AS+ —TI5 A% and (M")" € M". In particular, by Lemma 3.1.8, (MV)3r s
integrable with E(A(M?)3"|Fr_) = 0. As Ar and II; A both are integrable as well, we
conclude 0 = E(A(M©)3"|Fr_) = BE(AAF" — AT A | Fr_) = BE(AAJ | Fr_) — AIISASr
by Theorem 2.3.9. Thus, E(AAS" | Fr_) = AH;A%’. As M5 € M*, Lemma 3.1.8 shows
that AM3>" is also integrable and E(AM3>"|Fr_) =0, so that

A((M = M) = AMS — (AAS" — AT AS)
= AMS" — AAS + E(AAS | Fr)
= AMZ" — AAF» — E(AMp" — AAS | Fro)
= AM = A)rlir<s,) — E(AM — A)rlir<s,)|Fr-),

which yields |A((M —Mv)5")p| < 2¢ almost surely. We have now shown that for any stopping
time T which is predictable or totally inaccessible, |A((M — MV)%)r| < 2 almost surely.
As the jump times of (M — MV)%" by Theorem 2.3.8 can be covered by a regular sequence
of stopping times, this implies that |A((M — M?)%")| < 2 almost surely. Letting n tend to
infinity, we obtain that M — M? almost surely has jumps bounded by 2e. Now let M?® be
a modification of M — M" in M, with jumps bounded by 2¢. Defining a sequence (T;,) by
putting T}, = inf{t > 0 | |M}| > n}, we obtain by Lemma 1.1.13 that (7},) is a localising
sequence, and by the boundedness of the jumps, (M°)T» is in M°. Thus, M* € M}, As
M = M® + M? almost surely, the proof is complete. O

Theorem 3.3.1 will be essential to our construction of both the quadratic variation process
for local martingales and to our construction of the stochastic integral. Now, recall that
we in Theorem 1.3.6 proved the existence of the quadratic variation process for bounded
martingales. Our next objective is to extend this result to all local martingales. To obtain
this, we require two preliminary results. For the first result, recall from Section 1.4 that we
for a progressive and almost surely integrable process H and an element A € V ensured the
existence of a process H - A € V such that almost surely, for all t > 0 (H - A); is equal to the
Lebesgue integral of H with respect to A over [0, t].

Theorem 3.3.2. Let M € fvMy and let X be a predictable process. Assume that there is a

localising sequence (T,,) such that XTnl(Tn>0) 18 bounded. X 1is then almost surely integrable
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with respect to M, and X - M is in My. The existence of the localising sequence holds in

particular if X is caglad, adapted and has initial value zero.

Proof. First assume that X is caglad, adapted and has initial value zero. In this case, we
may put T,, = inf{t > 0| | X¢| > n} and obtain that (T;,) is a localising sequence such that
XT» is bounded, in particular X Tnl(Tn>0) is bounded. This proves the final claim of the
theorem.

Now consider the case where M € ivM™ and assume that X is predictable and that there is
a localising sequence (T7,) such that X”» 17, ~o) is bounded. As (Vas)oo is integrable in this
case, it is almost surely finite. Note that for fixed t > 0 and w and n large enough, it holds
that X7 (w)1(r, (w)>0) = Xs(w) for 0 < s < ¢. Therefore, X is almost surely integrable with
respect to M. In particular, by Theorem 1.4.3, the integral process X - M is uniquely defined
up to indistinguishability. By taking a modification of M, we may assume that (Vjs)eo only
takes finite values and retain the property that X is almost surely integrable with respect to

M as well as retain the process X - M.

We wish to prove that X - M is in M,. To this end, let v, be the measure induced by
M(w) on (R4, By) according to Theorem A.2.9. By Lemma 1.4.2, we find that (v,)weq is
a P-integrable (9, F) kernel on (R4, B4). Theorem A.1.13 therefore yields the existence of
a unique signed measure p on By ® F such that for any A € By and F' € F, it holds that
(A x F) = [Lv,(A)dP(w). In order to obtain that X - M is in M, we now proceed in
three steps.

Step 1. Proof that p is zero on »P. First, we argue that p is zero on ¥P. To this end,
let H ={A € XP | u(A) = 0}. Tt then holds that H is a Dynkin class. In order to show
the result, it therefore suffices to show that H contains a generator for ¥¥ which is stable
under taking intersections. By Lemma 2.1.6, X? is generated by {[T,o0]| T' € 7,}, where
7T, denotes the set of predictable stopping times. Furthermore, this generating class is stable
under taking intersections. Therefore, by Lemma A.1.1, in order to show that p is zero on
¥?, it suffices to show that u([T, oo[) is zero for all predictable stopping times T. Let T be
such a predictable stopping time. By Theorem A.1.17, we have

/J([[T, OO[D = /1|IT’OQ|[d/L = //1(T§t) (UJ) duw(t) dP(w) = El(T<oo)(Moo — MT,).

Now, by Lemma 3.1.8, we know that AMry is integrable and E(AMyp|Fr—) =0. As it holds
that (7' < oo) € Fr_, this yields E(AMr1(pcoo)|Fr—) = 0 as well. And as My is integrable,
we obtain in particular that Mr1(r<) and thus Mr_1(7.) are integrable. Noting that
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Mr_1(p<o is Fr— measurable by Lemma 2.2.7, we get E(Mr1(p<oo)|Fr—) = Mr_1(7<o0)
and so EMr1(r<o0) = EM7_1(1<o0). Thus,

Elireoy(Moo — Mr_) = El(pcoe) (Moo — Mr) = E(Moo — Mr) = 0.

Collecting our conclusions, we have now shown that p is zero on XP.

Step 2. Proof that Y - M is in M" for particular Y. Now let Y be any predictable
process which is integrable with respect to p, this is well-defined as we know by Lemma
1.1.6 and Lemma 1.1.8 that ¥X? C ¥™ C B, ® F. Invoking Theorem A.1.17, we then find
that Y (w) is integrable with respect to M(w) over Ry for P almost all w, that the result is
integrable with respect to P, and E [;°Y; dM; = [ [ Yi(w)dwy(t) dP(w) = [Y dp, and this
latter expression is zero by what we already have shown. Now, as M was arbitrary in ivM",
this also holds for M, where T is any stopping time. Therefore, we obtain for any 7' that
E(Y -M)r = E(Y - M7T),, = 0. By Lemma 1.2.8, this implies that Y - M is in M*. This
holds for any predictable Y which is integrable with respect to pu.

Step 3. Proof that X - M is in M,. Finally, as XT'"l(Tn>0) is predictable and bounded,
it is integrable with respect to p. As M is in ivM" whenever M € ivM", our previous
step shows that X Tnl(Tn>0) - M7Tr is in M™. By the properties of Lebesgue integration, we
have

(X - M)T" = 1(1,>0)(X - M)Tn = 1(Tn>0)(XTn 'MT") = XTnl(Tn>0) M

almost surely. Thus, X - M is in My, as desired.

It now only remains to extend our results to the case where M is in fv. My instead of ivM™.
Assume that M € fvM,. By Lemma 3.2.8, there is a localising sequence (T,) such that
M™ ¢ ivM*. By what we already have shown, X is integrable with respect to M7=, and
X - M™ is in M,. Therefore, X is integrable with respect to M as well, and we obtain
(X - M)Tn = X - MT». Thus, (X - M) is in M, for all n > 1, and so Lemma 3.1.7 shows
that X - M is in My, as desired. O

Lemma 3.3.3. Let A € V' and let M € M°. Then M, A, — fof M, dA, is in M.

Proof. Note that the process f; MydA, is always a well-defined element of V by Theorem
1.4.3, so the conclusion is well-formed. First assume that A € A*. Let ¢ > 0 be such that
|M;| < ¢ for t > 0. We will apply Lemma 1.2.8 to obtain the result. To this end, first note
that by Lemma A.2.12, we have

t
E(Vara)oo = lim B(Vay.a); < Jim B /0 M| A, < cFAw,
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which is finite, so M - A € V| in particular (M - A) is almost surely convergent. Also, as
M is bounded, M is almost surely convergent, and as A is integrable and increasing, A is
almost surely convergent as well. Therefore, the process M;A; — fg M; dA; is almost surely
convergent, and so Lemma 1.2.8 yields that in order to prove that the process is in M", it
suffices to show that for any stopping time T', My Ar — fOT M, dA; is integrable and has mean

Z€ero.
Fix such a stopping time T'. As we have
T o) [e’e)
My Ar —/ M;dA, = ML AT, —/ M1 <ry)dA] = ML AL —/ MTdAT,
0 0 0

we find that it suffices to prove that when M € M® and A € A*, M Ay — fooo M, dA,
is integrable and has mean zero. Integrability follows since E|MyAo| < ¢EAy, which is
finite, and E| fooo M;dA;| < cEAy as well, which is also finite. It remains to show that the
expectation is zero. To this end, define Ty = inf{s > 0|A; > ¢}. By Lemma 3.2.6, T} is a
stopping time. In particular, as (T3 < o) is in Fr,, we have EM7,1(7,co0) = EMoo1(1, <o0)
and so, applying Lemma A.2.14 twice, we find

E/ M,dA, = E/ MTtl(TKw)dt:/ EMz, 17, o0y dt
0 0 0
- /0 EMOOI(Tt@O)dt:E/O My dA, = EMy A

This concludes the proof for the case A € A*. Now assume A € V. By Lemma 1.4.1, there
is a decomposition A = AT — A~, where AT, A~ € A*. As

t t t
M, A, 7/ M, dA, = M, A} 7/ M, dAT — (MtA; 7/ M, dAS) ,
0 0 0

the general result follows. O

Theorem 3.3.4. Let M € M. There exists a process [M] € A, unique up to indistinguisha-
bility, such that M* — [M] € My and A[M] = (AM)? almost surely. If M, N € My, there
exists a process [M, N] € V, unique up to indistinguishability, such that MN — [M,N] € M,
and A[M,N] = AMAN almost surely. We refer to [M] as the quadratic variation of M,
and we refer to [M, N| as the quadratic covariation of M and N.

Proof. We begin by proving existence and uniqueness of the quadratic variation, the existence

and uniqueness of the quadratic covariation will follow by a simple polarization argument.
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We first consider uniqueness. If A and B are two processes in A such that both M2 — A
and M? — B are in M, with AA = AB = (AM)? almost surely, we obtain that A — B is in
My, is almost surely continuous and has paths of finite variation. Therefore, A and B are
indistinguishable by Theorem 3.1.9.

Next, we consider existence. We first consider the case where M = M?+ M?, with M® € M?
and M*? € ivM*. By Lemma A.2.16, ZO<S<t(AMf)2 is absolutely convergent for any
t > 0, and we may therefore define a process Aiin A by putting A} = > . ,(AM})% As
M? is bounded, Lemma A.2.16 shows that Y _.., AMPAM; is almost su;ely absolutely
convergent, and so we may define a process A* in V by putting AY = > ., AMPAM].
Finally, by Theorem 1.3.6, there exists a process [M°] in A? such that (M?)? - (M) € M,
and A[M®] = (AM®)2. We put A, = [M?]; +2A" + A" and claim that A satisfies the criteria
of the theorem.

To this end, first note that A clearly is cadlag adapted of finite variation, and for 0 < s < ¢,
we have [M®]; > [M®], + 3, <, (AM})? almost surely, and so

A=A = [M") = [M]s + 2(AF — AD) + A} — AL
> Y (AMD)? + 2AMIAM] + (AM;)? = Y (AMY + AM})* >0,
s<u<t s<u<t

almost surely, showing that A is almost surely increasing. To prove that M? — A is in My,
note that M? — A = (M®)? — [M®] + 2(M°M* — A®) + (M*)? — A’. Here, (M®)? — [M?]
is in M? by Theorem 1.3.6, in particular in M,. By the integration-by-parts formula, we
have (M%)? — Al = 2 fot M!_dM¢, where the integral is well-defined as M;_ is bounded on
compacts. By Lemma 3.3.2, this process is a local martingale, and so (M%)? — A? is in M,.
Thus, in order to obtain that M? — A is in My, it suffices to show that MPM? — A® is in M,.
By Lemma 3.3.3, MY M} — fot M?dM! is in My, so it suffices to show that fg MbPdAM} — A?
is in My. As AM? is bounded, it is integrable, and so we have

t t t
/Mng;‘:/ AMfdM§+/ MP_dAM! = A7 + (MY - MY),.
0 0 0

As M? - M* is in M, by Lemma 3.3.2, we finally conclude that M°M? — A% is in M,. Thus,
M?— Aisin M,. As it is immediate that AA; = A[M]; +2AMPAM] + (AM])? = (AM;)?
almost surely, this proves existence in the case where M = M® + M*, where M? € M and
Mt € ivme,

Now consider the case of a general M € M,. By Theorem 3.3.1, there exists M® € MZ
and M? € fvM, such that M = M? 4+ M’ almost surely. Put N = M® + M* and let
(T,,) be a localising sequence such that (M%)~ is in M® and (M*)T" is in ivM*“. By what
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was already shown, there exists a process [N7»] € A, unique up to indistinguishability,
such that (N7»)2 — [N7] is in M, and A[NT"] = (ANT")? almost surely. By uniqueness,
we have [NTn+1]Tn = [NT=] up to indistinguishability. Therefore, these processes may be
pasted together to yield a process [N] € A such that A[N] = (AN)? almost surely and
N? —[N] € M,. As N and M are indistinguishable, [N] also satifies the criteria for being

the quadratic variation of M. This concludes the proof of existence.

Considering the quadratic covariation, let M, N € M, be given. Recalling the polarization
identity 4zy = (z + y)? — (z — y)? for z,y € R, we define [M, N] = 1 ([M + N] — [M — NJ).
We then obtain MN — [M,N] = 3((M + N)? — [M + N]) — (M — N)? — [M — NJ]). This
shows that M N — [M, N] is a local martingale. Furthermore, we have [M,N] € V, and
A[M,N] = L((A(M+N))>— (A(M —N))?) = AMAN almost surely. This proves existence
of the quadratic covariation. Uniqueness follows as for the quadratic variation. O

Theorem 3.3.4 yields the existence and uniqueness of the quadratic variation and quadratic
covariation processes for local martingales, and is one of the main results of this section. A

useful consequence of the result is the following.

Lemma 3.3.5. Let M € M,. Then it almost surely holds that for all t > 0, Zo<sgt(AMs)2

18 absolutely convergent.

Proof. By Theorem 3.3.4, we know that there exists a process [M] € A with the property
that A[M]s = (AM,)? almost surely. As we then have >_,_,,(AM;)* < [M]; for all t > 0
almost surely, the result follows. O

In the remainder of this section, we investigate the fundamental properties of the quadratic
covariation and how the quadratic covariation may be applied to understand the structure
of local martingales. We first calculate the quadratic variation and quadratic covariation for
the most commonly occurring process, the Brownian motion. Afterwards, we work towards

proving some general properties of the quadratic covariation.

Theorem 3.3.6. Let W be a p-dimensional F; Brownian motion. Fori < p, [W¢; =t up
to indistinguishability, and fori,j < p with i # j, [W* W] is zero up to indistinguishability.

Proof. By Theorem 1.2.13, it holds for i < p that (W})? —t is a martingale, in particular an
element of cMy, and so [W]; =t up to indistinguishability, by the characterization given
in Theorem 3.3.4. Likewise, Theorem 1.2.13 shows that for i,j < p with i # 7, Wtthj is a
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martingale, in particular an element of cMy, so [W? W7] is zero up to indistinguishability
by Theorem 3.3.4. O

Lemma 3.3.7. Let M € My, let T be a stopping time and let £ be Fr measurable. The
process E(M — M7T) is in M.

Proof. First consider the case where £ is bounded and M € M*. With S being some stopping
time, we obtain that {1(7<g) is Fsar measurable by Lemma 1.1.11, and thus

E&(Mg — M§) = E€l(p<s5)(Ms — M$) = E€l(r<5)E(Ms — Mgnr|Fsar) =0,

by Theorem 1.2.6. By Lemma 1.2.8, (M — MT) is in M®. Next, consider the general case
where £ is merely Fr measurable and M € M,. Let (R,,) be a localising sequence such that
MP» ¢ M*, and define S,, = T(¢|>n)- Put T, = S, A R,,. We then obtain

(&M — M) = (M — MTM) = €1 gy (M — (M )T,

which is in M" by what was already shown. Thus, £&(M — MT) is in M,. O
Lemma 3.3.8. Let M and N be in My, and let T by any stopping time. The quadratic
covariation satisfies the following properties up to indistinguishability.

(1). [M, M] = [M].

(2). [-,-] is symmetric and linear in both of its arguments.

(3). For any o € R, [aM] = o*[M].

(4). It holds that [M + N| = [M] + 2[M, N] + [N].

(5). It holds that [M,N|* = [MT N] = [M,NT] = [MT NT].

(6). [M, N] is zero if and only if MN € M,.

(7). M is evanescent if and only if [M] is evanescent.

(8). M s evanescent if and only if [M, N] is zero for all N € M,.

(9). If F € Fy, 1M, N] = [LpM,N] = [M,1pN] = [1zM, 1pN].
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Proof. Proof of (1). We know that [M] is in A and satisfies M? — [M] € M,. Therefore,
[M] is in particular in V, and therefore satisfies the requirements characterizing [M, M]. By

uniqueness, we conclude that [M, M] = [M] up to indistinguishability.

Proof of (2). As MN —[M, N] is a uniformly integrable martingale if and only if this holds
for NM — [M, N], we have by uniqueness that the quadratic covariation is symmetric in the
sense that [M, N] = [N, M] up to indistinguishability. In particular, it suffices to prove that
the quadratic covariation is linear in its first coordinate. Fix M, M’ € M, and o, € R,
then (oM + SM')N — (a[M,N] + B[M’',N]) = a(MN — [M,N]) + B(M'N — [M',N]), so
(aM 4+ BM")N — (a[M, N]+ S[M’, N]) is in M, and so by uniqueness, we have the linearity
relationship [«M + SM’, N| = «[M, N] + S[M’, N] up to indistinguishability.

Proof of (3). This is immediate from [aM] = [aM,aM] = o*[M, M] = o*[M], using the
linearity properties already proven.

Proof of (4). This follows as

[M+N] = [M+N,M+N)]
[M, M] + [M, N] + [N, M] + [N, N]
= [M]+2[M,N]+ [N],

using the symmetry and linearity properties already proven.

Proof of (5). Note that as M T and N7 are in My, the conclusion is well-defined by Lemma
3.1.3. To prove the result, first note that by symmetry, it suffices to prove [M, N|T = [MT N,
and this will be accomplished if we can show that M7 N — [M, N]T is in M,. Note that

MTN — [M,N]*" = (MN —[M,N)T + M"(N - NT)
= (MN —[M,N))" +Mr(N - NT),

where (M N — [M, N])T € M, by Lemma 3.1.3. By Lemma 3.3.7, Mp(N — NT) is in M, as
well. The result follows.

Proof of (6). This is immediate from the definition of the quadratic covariation.

Proof of (7). If M is the zero process, then the zero process satisfies the requirements for
being the quadratic variation of M. Conversely, assume that [M] is evanescent. Then M? is
in My. Letting T}, be a localising sequence for M? such that (M?)™» is in M, we find that
EMZ ., = E(M?)I» =0, so that MZ ., is almost surely zero. Therefore, M is almost surely
zero as well. As t > 0 was arbitrary and M is cadlag, we conclude that M is evanescent.
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Proof of (8). Assume that M is evanescent. Then the zero process satisfies the require-
ments characterizing [M, N| for all N € My, and so [M, N] is evanescent for all N € M,.
Conversely, assume that [M, N] is evanescent for all N € M,. In particular, [M, M] is

evanescent, so by what was already shown, M is evanescent.

Proof of (9). Note that the conclusion is well-defined, as 1M is in My by Lemma 3.1.3. By
the properties already proven for the quadratic covariation, it suffices to prove that for any
F e Fyand M,N € My, 1p[M,N] = [1pM, N]. However, we know that M N — [M, N] is in
My, and so by Lemma 3.1.3, 1M N —1p[M, N] is in M,. Therefore, by the characterisation
of the quadratic covariation, 1x[M, N] is the quadratic covariation process of 1M and N,
meaning that 1p[M, N] = [1pM, N], as desired. O

For the next result, recall that integrals of the form fot h(s)|dfs| denote integration with

respect to the variation of f.

Theorem 3.3.9 (Kunita-Watanabe). Let M,N € My, and let H and K be measurable
processes. Then it almost surely holds that for all t > 0,
oo 3
( / K} d[N]t) :
0

o o0
| el a0 < ( / HEd{M]t)
0 0
Proof. First note that the result is well-defined for each w, as [M, N], [M] and [N] have paths
of finite variation for each w, and the mappings |H,K;|, H? and K} from R to R are Borel

[N

measurable for each w.

Applying Lemma A.2.18, it suffices to prove that almost surely, it holds that for all 0 < s < ¢,
|[M, N]; — [M, N]s| < \/[M]; — [M]s+y/[N]: — [N]s. As the processes are cadlag, it suffices to
prove the result almost surely for any pair of rational s and ¢. Fix any such pair, by Lemma
A.2.17 it suffices to prove that A\?([M]; —[M]s)+2A\([M, N];—[M, N]s)+[N];—[N]s > 0 for all
A € Q. Thus, we need to prove that this inequality holds almost surely for rational s, £ and A
with 0 < s < t. Note that A2[M|s+2A\[M, N],+[N]s = [AM]s+2[AM, N]s+[N]s = [A\M+N]s,
and [AM + N]; < [AM + NJ;, so by performing the same calculations in reverse, we obtain
A2[M]s+2A[M, N]s+[N]s < AN2[M]; +2X\[M, N]; +[N]¢, yielding the desired conclusion. The
theorem now follows from Lemma A.2.18. O

We end the section with two results describing the interplay between the quadratic variation
and M?2.
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Theorem 3.3.10. Let M € M. It holds that M € M? if and only if [M]s is integrable,
and in the affirmative, M? — [M] € M¥. If M and N are in M?, then [M, N] is in V¢, in
particular the limit [M, N exists and is integrable, and MN — [M, N] € M*™.

Proof. We begin by proving that M € M? if and only if [M]. is integrable. First assume
M € M? We know that M? — [M] € M,. Using Lemma 3.1.6, let (T},) be a localising
sequence with (M? — [M])T» € M". By the optional sampling theorem and Theorem 1.3.1,
EM]p, = EIM|Iy = E(M1r)? = EM7 < 4FEM?Z,, and then, as [M] is increasing, we obtain
E[M]o = Elim,[M]r, = lim, E[M]r, <4EM2 by the monotone convergence theorem, so
that [M]. is integrable.

Assume conversely that [M]. is integrable. Let (7)) be a localising sequence such that
(M? — [M])™ € M*. Fix t > 0. We then find that M2, — [M];r, is integrable, and by
our assumptions, [M]aT, is integrable as well. As a consequence, MEATn is integrable, and
it holds that EMZ . = E[M]inr, < E[M]s. Thus, M™ € M?. Applying Theorem 1.3.1,
Esupyc,cp, M2 = E(M™)52) < 4AE(MX)? = AE[M]X; = 4E[M]r,. Using the monotone
convergence theorem, we then obtain EM*? < 4E[M]., in particular Sup;>g EM? is finite
and so M € M?2, as desired.

Next, we prove that when [M] is integrable and M € M?, we have M? — [M] € M“. We
use Lemma 1.2.8. First note that M? — [M] is has initial value zero and is convergent to an
almost sure limit, so the conditions for use of the lemma are satisfied. Let T' by any stopping
time. As [M] is integrable and M € M?, we know that M2 — [M]r is integrable as well,
we need to show that E(M2 — [M]r) is zero. To this end, let (T},) be a localising sequence
such that (M? — [M])T» € M*. We then obtain

E[M|r = Elim[M]rar, = lim E[M]7" = lim E(M?)™ = lim EMZ, . .

Now, as (M7 —Mrar,)? < 4M22, which is integrable by Theorem 1.3.1, and Mr a1, converges
almost surely to My, we find that M7, converges in £? to M7, so that EMZ,, tends
to EM?2, allowing us to conclude that E[M]y = EM?2 and so Lemma 1.2.8 shows that
M? — [M] € M™.

Finally, consider two elements M and N of M?2. As [M,N] = ([M + N] — [M] — [N]), we
find by our previous results that [M, N] is in V* and that the limit [M, N], exists and is
integrable. Noting that MN —[M, N] = (M +N)?—[M+N])—%(M?—[M])—1(N?=[N]),
we find that that M N — [M, N] is in M" as a linear combination of elements in M™. O

Lemma 3.3.11. Let M € M?. Then > _,(AM,;)? is integrable.
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Proof. By Theorem 3.3.10, we know that [M]., is integrable. As [M] is increasing and we
have A[M] = (AM)?, we obtain Y ,_,(AM;)? < [M]s, and so >_,_,(AM,;)? is integrable as
well. O

3.4 Purely discontinuous local martingales

In this final section of the chapter, we use the quadratic covariation in a manner similar
to an inner product in order to define the space of purely discontinuous local martingales,
which intuitively corresponds to the orthogonal complement of the space of continuous local
martingales. We will see that purely discontinuous local martingales corresponds precisely to
the subspace of M, where the quadratic variation can be explicitly computed. Also, we will
show that any element of My can be uniquely decomposed into a continuous and a purely
discontinuous part. This result will prove useful in Chapter 4 when defining the continuous

martingale part of a semimartingale.

Definition 3.4.1. Let M € M,. We say that M is purely discontinuous if [M, N| is evanes-
cent for all N € cMy. The set of purely discontinuous elements of M, is denoted by dM,.

The following two results yield basic properties of purely discontinuous local martingales.

Lemma 3.4.2. dMy is a vector space. If T is a stopping time and M € dMy, then
MT e dM, as well.

Proof. Let M;N € dM,; and let o, € R. Fix L € cMy. By Lemma 3.3.8, we have
[aM + BN, L] = a[M, L]+ B[N, L], so [a«M + BN, L] = 0 and thus aM + SN is in dM,. We
conclude that d My is a vector space. Now let M € d My and let T be a stopping time. With
L € cMy, we have LT € eM, as well, so [MT, L] = [M,LT] = 0 by Lemma 3.3.8, yielding
MT e dM,. O

Lemma 3.4.3. If M is an element of My which is both in cMy and in dMy, then M is

evanescent.

Proof. By definition, we obtain that [M, M] is evanescent, which by Lemma 3.3.8 implies
that M is evanescent. O
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Next, we show that all elements of fv.M, are purely discontinuous martingales. This pro-
vides a certain level of intuitive understanding of the structure of purely discontinuous local
martingales. Afterwards, we prove that any M € M, can be decomposed uniquely into a

continuous and a purely discontinuous part.

Lemma 3.4.4. Let M € fvM, and let N € M,. Almost surely, ZO<s§t AMAN, is
absolutely convergent for all t > 0. Furthermore, [M, N]; = EO<59 AMGAN;.

Proof. That ), ., AM;AN; is absolutely convergent for all ¢ > 0 follows from Lemma
3.3.5. To prove the result on the quadratic covariation, first note that for any M € fv.My, the
integration-by-parts formula applies and yields that M? — ZO<s<t(AMS)2 =2 fg M, dMs,
which is a local martingale by Lemma 3.3.2. Therefore, [M]; = z_:O<s<t(AM5)2 in this case.
As a consequence, when M € fvM,; and N € fv.M,, we have -

[AivA”t

1 1
Z[MJrN]t — Z[M*N}t

1 2 1 2

1 Oggt(AMS +AN)? - 5 O;ggt(AMS AN,) O;@ AM,AN;.
Next, consider the case where M € fvM, and N € M. By Lemma 3.3.3, M, N, — f(f N,dM,
is in My. As N is bounded, we obtain fot NydM, =3 oy ANJAM, + fot N,_ dM,, where
the latter term is in My by Lemma 3.3.2. Thus, M N — i0<s<t ANGAM, is in M, and so
[M, N}y = Yg-sci AM;AN; in this case. B

Considering the case where N € MY, let (T;,) be a localising sequence such that N7 € M®.
We then obtain [M, N]{" = [M,NT"], = Y, ., AM(ANT» =5 . 0 AM AN, almost
surely, and letting n tend to infinity, we conclude that [M, N]; = ZO<s§t AM,AN; in this

case as well.

Finally, we consider M € fvM, and N € M,. By Theorem 3.3.1, there exists N° € MZ and
N € fvM, such that N = N® + N* almost surely. By what was already shown, we obtain

[M,N]; = [M,N"]; + [M,N"]; = Y  AM,AN!+ Y  AMAN!= > AM,AN,,

0<s<t 0<s<t 0<s<t

up to indistinguishability, as desired. O

Lemma 3.4.5. It holds that fvM, C dM,.

Proof. Let M € fvM, and let N € cM,. We then obtain [M, N]; = ZO<s§t AMAN; =0
by Lemma 3.4.4, proving M € dM,. O
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Lemma 3.4.6. Let M € M?. There exists a purely discontinuous square-integrable martin-
gale M with the properties that AM® = AM and [M9), = >, _ ., (AM,)? almost surely.

Proof. Let (T},) be a regular sequence of positive stopping times covering the jumps of M,
and define A" = AMr, 1(4>7,) and N™" = A" —I[; A". We will prove the result by showing
that >"}'_, N™ converges in M? to a purely discontinuous square-integrable satisfying the

requirements of the lemma.

To this end, first note that (Van)oo = |AMy, |. Therefore, by Lemma 1.3.1, A™ is in V with
(Va)oo square-integrable. Lemma 3.2.7 then shows that II; A" is in V with IT; AL, square-
integrable, and E(IT} A% )? < 8E(Van )2, = 8E(AMg, )*. As a consequence, N™ is in M? and
it holds that E(NZ%)? < 2E(A%)? + 2E(H;Ago)2 < 16E(AMrp, )?. Define M™ = > | N,
we wish to argue that (M™) is a Cauchy sequence in M?2. To obtain this, note that as
the graphs of (7},) are disjoint, we obtain by Lemma 3.4.4 and Lemma 3.2.11 for k # n
that [N",N*], = 3 ., ANIPANE =3  AATAAY = 0 almost surely. Therefore, by
Theorem 3.3.10, N*N* is in M in particulariENgLoNf<> = 0. For 1 <k < n, we then obtain
that

n 2 n n
b sty = £( 30 at) < 3037 e
i=k+1 i=k+1j=k+1
> E(NL)<16 Y E(AMg)* <16E Y (AMg,)>.
i=k+1 i=k+1 i=k+1

By Lemma 3.3.11, > _,(AM,;)? is integrable. The dominated convergence theorem then
allows us to conclude that the above tends to zero as k and n tend to infinity. As a conse-
quence, (M™) is a Cauchy sequence in M2. Therefore, by Theorem 1.3.4, it converges in M?
to some limit M¢?.

It remains to prove the properties claimed for M?. We first show that M? is in dM,.
Consider some N € cM®. We then have in particular that N € M2, We wish to argue
that [M9, N] is evanescent. To this end, as [M? N] is continuous and has paths of finite
variation, it suffices by Theorem 3.1.9 to show that [M9¢, N] € M*. By Theorem 3.3.10, it
holds that [M?, N] is almost surely convergent. Therefore, to show [M? N] € M", it suffices
by Lemma 1.2.8 to argue that E[M? N]r = 0 for all stopping times 7. As N € cM"? here is
arbitrary, it suffices to show that E[M9, N],, = 0 for all N € cM°.

To prove E[M?, N, = 0, first note that [M¢ N] = [M?—M", N]+[M", N] = [M?—M", N],
by Lemma 3.4.4. Thus, it suffices to prove that lim,, E[M?% — M™ N],, = 0. By Theorem
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3.3.10, we have E[M% — M"™ N]s = E(M% — M2)N,. As M? — M™ converges to zero
in M2, E(M? — M™)2 converges to zero by Theorem 1.3.1. Therefore, by the Cauchy-
Schwartz inequality, E(M% — M™ )N, also converges to zero. As a consequence, we obtain
E[M%, N]s = lim,, E[M?% — M"™, N]o, = 0. Collecting our results, this yields that [M? N]
is evanescent for all N € cM®. Now consider instead a general element N € cM,. By
Lemma 3.1.6, there is a localising sequence (7},) such that M™ € cM®. We then obtain
that [M? N]T» is evanescent by what already was shown, and letting n tend to infinity, we

conclude that [M9, N] is evanescent for any N € c My, proving that M? € d My, as desired.

Next, we show that AM? = AM. To this end, note that by Theorem 1.3.3, there is a
subsequence such that sup, | Mg — M]"*| converges almost surely to zero. By Lemma A.2.6,
SUpP;>g |AMg— AM;™| then also converges almost surely to zero. Note that by Lemma 3.2.11,
AM™ = 37" | AMr, 117, almost surely. Therefore, it also almost surely holds that AM™
converges pointwise to Y .o, AM7,1j7,]- As a consequence, AMY =%, AM7, 11, = AM

almost surely, as desired.

It remains to show that [M4], = 3" _ ., (AM,)? almost surely. To this end, note that apply-
ing Lemma 3.4.4 twice, we have [Md—]\Zf"]t =M =23 ey AMEAMI+>" o (AM™)2.
Recalling that AM™ = " | AMp, 17,7, we find 3., AMSAM? = 5" (AM7,)?1 (1, <p)
and ZO<s§t(AM:)2 = > (AM7,)* 11, <), s0 that

n

(M — M, = MY, = (AM1,)*1(7,<p).
i=1
Now, as M € M?, Lemma 3.3.11 shows that > ,_, ,(AM,)? is integrable, in particular
almost surely finite. Therefore, the above yields lim,, []\_4d —M"]y = MY =Yg (AM)?,
where the limit is almost sure. Furthermore, we obtain that [M? — M™]; is nonne?gative and
bounded from above by [M?];. As [M9]; is integrable by Theorem 3.3.10, we may apply the
dominated convergence theorem to obtain E lim,, [M¢—M"]; = lim,, E[M®— M"],. However,
as M¢ — M™ converges to zero in M2, E[M?% — M"]., converges to zero as well. All in all,
we conclude E([M?), — > _, ., (AM,)?) = Elim,[M? — M"], = 0, and as the integrand is
nonnegative by our earlier observations, this implies (MY, =3 o< (AM,)? almost surely,
as desired. - 0

Theorem 3.4.7. Let M € M,. There exists processes M¢ € cM,; and M4 € dM,, unique
up to indistinguishability, such that M = M€ + M?.

Proof. Uniqueness follows from Lemma 3.4.3. We prove existence.
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First consider the case where M € M®. By Lemma 3.4.6, there is M¢ € d M, such that
AM?® = AM almost surely. Putting N = M — M?, we find that N € M, and N is almost
surely continuous. Letting F' be the null set where N is not continuous, put M¢ = 1pcN.
Then, M¢ € cM, and M¢ € dM,, and M = M€+ M¢ almost surely. This proves existence
in the case M € MP.

Next, consider the case M € MY. Let (T},) be a localising sequence such that M € M®.
From what we already have shown, there exists processes (M7»)¢ € cMy and (MT)4 € dM,
such that MT» = (MT)¢ + (M*»)? almost surely. As both cM; and dM, are stable
under stopping, uniqueness yields ((MZr+1)¢)Tn = (MTn)¢ and ((MTr+1))Tn = (MTn)d,
Therefore, the processes may be pasted together to processes M€ and M? in cM, and d My,
respectively, such that M = M€+ M? almost surely, proving existence in the case M € Mlg.

Finally, consider a general M € M,. By Theorem 3.3.1, there exists processes M® € MZ
and MV € fvM, such that M = M’ + M almost surely. By Lemma 3.4.4, M? is in
dM,. By what was already shown, there exists a decomposition M® = (M?)¢ 4 (M®)¢ where
(M")¢ € eM, and (M®)? € dM,. Therefore, putting M¢ = (M?)¢ and M = (M*)? + M?,
we obtain the desired result. O

Theorem 3.4.7 allows us to prove several interesting results both about M, in general and
about d My in particular. Theorem 3.4.8 gives a characterization of d My in terms of the
quadratic covariation, while Theorem 3.4.9 shows how the quadratic covariation can be de-
composed into two components where one is continuous and the other is the sum of its jumps.
Theorem 3.4.11 yields a sufficient criterion for an element of d M, to be in fv.M,.

Theorem 3.4.8. Let M € My. The following are equivalent:

(1). M € dM,.

(2) [M]t = Zo<s§t(AMS)2~

(8). For any N € My, [M,N]; =3 i AM;AN;.

Proof. Proof that (1) implies (2). First consider the case where M is purely discon-
tinuous with M = M® + M?, where M® € M? and M? € fvM,. We wish to show
[M]; = g5« (AM,)?2. By Lemma 3.4.5, M* is purely discontinuous. As M” = M — M?,
M? is purely discontinuous as well. Applying Lemma 3.4.6, we obtain N € d M, with the
properties that AN = AM? and [N]; = ZO<s<t(AM£)2‘ As M? — N is continuous while
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both M? and N are purely discontinuous, we conclude that M® = N almost surely by Lemma
3.4.3, in particular [M"]; = ZO<SSt(AM§)2. Applying Lemma 3.4.4, we then obtain

(M), = [MP),+2[M° M), + [M7],
= D (AMDP+2 > AMIAMI+ Y (AMI? = ) (AM,),
0<s<t 0<s<t 0<s<t 0<s<t

proving the result in this case. Now consider an arbitrary M € dM,. By Theorem 3.3.1,
M = M + M? almost surely, where M? € Mlj and M"Y € fvM,. Letting T,, be a common
localising sequence for M® and M, our previous result implies

(M]{ = (M), = Y (AMI)? = > (AM,)?,

0<s<t 0<s<tAT,

so letting n tend to infinity yields the result in the general case.

Proof that (2) implies (3). Now consider M € M, such that [M], = > _, ., (AM,)>.
We wish to argue that for any N € My, [M,N]; = > g ., AM;AN,. We first show that
M € dM,. Using Theorem 3.4.7, let M = M¢° + M¢? be ‘the decomposition of M into its
continuous and purely discontinuous parts. By the implication already proven, it holds that
M9, = ey c(AME? = Y0 (AM,)? = [M],. As [M] = [Me -+ M4] = [M] + [M7], we
conclude that [M¢] is evanescent. By Lemma 3.3.8, M¢ is evanescent. Therefore, M = M4
almost surely, so M € dM;,.

Now take N € M,. Using Theorem 3.4.7, let N = N¢+ N? be the decomposition of N into
its continuous and purely discontinuous parts. As M € dMy, both M + N% and M — N¢
are in dMy. By the implication already proven, we then obtain
[M,N]; = [M,N%,=31(M+ N, —[M— N9,
1
= 7 D (AM.+AN)? = (AM, - ANY)?
0<s<t
Z AM,AN? = Z AM,AN,,

0<s<t 0<s<t

as desired.

Proof that (3) implies (1). Fix N € eM,. As [M,N] =3, ., AM;AN,; = 0 by our
assumptions, it follows that M € dM,. O

Theorem 3.4.9. Let M, N € M. It holds that [M,N]y = [M®, N + > o <y AM;AN;.
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Proof. Fix M, N € My. Applying Theorem 3.4.8, we obtain

[M,N]; = [M® N+ [M N +[M? N+ [M* N,
= [M°, N+ Y AMIANY =M, N+ Y AM,AN,,
0<s<t 0<s<t
as was to be proven. O

Lemma 3.4.10. Let M € My. If AM €V, then AM € V.

Proof. Using Lemma 3.1.5, let (R,,) be a localising sequence such that (M®)f» € MY, let
Sy =inf{t > 0| (Vam): > n} andlet U, = inf{t > 0| |M;| > n}. Putting T, = R, AS,AU,,
we then obtain

(VA3 )eo < (Van)z,— + AVan)r, <n+|AMr, | < 2n+|Mr,|,

which is integrable, so VAT}\‘J € A’ and thus AM € Vi, O

Theorem 3.4.11. Assume that M € dM,. If AM has finite variation, then M almost

surely has paths of finite variation.

Proof. We know that M = M" + MV almost surely, where M® € MY and MV € fvM,. Tt
will suffice to show that M? almost surely has paths of finite variation. To this end, first note
that AM® = AM — AMY. As AM and AM? are in V, so is AM?®, and so Lemma 3.4.10
shows that AM? ¢ Vi

As AM? € V, we may define A = Y 0<s<t AM?, where the sum converges absolutely for all
t > 0. As Vi < 2Vapm, we find that Ac Vi, and so the compensator I A is well-defined.
Put N = A—IIJ A, we then have N € fv.M,. We claim that IV has the same jumps as M. To
show this, let (T},) be a localising sequence such that AT € Vi, My € M" and NT» € M".
Let T be some stopping time. If T is totally inaccessible, A(H;A)gn = (I; A™) 7 = 0 almost
surely by Theorem 2.3.9, yielding ANtT" = AAg" = AM%:". If T is predictable, we have
E(ANT"|Fr_) =0 by Lemma 3.1.8 while (H;A)g” is Fp_ measurable by Theorem 2.3.9, so

AT AT = E(AIL AT | Fr-) = E(AAR | Fr_) — E(AN™|Fr_) = E(AM"|Fr-) =0

almost surely. Thus, for any stopping time 7" which is either predictable or totally inacces-
sible, AH;A?L is almosts surely zero. Applying Theorem 2.3.8, this shows that H;AT" is
almost surely continuous, so II} A is almost surely continuous. We conclude that M ®and N
almost surely have the same jumps. As both M’ and N are in dM,, Lemma 3.4.3 shows
that they are indistinguishable. As N € fv.M, this proves that M® almost surely has paths
of finite variation. This concludes the proof. O
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3.5 Exercises

Exercise 3.5.1. Assume that X is a continuous adapted process with initial value zero and
that S and T are stopping times. Show that if XT and X*° are in M, then X" and X5VT

are in MY as well.

Exercise 3.5.2. Let M € My. Show that M € M" if and only if (Mr)rec is uniformly
integrable, where C = {T|T is a bounded stopping time}.

Exercise 3.5.3. Let M be a local martingale and assume that My is integrable. Show that

if M >0, then M is a supermartingale.
Exercise 3.5.4. Let M € My and define M} = sup <, |Mj|. Show that M* € Aj.

Exercise 3.5.5. Let M € My. Show that if AM > 0, then AMy is almost surely zero for
all predictable stopping times.

Exercise 3.5.6. Let N be an F; Poisson process, and let T,, be the n’th jump time of N.
Show that T, is totally inaccessible.

Exercise 3.5.7. Let N be an F; Poisson process. Show that N € .A}Z and that H;Nt =t

almost surely.

Exercise 3.5.8. Let A € A} and assume that L} A is almost surely continuous. Show that

AAr is almost surely zero for all predictable stopping times T'.
Exercise 3.5.9. Let A € V. Show that if A is predictable, then A € V.

Exercise 3.5.10. Let N be an F; Poisson process and let My = Ny —t. Show that the process
fot Ns_ dMy is in My while the process fot NydM, is not in M.

Exercise 3.5.11. Let T be a totally inaccessible stopping time, and let Ay = 1(;>1). Show
that Eexp(—=MI;Ar) = 1/(1+ A) for all X > 0.

Exercise 3.5.12. Let M € My and let S < T be two stopping times. Show that if the
equality [M]s = [M|r holds almost surely, then MT = M almost surely.

Exercise 3.5.13. Let W be a one-dimensional F; Brownian motion. Let t > 0 and define
= kt27" for k < 2™. Show that ZZ;l(WtZ — Wtﬁfl)g converges in probability to t.
(Wtz - th ) i) %WE - %t and

Use this to conclude that the convergences Zill Win n_

k—1
Zkll Win (Win — Win

k—1

) N $WE 4 Lt hold as n tends to infinity.

Exercise 3.5.14. Define M% as the set of M € My such that there exists a localising
sequence (T,,) with M € M?. Show that M € M? if and only if [M] € Aj.
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Exercise 3.5.15. Let M,N € M2. Show that [M, N] € V;.

Exercise 3.5.16. Let M, N € M% and define the predictable quadratic covariation (M, N)
as the compensator of [M,N], and define the predictable quadratic variation (M) as the

compensator of [M]. Show that M is evanescent if and only if (M) is evanescent.
Exercise 3.5.17. Let N be an F; Poisson process and let My = Ny —t. Prove that [M] = N.

Exercise 3.5.18. Let cM? = cMy N M? and AM? = dM, N M2, Show that for any
M € M2, there exists M¢ € cM? and M € dAM? such that M = M€ + M9 almost surely.
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Chapter 4

Stochastic integration

In this chapter, we introduce the space of semimartingales, which will provide us with a
natural space of integrators for the stochastic integral, and we define the stochastic integral
of a locally bounded predictable process with respect to a semimartingale and consider the

basic properties of the integral, in particular proving Ité’s formula.

The structure of the chapter is as follows. In Section 4.1 we define the space of semimartin-
gales, we introduce the quadratic variation for semimartingales and we prove some elementary
properties. In particular, we introduce the concept of pre-stopping, which is particularly ap-

plicable to semimartingales.

In Section 4.2, we define the stochastic integral. The main difficulty is defining the integral
with respect to local martingales. Here, the theory developed in Chapter 3 will prove essential.

We also prove some elementary properties of the stochastic integral.

Finally, in Section 4.3, we consider some more advanced properties of the stochastic integral,
proving the dominated convergence theorem, the integration-by-parts formula as well as It6’s

formula.
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4.1 Semimartingales

In this section, we define the space of semimartingales and investigate its basic properties.

Definition 4.1.1. We say that a process X is a semimartingale if it is cadlag and adapted
and there exists M € My and A € V such that X = Xo+M+A. The space of semimartingales
is denoted by S.

The following lemmas yield some fundamental results about semimartingales. Lemma 4.1.2
shows that having an almost sure decomposition of a cadlag process X is sufficient to en-
sure the semimartingale property, while Lemma 4.1.3 shows that S is a vector space stable
under stopping. Lemma 4.1.4 concerns the level of uniqueness in the decomposition of a
semimartingale into its local martingale and finite variation parts, and Lemma 4.1.5 proves

the existence of a decomposition with extra regularity properties.

Lemma 4.1.2. Let X be a cadlag process such that X = Xo+ M + A almost surely, where
M e My and A€ V. Then X is a semimartingale.

Proof. Let N = X — Xg — M — A, the process N is then an evanescent cadlag process
and therefore an element of My. We then obtain X = Xg+ (M + N) + A, so X is a

semimartingale. O

Lemma 4.1.3. It holds that S is a vector space. If T is any stopping time and X € S, then
XTeS aswell. If FeFyand X €S, then 1pX € S as well.

Proof. S is a vector space since M, and V are vector spaces. Next, let T" be a stopping
time and assume that X € S with X = Xqg+ M + A. Then X7 = Xg+ MT + AT. As
MT € M, and AT € V, it follows that X7 € S. Finally, for F € F,, we obtain that
1pX = 1pXo + 1M + 1A, where 17Xy is Fy measurable, 1pM € M, and 1pA € V.
Thus, 1z X € S. O

Lemma 4.1.4. Let X be a semimartingale. If X = Xo+ M + A and X = Xo+ N + B are
two decompositions of X, it holds that M — N and A — B are in fv.M,.

Proof. Clearly, M — N = B — A. The left-hand side is a local martingale, and the right-hand
side is of finite variation. By Theorem 3.1.9, both processes are in fv.M,. O
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Lemma 4.1.5. Let X be a semimartingale. Then, there exists M € MY and A € V such
that X = Xo+ M + A up to indistinguishability.

Proof. Let X = Xg+ M + A be some decomposition of X. By Theorem 3.3.1, we there
exists Mb € /\/lll? and MV € fvM, such that M = M + M up to indistinguishability. In
particular, M has paths of finite variation. Thus, we obtain X = X+ M? + (A + M) up
to indistinguishability, where M? € M? and A+ M"Y € V. O

Lemma 4.1.5 provides a useful decomposition of semimartingales, and in particular shows
that locally, and semimartingale is the sum of a bounded martingale and an adapted cadlag
process of finite variation. We will now introduce pre-stopping and pre-localisation, and
show that semimartingales are stable under pre-stopping and pre-locally possesses some very

regular features.

Definition 4.1.6. Let X be any stochastic process, and letT be a stopping time. The process
X pre-stopped at T, denoted X™~, is defined by XT~ = X1, 7 + X1-1[7,00[-

Intuitively, X7~ corresponds to stopping X at 7—, or in other words, just before T, while
XT corresponds to stopping X at 7. The connection between the two types of localisation
is summarized in the equation X7~ = X7 — AX7l[r0o[- While martingales are stable
under stopping, they are in general not stable under pre-stopping. The primary usefulness

of pre-stopping is contained in the following three lemmas.

Lemma 4.1.7. Let X be a semimartingale and let T be a stopping time. Then X'~ is a

semimartingale as well.

Proof. Let X = Xo+ M + A, where M € My and A € V. Then X7~ = X7 — AXT17 00
where the latter term is in V. As X7 is a a semimartingale by Lemma 4.1.3, we conclude

that X7~ is a semimartingale, as desired. O

Lemma 4.1.8. Let X be any adapted cadlag process. Define T,, = inf{t > 0||X;| > n}.
Then (Ty,) is a localising sequence, and XT"'_l(Tn>0) is bounded by n. In the case where X

has initial value zero, T}, is positive and X ™~ is bounded by n.

Proof. By right-continuity, | X1, | > n. As cadlag mappings are bounded on compacts, this
implies that T,, increases to infinity. If 7;, > 0, we have | X;| < n for 0 < ¢t < T,,. Therefore,
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X Tnfl(Tn>0) is bounded by n. In the case where X has initial value zero, it is immediate
that T, is positive. Therefore, XT»~ = X T"_l(Tn>o), so in this case, XT»~ is also bounded
by n. O

We express the content of Lemma 4.1.8 by saying that any adapted cadlag process is pre-
locally bounded.

Lemma 4.1.9. X be a semimartingale. There exists a localising sequence such that almost
surely, X™~ is the sum of Xy, a bounded martingale and an adapted cadlag process of

bounded variation.

Proof. Tt will suffice to consider the case where X has initial value zero. By Lemma 4.1.5,
we almost surely have X = M + A, where M € M} and A € V. Let (T},) be a localising
sequence such that M7 is bounded. Since V, is cadlag adapted, by Lemma 4.1.8 it is
pre-locally bounded. Let (S,,) be a localising sequence such that (V,4)°»~ is bounded. Put
Unp = T, A Sy, we then have XUr=™ = MUn= 4 AUn= = MUr 4+ (AY~ — AMy, 1{v,.00])
almost surely. Here, MUr = (MT)5 so MY~ is a bounded martingale. And since it
holds that AMy, < sup,<y, AM; < sup,<r, AM;, we find that AMy, is bounded. As
a consequence, AMy, 1[y, oo is of bounded variation. And because (Va)Vn~ < (V)
we find that (V4)Y»~ is bounded, and so AV~ has bounded variation. We conclude that

AUn— _ AMy, 1y, o[ has bounded variation, concluding the proof. O

Our use of pre-stopping will in general be as follows. Consider a localising sequence (T7,).
If we are to prove a result solely concerning semimartingales, we first note that if the result
holds on [0, T, [ for all n, it holds for all of Ry x Q. By Lemma 4.1.7, it will therefore suffice
to consider semimartingales pre-stopped at some stopping time. And by Lemma 4.1.9, we
may then reduce to the case where X = Xo+ M + A, M being a bounded martingale and A

being of bounded variation.

Next, we introduce the continuous martingale part of a semimartingale, as well as the

quadratic variation and quadratic covariation processes for semimartingales.

Lemma 4.1.10. For any semimartingale X, there exists a process X€, called the continuous
martingale part of X, unique up to indistinguishability, such that for any decomposition
X=Xo+M+ A, X€is equal to M€, the continuous martingale part of M. We call X¢ the

continuous martingale part of X.
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Proof. First, we consider uniqueness. Assume that there exists two processes Y and Z with
the properties given in the lemma. Let X = M + A be a decomposition of X into its
martingale part and finite variation part. Since Y = M€ and Z = M€, where M€ is unique

up to evanescence by Theorem 3.4.7, Y and Z are equal up to evanescence.

As regards existence, recall that by Theorem 3.4.7, every local martingale M has a continuous
martingale part, unique up to indistinguishability, characterized by M — M€ being a purely
discontinuous local martingale. Therefore, the criterion for being the continuous martingale
part of a semimartingale is well-defined. It will suffice to consider the case of initial value
zero. Let X = M + A be a decomposition of X, and let X¢ = M. We claim that X¢ so
defined satisfies the requirements of the continuous martingale part of X. To this end, let
X = N+ B be another decomposition of X. Then N = M + (N — M), where N — M € fv.M,
by Lemma 4.1.4. In particular, by Lemma 3.4.5, N — M € dM,. Therefore, N = M* and

X¢ is equal to the continuous martingale part of N as well. O

Lemma 4.1.11. Let X be a semimartingale. Then the sum > ,(AX,)? is absolutely

convergent almost surely.

Proof. By the convention that no process jumps at zero, it will suffice to consider the case
with initial value zero. In this case, Let X = M + A be a decomposition of X. From
Lemma 3.3.5, we know that the process Y, -, (AM)?2 is almost surely finite. From Lemma
A.2.16, we know that the process 20<s<t(A;1)§ is almost surely finite. Because we know
(AX)2 = (AM, + AAL)? < 4(AM)? + 4(_AA)§, the result follows. O

Definition 4.1.12. Let X be a semimartingale. We define the quadratic variation process
of X by [X]y = [Xy + D gcs<i(AX)2, where [X€] is the quadratic variation of the local
martingale X€¢. If Y is anothegsemimartingale, we define the quadratic covariation process
of X andY by [X, Y] = [X Y + D gy AXAYS.

Note that the sum is absolutely convergent by Lemma 4.1.11. Also note that since [X¢, Y] is
uniquely determined up to evanescence, [X, Y] is uniquely determined up to evanescence as
well, and the polarization identity [X,Y] = 1([X 4+Y]—[X —Y]) holds. Also, it is immediate
that [X] € A with A[X] = (AX)? while [X,Y] € V with A[X,Y] = AXAY. Further note
the similarity of Definition 4.1.12 with the result in Theorem 3.4.9.

Finally, note that for M, N € My, their continuous martingale parts as defined in Lemma
4.1.10 coincide with the continuous martingale parts M° and N€ as given in Theorem 3.4.7.

Therefore, by Theorem 3.4.8, the quadratic covariation process for semimartingales M and
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N, as given in Definition 4.1.12, is the same as the quadratic covariation process for local

martingales of M and N as given in Theorem 3.3.4.

The following lemma is the semimartingale analogoue of Lemma 3.3.8.

Lemma 4.1.13. Let X and Y be semimartingales, and let T be any stopping time. The

quadratic covariation satisfies the following properties up to indistinguishability.

(1). [X, X] = [X].

(2). [-,+] is symmetric and linear in both of its coordinates.

(3). For any o € R, [aX] = o?[X].

(4). It holds that [X + Y] = [X] + 2[X, Y] + [Y].

(5). It holds that [X,Y]T = [XT,Y] = [X,YT] = [XT,Y7).

(6). [X,Y] is zero if and only if X°Y° € My and AXAY is evanescent.

(7). X has a continuous modification in V if and only if [X] is evanescent.

(8). X has a continuous modification in V if and only if [X,Y] is zero for allY € S.
(9). If F € Fy, 1p[X,Y] = [1pX,Y] = [X,1pY] = [1p X, 17Y].

(10). [X,Y]T~ = [XT-,Y] = [X,YT-] = [XT~,y7T"].

Proof. The first five properties are immediate from Lemma 3.3.8 and the definition of the
quadratic variation and the quadratic covariation processes. We consider the remaining

properties.

Proof of (6). First assume that [X, Y] is zero. Since [X¢, Y] is continuous, we obtain

AX,AY, = A Z AXAY, | = A[X, Y], =0,

0<s<t

so AXAY is evanescent. As we then have [X° Y] = [X,Y] = 0 up to evanescence, Lemma
3.3.8 yields that X°Y ¢ is a local martingale. Conversely, assume that X°Y°® € M, and that
AXAY is evanescent. We then obtain [X,Y] = [X€ Y¢], which is evanescent, again by
Lemma 3.3.8.
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Proof of (7). Assume that [X] is evanescent. By what was previously shown, (X¢)? is a
local martingale and X is almost surely continuous. We wish show that X almost surely has
paths of finite variation. To this end, let (T;,) be a localising sequence, we then find that
E(X);\p, = 0andso (X¢)7,p is almost surely zero. Therefore, (X )7 is almost surely zero,
and so X°¢ is evanescent. Next, consider a decomposition X = Xy + M + A, where M € M,
and A € V. It will suffice to show that M almost surely has paths of finite variation. As
X¢ is evanescent, M € dMy. And as X is almost surely continuous, there is a modification
N € dM,; of M such that AN = —AA. We then obtain AN € V, so Theorem 3.4.11 shows
that IV almost surely has paths of finite variation. Therefore, M also almost surely has paths

of finite variation, finally yielding that X almost surely has paths of finite variation.

Conversely, if X has a continuous modification in V, we obtain that X¢ is evanescent and so

[X] is evanescent.
Proof of (8). This follows from the previous result.

Proof of (9). The conclusion is well-defined as 1pX is in & by Lemma 4.1.3. By the
properties already proven for the quadratic covariation, it suffices to demonstrate that almost
surely, 1p[X,Y] = [1pX,Y] for any F € Fy and X,Y € S. To this end, we apply Lemma
3.3.8 to obtain

1p[X, Y] = 1p[X°Y%+1p > AXAY,
0<s<t
= [1pX° Y]+ Z 1pAX,AY, = [15X,Y);

0<s<t

up to evanescence, as desired.

Proof of (10). By the symmetry and linearity properties already proved, it will suffice to
show [X,Y]T~ = [XT~,Y]. To this end, let X = X+ M + A be a decomposition of X. We
then obtain X7~ = Xo+ MT— + AT- = Xy + MT — AMrlpr o) + AT~ Therefore, the
continuous martingale part of X7~ is (X7)¢. We then obtain

[X7 Y]?_ = [Xa Y];&T - 1(t2T)AXsAY; = [XT7 Y]t - 1(t2T)AXsAYs
= (XYY + > AXTAY, — 1= AXAY,

0<s<t
= [(XT)5Y T+ Y AXTTAY, =[X"7, Y],

0<s<t

proving the result. O
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4.2 Construction of the stochastic integral

In this section, we define and prove the existence of the stochastic integral with respect to
semimartingales and consider its basic properties. With the tools developed previously, we
can almost immediately prove the existence of the stochastic integral of a predictable and
locally bounded process with respect to a local martingale.

We begin with a motivating lemma. Consider some M € M,. Let S < T be stopping
times and define H = {1yg 7} for some § which is bounded and Fs measurable. The natural
definition of the integral of H with respect to M over [0,¢] is &(MT — M?). Defining L
by putting L = §(MT — M®), we obtain this integral in process form, where L; intuitively
represents the integral of H with respect to M over [0,¢]. The following lemma shows some

properties of this process L.

Lemma 4.2.1. Let M € My, let S < T be stopping times, let £ be bounded and Fs measur-
able, and let H = {lys ). Then H is predictable. Defining L = E(MT — M®), it holds that
L € My, and for all N € My, [L,N] = H - [M, N].

Proof. That H is predictable follows from Lemma 2.2.5. As S < T, we may also write
L = (&(M — M*®))T. Since ¢ is Fs measurable, (M — M?®) is in M, by Lemma 3.3.7, and

therefore L is in M, as well.
It remains to prove [L, N| = H - [M, N] for all N € M,. To this end, first note that

ALy = &AM — AMY) = §(AMl <) — AM;li<s)) = El(s<p<m) AM; = HyAM,,

so AL = HAM. Thus, A(H - [M,N]) = HA[M,N] = HAMAN = ALAN, as required
from Theorem 3.3.4. It remains to prove that LN — H - [M, N] is in Mj. To do so, we note
that by the properties of the ordinary Lebesgue integral, we have
LN —H-[M,N] = &MT —MN —¢([M,N)T —[M,N]%)
— €(MTN — [M,N]T) — §(MSN — [M, N])
= g(MTN - [MTvND - g(MSN - [Mst])v

which is in My by Lemma 3.3.7. By the uniqueness statement of Theorem 3.3.4, we may
now conclude that [L, N] = H - [M, N] for all N € M,. O

Lemma 4.2.1 shows that by defining the integral of a simple process of the form {1y 7 with

respect to M € My in a manner corresponding to ordinary integrals, we obtain an element
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of M, characterised by a simple quadratic covariation structure in relation to other elements
of M. We take this characterisation as our defining feature of the stochastic integral with
respect to integrators in M. We will later show that this yields an integral which in certain

cases may also be interpreted as a particular limit of ordinary Riemann sums.

First, we introduce the space of processes which will function as integrands in the stochastic

integral.

Definition 4.2.2. By J, we denote the space of predictable processes H such that there is a
localising sequence (T,,) with the property that HT"I(TTL>0) 18 bounded.

The reason why we include the indicator 1(7,~¢) in Definition 4.2.2 is to ensure that we
can integrate sufficiently many processes with nonzero initial value. Note that if we only
require that H is predictable with H™» bounded for some localising sequence for H to be in
J, we would exclude all processes H of the form H = Hy where Hj is Jy measurable with a
distribution which does not have bounded support. The next two lemmas combine to show
that as defined, J includes large classes of useful processes, and the lemma following that

shows that elements of J may be integrated with respect to elements of V.

Lemma 4.2.3. Assume that X is cadlag and predictable. Then, there is a localising sequence
(T,,) such that XTnl(Tn>0) is bounded. If X has initial value zero, there is a localising
sequence (T,,) such that XTn is bounded.

Proof. First, assume that H is cadlag and predictable. Define T;, = inf{t > 0||AX;| > n}.
By Lemma 2.3.7, T,, is a localising sequence of positive, predictable stopping times. For each
n > 1, let (S¥) be an announcing sequence for T,. Since |AX;| < n whenever 0 < ¢ < T),,
we find that AX 5% is bounded by n for all k. Define U,, = max;<, maxi<p Sk, Then AXUn
is bounded by n. Furthermore, U, is increasing, and since

sup U,, = sup max max Sf = sup sup S,]f = sup 7T,
n n 1<n k<n n k n

U, tends to infinity. Thus, U, is a localising sequence such that XY= has bounded jumps.

Letting V¥ = inf{t > 0 | | X”"| > k}, we then obtain that XV Levkso) is bounded. Also, for
each n, (V¥) tends to infinity. Putting V,, = max;<, max<, V;¥, we obtain that (V;,) is a
localising sequence such that X V”l(vn>0) is bounded.

In the case where X has initial value zero, it holds that V¥ is positive, and so X Vi is
bounded. Therefore, again defining V;, = max;<, maxg<y Vik, we obtain that (V,,) is a

localising sequence such that X"» is bounded, as desired. O
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Lemma 4.2.4. If H is caglad and adapted, then H € J. If H is cadlag and predictable, then
Hel.

Proof. Consider the case where H is caglad and adapted. Put T,, = inf{¢t > 0 | |H¢| > n}. As
(T, < t) = Useq,,s<t(|Hs| > n), we find that T}, is a stopping time, and as H is pathwisely
bounded on compacts, (T},) is a localising sequence. If T;, = 0, HTnl(Tn>0) is zero, and if
T,, > 0, H™ is bounded by n. Thus, HTnl(Tn>0) is bounded by n and we conclude H € 7.

In the case where H is cadlag and predictable, the desired result follows from Lemma 4.2.3.
O

Lemma 4.2.5. Let H € J and let A € V. Then H is pathwise Lebesgue integrable with
respect to A in the sense of Theorem 1.4.3.

Proof. Let (T},) be a localising sequence such that H Tnl(Tn>0) is bounded. Letting n tend
to infinity, we find that for almost all w, H(w) is bounded on compacts, therefore Lebesgue

integrable with respect to A(w), as desired. O

We are now ready to carry out the construction of the stochastic integral of an element of J
with respect to an element of M,. Our objective is to construct a local martingale with a
quadratic covariation structure similar to that found in Lemma 4.2.1. The following lemmas

will be necessary for the proof and the later proofs of the properties of the stochastic integral.

The following two lemmas consider criteria for identifying the jumps of a local martingale
in two particular situations. Note that the integrability conditions in both lemmas precisely
match those necessary for the expectations in the proofs to be well-defined.

Lemma 4.2.6. Let M € MP®, let L € M? and let H be predictable and bounded. If
EALyANp = EHrAMp ANy for all N € M? and all stopping times T, then AL = HAM

almost surely.

Proof. First note that by Theorem 1.3.1, it holds for any stopping time that ALy and ANy
are square-integrable whenever L, N € M?2. Therefore, both ALyANy and Hr AMp ANy

are integrable and the criterion in the lemma is well-formed.

To prove the result, note that by Theorem 2.3.8, it suffices to prove that ALy = HpAMryp
for all positive stopping times which are either predictable or totally inaccessible. And to
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do so, it suffices by Lemma A.1.21 to show EALré = EHpAMy€ for all bounded and Fr
measurable variables &.

Consider the case where T is predictable. Take & such that £ is bounded and F7 measurable.
Note that by Lemma 3.1.8, EALrE(¢|Fr-) = EE(ALp|Fr_)¢ = 0. Similarly, we also have
EHTAMTE(§|.FT_) = EHTE(AMT|fT_)§ = O, since HTl(T<oo) is -FT— measurable by
Lemma 2.2.6. Therefore, to prove EALpé = EHpAMypE, it suffices to demonstrate that
EALpn = EHprAMypn, where n = £ — E(§|Fp_). Now, as E(n|Fr_) = 0, Lemma 3.2.10
and Lemma 3.2.7 yields the existence of N € M? such that ANy = 7. Therefore, we obtain
EALrn = EALyANy = EHrAMp ANy = EHpAMpn and thus EAL7E = EHp AM7E.

Next, consider the case where T is totally inaccesible. Again, Lemma 3.2.10 and Lemma
3.2.7 yields the existence of N € M? such that ANy = & Therefore, we obtain that
EALTf = EALTANT = EHTAMTANT = EHTAMT& as desired.

Theorem 2.3.8 now yields AL = HAM almost surely. O

Lemma 4.2.7. Let M € My, let L € My and let H € 3. If ALAN = HAMAN almost
surely for all N € My, then AL = HAM almost surely.

Proof. We first consider the case where M € M", L € M" and H is bounded and predictable.
Using Theorem 2.3.8, we find that to obtain AL = HAM , it suffices to show ALy = Hr AMr
for all positive stopping times which are either predictable or totally inaccessible.

First consider the case where T' is totally inacessible. By Lemma 3.2.10, there exists N € M,
such that ANy =1, and so AL = Hr AMy, as desired.

Next, consider the case where T is predictable. To prove ALy = HrAMry, it suffices by
Lemma A.1.21 to show EALpé = EHrAMr€ for all bounded and Fr measurable variables
¢. Consider such a £. Note that by Lemma 3.1.8, EALyE(§|Fr—-) = EE(ALp|Fr_)¢ = 0.
Similarly, we also have EHrAM7pE({|Fr-) = EHrE(AM7|Fr_)§ = 0, since Hrl(p<oo)
is Fr_ measurable by Lemma 2.2.6. Therefore, to prove EALT¢{ = EHrAMrE, it suffices
to prove EALrn = EHrAMyrn where n = £ — E(¢|Fr—). Now, as E(n|Fr—-) = 0, Lemma
3.2.10 yields the existence of N € M" such that ANy = 7. As £ is bounded, 7 is bounded
and so in fact N € M?" by the properties given in Lemma 3.2.10. Applying this, we obtain
EALTn = EALTANT = EHTAMTANT = EHTAMTn and thus EALTf = EHTAMTS

Summing up, Theorem 2.3.8 now allows us to conclude that AL = HAM almost surely.
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This concludes the proof in the case where H is bounded and L, M € M".

Now consider the general case, where H € J and L,M € M. Let (T},) be a localising
sequence such that H'" 11, 50y is bounded, LT» € M" and M™» € M". Then, L™ 17, -0,
and MTnl(Tn>0) are in M as well, and for all N € My, we have

A(L™1(1,50)AN = 11,50 (AL)"™ AN = 1(1,50)(ALAN)"™
= I, >0 (HAMAN)™ = 15, 50)H™ (AM)™ AN
= (H™1(1,50)AM™1(7,50)) AN

almost surely. Therefore, A(LTnl(Tn>0)) = HT"I(TH>0)A(MT"1(T71>O)) almost surely by
what we already have shown. Letting n tend to infinity, we obtain that AL = HAM almost

surely, as desired. O

Theorem 4.2.8. Let M € My and let H € 3. Then, there exists a process H - M in My,
unique up to indistinguishability, such that [H - M,N| = H - [M,N] for all N € M,. We
refer to H - M as the stochastic integral of H with respect to M .

Proof. We first consider uniqueness. Assume that we have two processes L and K in My
such that [L,N] = H - [M,N] and [K,N] = H - [M,N] for all N € M,. In particular,
[L,N] = [K, N] for all N € My, yielding that [L — K, N] is evanescent for all N € M,. By
Lemma 3.3.8, this implies that L and K are indistinguishable.

Next, we turn to the proof of existence.

Step 1. The case of H bounded and M bounded. Assume that H is bounded and that
M € MP®. In particular, M € M?2. For any N € M?, we may apply Theorem 3.3.9 and the
Cauchy-Schwartz inequality to obtain

1

e < / N sz[M]s) " (Vo)

(E I Hﬁd[M]s)2 (EIV]ao)?,

Nl

IN

£ [ I

Nl

IN

which is finite by our assumptions. Therefore, we may define a function ¢ : M? — R by
putting ¢(N) = E [ Hyd[M, N],. The mapping ¢ is linear, and as

e <8 [Tlmilapn i< (5 [ ltffoww]s)é 1N,
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by what we previously showed, it is also continuous. Therefore, Theorem 1.3.5 shows that
there exists L € M? such that for all N € M2, o(N) = ENy Lo. We claim that L satisfies
the criteria for being the stochastic integral of H with respect to M. To prove this, we need
to show that [L, N] = H - [M, N] for all N € M,. To do so, we first prove this in the case
where N € M2,

Fix N € M2. As we also have L € M?, Theorem 3.3.10 shows that LN — [L, N] € M, and
therefore E[L, N]oo = E [;° Hyd[M, N],. As this holds for any N € M?, we also obtain for
all stopping times T that

0o T
E[L,N]r = E[L,NT] = E/ H,d[M,NT], = E/ H,d[M, N],.
0 0

Therefore, by Lemma 1.2.8, the process [L, N]; —fot H;d[M, N], is in M*. We will show that
it is also continuous, this will yield that the process in fact is evanescent. To prove continuity,
note that the jump process of this martingale is AL;AN; — HiAM;AN;. Now fix a stopping
time T. As L, N € M?, Theorem 1.3.1 shows that ALy and ANy are square-integrable for
all stopping times 7. Thus, we obtain that FEALT ANy = EHrAM7p ANy for all stopping
times T and all N € M?. Lemma 4.2.6 then shows that AL = HAM almost surely. As
a consequence, [L, N]; — fg H,d[M, N], is in M* and almost surely has continuous paths
of finite variation. By Theorem 3.1.9, we then find that the process is evanescent. Thus,
[L,N]=H -[M,N] for all N € M2. In order to prove that L is the stochastic integral of H
with respect to M, it remains to extend this to all N € M,. To this end, first note that if
N € fvM,, Lemma 3.4.4 yields

t
[L,N]; = Z AL,AN, = Z HSAMSANS:/ H,d[M, N],.
0

0<s<t 0<s<t
Now take any N € M,. By Theorem 3.3.1, we have N = N® + N almost surely, where
Nb € MY and N? € fvM,. Let (T,,) be a localising sequence such that (N®)Tn € M®, we
then obtain [L, N*]T» = [L,(N®)T»] = H - [M, (N®)T»] = (H - [M, N*])T». Letting n tend to
infinity, we get [L, N®] = H - [M, N®]. All in all, we then obtain

[L,N]=[L,N°)+|[L,N"]=H - [M,N+ H -[M,N"] = H - [M, N],

as desired. This proves existence in the case where H and M are bounded.

Step 2. The case of H bounded and M locally bounded. We now retain the as-
sumption that H is bounded while considering M € M}. Let (T;,) be a localising sequence
such that M™» € M®. By what we already have shown, there exists L™ € M, such that for
any N € My, [L",N] = H - [M™»  N]. In particular, we have [(L"t})T» N] = H - [MT~ N],
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which by uniqueness yields that (L"1)7» is indistinguishable from L"™. Therefore, may paste
the processes (L") together to a process L € M, such that LT» = L™ for all n > 1. Fixing
N € My, we then obtain [L, N = [L",N] = H - [M™",N] = (H - [M, N])*», and letting n
tend to infinity, [L, N] = H - [M, N|. This proves existence in this case.

Step 3. The case of H bounded and M € M,. Now consider the general case, where
we merely assume M € My, while still assuming that H is bounded. By Theorem 3.3.1,
we have M = M?® + MV almost surely, where M?® € MZ and MY € fvM,. By what was
already shown, there exists L® € M, such that [L?, N] = H - [M?, N] for all N € M,. Define
LY = H - MV as the pathwise Lebesgue integral given in Theorem 1.4.3. By Lemma 3.3.2,
LY € My, and by Lemma 3.4.4, we have

t
[LYN];= Y ALAN,= Y HSAM;’ANt:/ H,d[M",N],
0<s<t 0<s<t 0

for all N € M,. Putting L = L® + LV, we obtain for all N € M, that
[L,N]=[L°,N]+[L',N] = H - [M° N]+ H-[M",N] = H - [M, N],

completing the construction in this case as well.

Step 4. The general case. Now merely assume that H € J and M € My. Let (T},) be a
localising sequence such that H» 1(1,>0) is bounded. By what we already have shown, there
exists for each n a process L™ € M such that for any N € My, [L™, N] = H'"1(1, >0)-[M, N].
By Lemma 3.3.8, This implies
(L L g, 500, N = L so) L™ NP = g o) (H T 1,y 50) - [M, N
= L0 (H™ (1, 50) - [M,N]) = H™1(1, ~0) - [M, N].
By uniqueness, we obtain (L”+1)T”1(Tn>0) = L". Therefore, we may paste the processes
(L™) together to a process L such that for all n > 1, LTnl(Tn>0) = L™ almost surely. This in
particular shows by Lemma 3.1.7 that L € M,. As we also have
(L, N L, 50 = [L™1(z,50), N] = [L", N]
= H™1l(z,50) - [M,N] = (H - [M,N)"™1(1,0),

almost surely, we obtain by letting n tend to infinity that [L, N] = H - [M, N|. This proves

existence in the general case and thus completes the proof. O

Before proceeding to extend the stochastic integral to the case of semimartingale integrators,
we prove that the integral as defined coincides with the pathwise Lebesgue integral whenever

the integrator is of finite variation.
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Theorem 4.2.9. Let M € fvM, be a local martingale with paths of finite variation and
let H € 3. Then H is integrable with respect to M in the sense of stochastic integration as
defined Theorem 4.2.8, and H is pathwise Lebesgue integrable with respect to M in the sense

of Theorem 1.4.3, and the two integral processes coincide up to evanescence.

Proof. By Lemma 4.2.5, H is pathwise Lebesgue integrable with respect to M in the sense
of Theorem 1.4.3. We need to prove agreement of the two integral processes. Let X be
the stochastic integral of H with respect to M as given in Theorem 4.2.8, and let Y be the
pathwise Lebesgue integral of H with respect to M as given in Theorem 1.4.3. We wish to
argue that X and Y are indistinguishable.

By construction, we have [X, N]| = H - [M, N] for all N € M. In particular, for N € cMy,
[X, N] is evanescent. Therefore, X € dM,. Furthermore, by Lemma 3.3.2, Y € My, and it
is purely discontinuous by Lemma 3.4.5.

Next, fix N € M. As [X,N] = H - [M, N] almost surely by construction, we also obtain
AXAN = HAMAN almost surely. Therefore, by Lemma 4.2.7, AX = HAM = AY almost
surely. Thus, X —Y € dM, and X — Y is almost surely continuous. By Lemma 3.4.3, X
and Y are indistinguishable, as desired. O

With Lemma 4.2.5 and Theorem 4.2.8 at our disposal, the construction of the stochastic
integral with respect to semimartingales is a simple task. This existence is the subject of
Theorem 4.2.10. After the proof, we will spend the remainder of the section outlining the

basic properties of the stochastic integral.

Theorem 4.2.10. Let X € S and let H € 3. There exists a process H - X € S, unique up
to evanescence, such that for any decomposition X = Xog+ M + A with M € My and A €V,
it holds that H is integrable with respect to M in the sense of Theorem 4.2.8, H is integrable
with respect to A in the sense of Theorem 1.4.3, and

(H-X); = (H-M); + (H - A)s,

We refer to H - X the stochastic integral of H with respect to X.

Proof. Fixing a decomposition X = Xg 4+ M + A, we find that by Theorem 4.2.8, H is
integrable with respect to M, and by Lemma 4.2.5, H is integrable with respect to A. To
prove the theorem, it will suffice to prove that if X = Xo+ M + A and X = Xg+ N + B are
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two decompositions with M and N in M, and A and B in V, then
(H-M):+ (H-A)y=(H-N)¢+ (H-B):

up to evanescence. To this end, recall from Lemma 4.1.4 that M — N and A— B are in fv.M,,
and we have M — N = B — A. Applying Theorem 4.2.9 and the linearity of the ordinary
Lebesgue integral, we obtain

(H - M)y = (H-N), = (H- (M~ N)), = (H - (B~ A)), = (H - B), — (H- A),,

so(H-M);+ (H-A)y=(H -N);+ (H - B), as desired. This proves the result. O

Note that we cannot define the stochastic integral with respect to a semimartingale using
only the quadratic covariation as we did in Theorem 4.2.8, since the quadratic covariation by
Lemma 4.1.13 is invariant with respect to addition of a continuous finite variation process.
Further note that the stochastic integral H - X always has initial value zero and does not
depend on the initial value of X. The following lemma yields the main properties of the

stochastic integral.

Lemma 4.2.11. Let X andY be semimartingales, let H, K € J and let T' be a stopping time.

The stochastic integral with respect to X has the following properties up to evanescence:

(1). 3 is a linear space, and H - X is a linear mapping in both H and X.

(2). H-X €S with decomposition H-X =H-M+ H - A.

(3). Hlpory is in J and (H-x)T =Hlpm- X =H- -XT.

(4). It holds that KH € 3 and K - (H-X)=KH - X.

(5). Forany H € J, A(H -X)=HAX.

(6). It holds that (H - X)¢ = H - X°.

(7). We have [H - X,Y]=H -[X,Y] and [H - X] = H? - [X].

(8). If X has finite variation, H - X coincides with the pathwise Lebesque integral.

(9). If F € Fo, it holds that 1lpH € 3, 1p X € S and (1pH) - X =1p(H-X)=H - (1pX).

(10). If HT = KT, then (H - X)T = (K - X)T.
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Proof. Proof of (1). Let o, € R. As H,K € 7, there are localising sequences (7},) and
(S,) such that H™"1(7, -0y and K°"1(g, o) are bounded. Using Lemma 3.1.2, (S,, A T},) is

also a localising sequence, and we find that

(aH + BE)* "1 g ar,50) = (@HZ M 4 GRS, 20017, 50)
= a(H™11,50)" Ls,>0) + BE " 1(s,50) " 11,50,
and since HT"l(Tn>0) and KS'"l(Sn>O) are bounded, this shows that o« H + K is in J. It
remains to prove that H - X is linear in both the integrand H and the integrator X. We
first fix X with decomposition X = Xy + M + A and consider the integral as a mapping in
H. We commence by showing that (aH + 8K) - M =a(H-M)+ (K -M). Let N € M,
be given, we then have, using the characterisation in Theorem 4.2.8 and the properties of

ordinary Lebesgue integrals,

[a(H - M)+ A(K - M),N] = alH-M,N]+B[K - M, N]|
= (aH+ BK)-[M,N] = [(aH + 8K) - M, N],
so by Lemma 3.3.8, («¢H + SK)-M = o(H - M) + (K - M), as desired. As we also have
(aH+BK) - A=a«a(H-A)+ B(H-A) when A € V, this proves that the stochastic integral
is linear in the integrand. Next, we prove that it is linear in the integrator. Fix H € J, we
consider X and Y in § and wish to prove that H-(aX +8Y) = a(H-X)+5(H-Y). Assume
that we have decompositions X = Xo+ M + A and Y = Yy + N + B. We first prove that
H-(aM + BN)=a(H-M)+ B(H - N). Fixing any N’ € M,, we have
[(H-M)+B(H-N),N'] = «a[H-M,N'|+3[H-N,N'|
— a(H - [M,N')) + B(H - [N, N')
= H-[aM+BN,N'|=[H - (aM + 5N),N'],
so that by Lemma 3.3.8, H - (aM + fN) = a(H - M) + B(H - N). Therefore, as aX + Y

has martingale part aM + SN and finite variation part aA + 8B, we obtain, using what was
just proven as well as the linearity properties of ordinary Lebesgue integrals, that

H-(aX+pY) = H-(aM+pN)+H-(0A+SB)
= ofH-M)+pB(H-N)+a(H-A)+ B(H - B)
= o(H-X)+B(HY),

as desired.

Proof of (2). This follows immediately from the construction of the integral.
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Proof of (3). Assume that H € J, we first show that H1y 7} is in J as well. By Lemma
2.1.3, [0,T] is predictable, and therefore, H1pp 7y is predictable. Let (T,) be a localising
sequence such that H™ 17, ¢ is bounded. Then (H1po 7)™ 11,500 = H'" 11, >0)1[0,1] I8
bounded as well. We conclude that H1py 7} € J, as desired. In order to prove the identities
for the stochastic integral, let X € S with decomposition X = Xy + M + A. We then have

TNt

t t
(H-A)! = H, dAS:/ (H1|[O,T]])Sd,43=/ H,dAT,
0 0 0

so that (H-A)" = (Hljorp)- A= H-A". As regards the martingale part, let N € M, then
[(H-M)T N|=[H-M,N|" = (H-[M,N))T. Therefore, [(H - M)T,N] = Hlyo gy - [M, N,
proving (H - M) = Hlyr) - M, and [(H - M)",N] = H - [M",N], which shows that
(H-M)T = H-MT. Collecting our results for the martingale and finite variation parts and

using linearity, the result follows.

Proof of (4). As H,K € J, we know that there exists a localising sequence (T;,) such that
HT"l(Tn>O) and KT"I(T”>O) are bounded. As (KH)T"l(Tn>O) = KTnl(T”>0)HT”1(T">O),
and K H is predictable, we conclude K H € J. As regards the integral identity, assume that
X has decomposition X = Xg+ M + A. By the properties of ordinary Lebesgue integrals,
K- (H-A)=KH - A. As regards the martingale parts, let N € My, we then have

[K-(H-M),N]=K-[H-M,N] =K. (H-[M,N])=KH - [M,N],

which shows that K - (H - M) satisfies the criterion for being the stochastic integral of K H
with respect to M, so K - (H-M) = KH - M. Collecting our results and using linearity of

the integral in the integrator, we find

K-(H-X) = K- (HM+H-A) =K (H-M)+K-(H-A)
= KH-M+KH-A=KH-X,

as desired.

Proof of (5). Let X = Xo+ M + A. Fixing N € My, we have [H - M,N| = H - [M, N]
and thus A(H - M)AN = HAMAN. Lemma 4.2.7 then shows that A(H - M) = HAM. By
the properties of the Lebesgue integral, we also have A(H - A) = HAA. Thus, we obtain
AH-X)=A(H-M)+A(H-A)=HAM+ HAA = HAX, as was to be shown.

Proof of (6). Let X = Xg+ M + A and recall that H- X = H- M + H - A, where
H-M¢c Myand H-A € V. Let M = M¢+ M? be the decomposition of M into its
continuous and purely discontinuous parts. We then also have H - M = H - M+ H - M?.
As A(H - M¢) = HAM® =0, H- M° € cMy. And as [H- MY N] = H - [M? N] for all
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N € My, H- M? is purely discontinuous. Therefore, H - M€ is the continuous martingale
part of H - X. As M€ is the continuous martingale part of X, we obtain (H - X)¢ = H - X°.

Proof of (7). Let X = Xo+ M + A and Y =Yy + M + A. By what was already shown,

[H-X,Y]y = [(H-X)%Y+ Y A(H-X),AY,
0<s<t
= [H -X°Y + Z H,AX,AY,
0<s<t
= H-[X°Y%+ Y HAXAY, = (H-[X,Y]),
0<s<t

proving the first equality. As a consequence, we then also obtain

[H-X] = [H-X,H-X]=H [X,H- X]
= H-[H-X,X]=H-(H-[X,X])=H*[X].

Proof of (8). This follows from the construction in Theorem 4.2.10 and the result in
Theorem 4.2.9.

Proof of (9). First note that 1 H € J as 1 is predictable, and by Lemma 4.1.3, 1p X € S.
Let X = Xo+ M + A. By the properties of ordinary Lebesgue integrals, we know that
(IpH)-A = 1p(H - A) = H - (1pA) up to indistinguishability. Therefore, it suffices to
prove (1pH) - M = 1p(H - M) = H- (1pM). By Lemma 3.1.3, all three processes are in
M. Therefore, it suffices to prove that their quadratic covariation with any N € M, are
equal. Let N € My. By Theorem 4.2.8, [(1pH)- M,N] = 1pH - [M,N] = 1p(H - [M, N)),
while Lemma 3.3.8 shows that we have [1p(H - M),N] = 1p[H - M,N]| = 1p(H - [M, N])
and [H - 1pM,N] = H-[1pM,N] = H- 1p[M,N] = 1p(H - [M,N]). Thus, the quadratic
covariation with N is equal to 1p(H - [M, N]) for all three processes, and so Lemma 3.3.8
shows that (1pH)-M =1p(H-M)=H - (1pM), as desired.

Proof of (10). From what we already have shown, we find

(H-X)" = Hlpsr - X=H"1p7m X
= KM X=Klpm X=(K- -X)T,

as desired. O

Our final lemma of this section shows that our construction of the stochastic integral coincides

with the intuitive definition in the case of simple integrands.
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Lemma 4.2.12. Let X be a semimartingale, let S < T be stopping times and let £ be bounded
and Fs measurable. Defining H = 1ys,1y, it holds that H € 3 and (H - X); = EXT — X9,

Proof. With H = &ljs,77, we find by Lemma 4.2.1 that H is predictable. As it is also
bounded, we obtain H € J. Let X = Xg 4+ M + A be a decomposition of X. Lemma 4.2.1
then yields H - M = ¢(MT — M*®), and using the properties of ordinary Lebesgue integrals,
we furthermore have H - A = ¢(AT — A®). Thus, H - X = ¢(XT — X9). O

4.3 Itd’s formula

In this section, we will prove It6’s formula for semimartingales. In order to do so, we first
prove some related results of general interest. We begin by demonstrating the dominated
convergence theorem for stochastic integrals, and then obtain as moderately simple corollaries
the limit characterisations of stochastic integrals and the quadratic covariation as well as the

integration-by-parts formula. Applying these results, we may obtain It6’s formula.

Theorem 4.3.1. Let X be a semimartingale and let t > 0 be some constant. Assume that
(H™) €3 and H € 3. Further assume that |H" 110 4| and |[H1pg 4| are bounded by some K
with K € 3. If H™ converges pointwise to H on [0,t], then

sup |(H" - X), — (H - X),| > 0.
s<t

Proof. As the stochastic integral does not depend on the initial value of the integrator, we

may restrict our attention to the case where X is zero.

Step 1. The case of X € M? and bounded integrands. We first consider the case
where X € M? and H", H and K are bounded by some constant c. For convenience, we
write M instead of X, and thus seek to show sup <, [(H" - M)s — (H - M )| 0.

To this end, note that by Lemma 4.2.11, we have [(H" — H) - M] = (H" — H)? - [M], and
E((H" — H)? - [M])oo < 4¢*E[M]oo, which is finite by Theorem 3.3.10. Therefore, we have
(H™ — H)- M € M?. We will show that (H™ — H) - M)+, converges in £? to zero, this will
yield the desired result.

To this end, note that since E[M]., is finite, [M].. is almost surely finite and therefore the
induced measures almost surely have finite mass. As a result, constants are almost surely
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integrable with respect to [M]. By Lebesgue’s dominated convergence theorem, we then
obtain - -
lim/ (H" — H,)?d[M], = / lim(H? — H,)?d[M], = 0,

almost surely. Next, since [ (H — H,)?d[M]s < 4¢*[M]s, we can again use Lebesgue’s

S

dominated convergence theorem to obtain
hmE/ (H' — H,)? d[M —Ehm/ (H" — H,)?d[M], = 0.

As a result, lim,, E[(H" — H) - Mo = lim,, E((H" — H)? - [M]) = 0. Since we earlier noted
that (H" — H) - M € M?, we have E[(H" — H) - M), = E((H" — H) - M)% by Theorem
3.3.10, so we conclude that ((H™ — H) - M) converges to zero in £2. By Theorem 1.3.3,

we then obtain that sup,q((H™ — H)- M)%, converges in £ to zero, in particular we obtain

that sup,, [(H" - M)s — (H - M), 50, as desired.

Step 2. The case of X € V and bounded integrands. Now we consider the case where
X €V, and continue to assume that H", H and K are bounded by a constant c. We write
A instead of X and wish to show supg<, [(H" - A)s — (H - A)] %, 0. By the properties of

ordinary Lebesgue integrals, we have

IN

limsupsup |(H" - A)s — (H - A)| hmsupsup/ |H — Hy,||dA,]

n s<t s<t

= limsup/ |H? — Hg|| dAs|.
n 0

Since the measures induced by A have finite mass on compacts almost surely, the above
is zero almost surely by Lebesgue’s dominated convergence theorem, using the constant
bound 2c. Thus, sup,; [(H" - A)s — (H - A)4| converges almost surely to zero, which implies

SUP,<¢ |[(H"-A)s — (H - A)| L 0, as was to be proven.

Step 3. The general case. Now consider a semimartingale X and processes (H"), H and K
in J satisfying the conditions of the theorem. By Lemma 4.1.5, there exists a decomposition
X = M + A where M € MY and A € V. Let (T},) be a localising sequence such that
K™ 1(1, 0y is bounded and M € M®. Then [(H™)"" 11, >0\ 10| < K™ 1(1, 50)10,4 for
all n > 1 and similarly [H™ 17, o) 1jo4] < K'"1(1,>0)1[0,. By what we already have
shown, it then holds that sup,<, [(H™)™ 11,50y - M™")s — (H™ 11, 50y - M) £ 0and
SUP4 <4 \((H”)T"l(an) AT — (HT"l(Tn>O) - AT | £, 0, which may be combined to
obtain
sup [(H™) "1, 50y - XT)s = (H™ Lz, 50) - XT)s| =5 0.

s<t
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Now note that

11,50y SUD (" - X), = (H - X)a| = sup Lz, (H" - X), = (H - X,

and applying Lemma 4.2.11, we have

Lnspl(H" - X)s = (H-X)s| = Ygspl(H"-X){" — (H-X)I"|
= Lgspl(H")™ - XT) = (H™ - X
= Lzsolm,sol(HMD)™ - X)), — (H™ - X,
< J(H™ ™ Lz, 0y XT)s — (H™ 17,50y - Xl

Combining these observations, we obtain 17, ) sups<; [(H" - X)s—(H-X)4| 0. Applying
Lemma A.3.1 to the sequence of variables (sup,<, [(H"-X)s— (H-X);|)n>1 and the sequence
of sets Fj, = (T} > t), the result follows. O

Next, we prove limit characterisations of the stochastic integral and the quadratic covariation,
providing the integral interpretation of H - X and the quadratic covariation interpretation of
[X,Y]. We first introduce some notation. Fix ¢t > 0. We say that a finite increasing sequence
(to,...,tx) with 0 =to < --- < tx =t is a partition of [0,t]. We refer to maxy<x |tx — tr—1]

as the mesh of the partition.

Theorem 4.3.2. Let X € S and let H be adapted and cadlag. Let t > 0 and assume that

(tW) k<K, n > 1, is a sequence of partitions of [0,t] with mesh tending to zero. Then

K,
S Hy (X —Xep ) (Ho - X
k=1

Proof. First note that as H is adapted and cadlag, H_ is adapted and caglad, so H_ € J
by Lemma 4.2.4 and the integral H - X is well-defined. To prove the result, we define the
sequence of processes H" = Holjg) + ZkK:"'l Hyp  Tpee | 4n- As the mesh of the partitions
converges to zero, we find that H™ converges pointwise to H_1g 4. Also note that as H is
cadlag and adapted, so is H*, where H; = sup,,|H;|. In particular, H* € J by Lemma
4.2.4, and both H"™ and H_ are bounded by H*. Therefore, by Theorem 4.3.1, we obtain
(H™ - X), 5 (H- - X),.

However, Holo) - X is evanescent and so Zsz"l Hyp (Xgp — Xyp ) = (H" - X); by Lemma
4.2.12. Combining our conclusions, we obtain 30" Hyn  (Xyp — Xyp ) —5 (H- - X),. O

k—1



4.3 Itd’s formula 121

Theorem 4.3.3 (Integration-by-parts formula). Let X and Y be semimartingales. Lett > 0
and assume that (t))k<k,, n > 1, is a sequence of partitions of [0,t] with mesh tending to

zero. Then
K,

S (X — Xyp )(Yep — Y ) =5 [X, Y],
k=1
and the identity X:Y; = XoYo + (Y= - X)) + (X_ - Y): + [X,Y]; holds.

Proof. We begin by considering a single semimartingale X and prove the two results

K’Vl
S (X = Xep )P 5 [X,X]p and X2 = X2 +2(X_ - X)¢ + [X]s.
k=1

We begin by assuming that X = Xy + M + A, where M € M? and A € V'. First note that

K, Ky Ky
XP-X§ =) (Xj - X% )=2) Xp (Xg—Xg )+ (Xg—Xyq )
k=1 k=1 k=1

Since X is cadlag and adapted, ZkK:"l Xin (Xgp — Xir ) £, (X_ - X); by Theorem 4.3.2,
and therefore 3107, (Xen — Xgp_|)? Ly X2 - X2 —2(X_ - X),. Our proof of the present
case now proceeds in three steps. Firstly, we argue that X? — X2 — 2(X_ - X) has paths of
finite variation. Secondly, we argue that X2 — X2 —2(X_ - X) —[X] is continuous with paths
of finite variation. Thirdly, we prove that this process is M, and obtain the desired results

from this. After this, we consider the remaining cases.

Step 1. Proof that X% — X2 —2(X_-X) € V. We wish to argue that X? — X2 —2(X_-X)
is almost surely increasing. To this end, let 0 < p < g be two elements of D, . There exists
j > 1 and naturals n, < n, such that p = n,277 and ¢ = n,277. Consider the particular
partitions of [0, p] and [0, q] given by putting pi = k2~("+9) for k < n,2" and ¢} = k2~ (")
for k < ny2", respectively. Using Lemma A.3.2 and the convergence result just proven, we
then obtain

np2n

Xp = X§—2X--X), = lim > (Xpp = Xpp )P
k=1
nq2TI,

< liTILn Z (Xq;? - Xq,Z;l)2
k=1
S XPoXEoax X,

almost surely, where the limits are in probability. As D, is countable and dense in Ry,

we conclude that X2 — X2 — 2(X_ - X) is almost surely increasing. By picking a particular
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modification of X_ - X, we may assume that X2 — X2 —2(X_- X) is increasing. In particular,
X2 - X2 -2(X_-X)eV.

Step 2. Proof that X% — X2 — 2(X_ - X) — [X] is continuous and in V. By direct

calculation, we have

AX?—2X_-X), = X2—X?2 —2X,_AX,=X?>-X? —2X, X, +2X%
= X, -2X. X, +X? =(AX)? = A[X].

As we know that [X] € Vand X?—X2—2(X_-X) € V, we find that X?— X2 —2(X_-X)—[X]
is a continous process in V. Therefore, if we can show that it is a local martingale, Theorem
3.1.9 will yield X2 = Xy +2(X_ - X) + [X].

Step 3. Conclusion. We wish to argue that X2 — X2 — 2(X_ - X) — [X] is in M,. First
note that with Y = X — X, we have Y = M + A and, using that X =Y + X,

XP—X3—2X_-X) —[X];, = Y?+2%Xo—2(X_-X),— [V,
= Y242V, X0 —2Xo(X; — Xo) —2(Y_ - X)¢ — [V
= Y2 -2Y_ X), - [V
— yt2 —2(Y_-Y), — [Y]t-

Recalling that A% —2A4_ - A — [A] is evanescent by Lemma A.2.13, we then obtain
X2 X -X_ - X—-[X]=(M+A?*~(M+A)_ - (M+A)—[M+A =N™+2N",

where N™ = M2 —2M_-M —[M] and N* = MA—M_-A—A_-M —[M, A]. We claim that
both of these processes are in M,. As M? — [M] is in M, by Theorem 3.3.4 and M_ - M is
in My by Theorem 4.2.8, it is immediate that N is in M,. Regarding the second process,
first note that A_ - M is a local martingale since A_ € J by Lemma 4.2.4 and M € M,.
Furthermore, note that by the properties of ordinary Lebesgue integrals, we have

t
M A — (M_ - Ay —[M, A, = MtAtf/ M, dA,— ) AM.AA,
0 0<s<t

t t
= MtAtf/ Ms_dASf/ AM,dA,
0 0
t
— MA - / M, dA,,
0

which is in M" by Lemma 3.3.3. Combining our findings, X? — Xy — 2(X_ - X) — [X] is
a continuous element of fv.My, so by Theorem 3.1.9 it is evanescent. We conclude that the
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integration-by-parts formula X2 = X + 2(X_ - X) + [X] holds. From what was previously
shown, we then also obtain Zk:l(Xt” X )? il [X]¢-

k—1

Step 4. Remaining cases. We now consider the result for a single general semimartingale
X. By Lemma 4.1.5, there exists a decomposition X = Xo + M + A where M € M} and
A € Vj. Let (Ty,) be a localising sequence such that M7» and AT € Vi, From what we
already have shown, it holds that

K, n
P
Lir,>t) Z(th — X )P =115 Z(th" - XtT;L)Q — L, 50 [ X ™6,
k=1 =
and by Lemma 4.1.13, this yields 1(7, > Zsz"l(th Xz 1)2 £, Lz, >t [X]¢. Applying
Lemma A.3.1, we conclude fz"l(X n— th71)2 i [X]¢. Next, using Lemma 4.2.11, we
also have

(X2)Z“n — (XT")? = (XTn)g + 2((XT’”), ~XT")t + [XT'”}t
— X3+ 20T )T+ X = XG4 2% 00 + X

so letting n tend to infinity, we obtain X? = Xo + 2(X_ - X); + [X];. This concludes the
proof of the theorem in the case of a single semimartingale.

It remains to consider the case of two semimartingales X and Y. Define two processes
Z=X+Yand W =X -Y, we then have Z + W =2X and Z — W = 2Y, yielding

(Zig = Zip )P = (Wip = Wi )? = (2Xyp —2Xpn ) (2Ven —2Ytz )
= A(Xyp = Xgp )(Yip = Yin ),

and we know from our previous results that ZK" (Zip — Ziyp_ )2 converges in probability to
[Z]: and that Zk:l(WtZ’ — Wiz )? converges in probability to [W];. By Lemma 4.1.13, we
have [Z]; — W]t = [X +Y]: — [X — Y], = 4[X,Y]; almost surely, so collecting our results,
we finally conclude Zé{z"l (Xip = Xgp )(Yep — Yip_ ) il [X,Y]s, as desired. Analogously,

k—1
we find

AX,Y, = ZP - W}
= Z3-W5+2Z-2); —2(W-W)+[Z]; = W]
= AXYo+2(X+Y) - (X +Y)) —2((X -Y) - (X -Y)) +4[X, Y],
= AXYo+4(X V) +4(Y - X), +4[X, Y],

yielding the integration-by-parts formula in the general case. This concludes the proof. O
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Lemma 4.3.4. Let X and Y be semimartingales and let H be adapted and cadlag. Consider
t > 0 and assume that (t})r<k,, n > 1, is a sequence of partitions of [0, t] with mesh tending
to zero. Then

ZHt (X~ Xip ) Yap — Y ) (Ho - [X,Y)),

Proof. As in the proof of Theorem 4.3.3, by polarization, it will suffice to consider a single
semimartingale X and prove Zk Y Hyn (Xgp — Xgn|)? BN (H_ - [X]):. Also note that
we may assume without loss of generality that X has initial value zero. To prove the result
in this case, note that from Theorem 4.3.3, [X]; = X? — 2(X_ - X);, so that using Lemma
4211, wefind H_-[X]=H_-X?-2H - (X_-X)=H_-X?-2H_X_-X, where X2€ S
since X? = X +2(X_ - X) + [X]. On the other hand,

K"I,

>ty 0y~ X = 3 (0 X ) =23 M X (g - X )
k=1
so that two applications of Theorem 4.3.2 yield the result. O

With the above results in hand, we are now ready to prove Itd’s formula. By C?(RP), we
denote the set of mappings f : RP — R such that all second-order partial derivatives of f exist
and are continuous. Also, for any open set U in RP, we denote by C?(U) the set of mappings
f : U — R with the same property. We say that a process X with values in R? is a p-
dimensional semimartingale if each of its coordinate processes X, where X; = (X}, ..., X7}),

is a semimartingale.

Theorem 4.3.5 (Ito’s formula). Let X be a p-dimensional semimartingale and consider
f € C%(RP). Then

F(Xy) = f(Xo) +Z/ o (Xem) dX{+ 5 ZZ/ i ax X, )d[X?, XI), + e,
% g J

1=15=1

up to indistinguishability, where

= > f(X) - f(Xeo) - af( )Axulizﬂ: ”f (X, )AXIAXI
s s— ax S 2 axzaxj s— s E

0<s<t i=1 i=1 j=1

Here, almost surely, the sum defining n is absolutely convergent for all t > 0.

Proof. We first argue that the sum defining 1 converges absolutely. First consider the case

where X takes its values in a compact set. Fix t > 0. By Theorem A.1.22, we then have,
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with r2 denoting the remainder function given in the statement of Theorem A.1.22,

) n n 82 ' _
F(Xs) - Z Py (X )AX - %Z > axiaij (X, )AXIAXY

i=1 j=1

p p
- ZZH X, X, )(AX,)?

i=1 j=1

By Theorem A.1.22, r;j(Xs,Xs_) is bounded by the values of
from X to Xs_. As X takes its values in a compact set, we obtain that there is C' > 0 such
that |ry (X,, Xs_)| < C for all i,5 < p. Thus, the above sum is bounded by Cp?(AX,)2.
Therefore, by Lemma 4.1.11, almost surely, the sum converges absolutely for all ¢ > 0.

0°f on the line segment
9,07, &

Now consider the general case. Using Lemma 4.1.8, let (7),) be a localising sequence such
that X7»~ is bounded. By the above argument, we then obtain that almost surely, whenever
T, > 0, the sum converges absolutely for all 0 < t < T,,. Letting n tend to infinity, it follows
that almost surely, the sum defining 7 is absolutely convergent for all ¢ > 0.

Next, we prove the formula for f(X;). Fix ¢t > 0 and let ¢} = kt2~". Applying a telescoping
sum, we obtain f(X;) — f(Xo) = Zill f(Xip) — f(Xip_,) and may use Theorem A.1.22 to
obtain f(X;) = f(Xo) + Sp" +T{* + R} where

p af .
S{l = Z 81:(th 1)(XZ" XZL‘_l)
i=1k=1 "
o= IS P o X Y XD )
' 21‘:1;‘:11@:15%8% troJ\ ey tha /N th1
p p 2" ) .
Ry = Y rd (X Xop)(Xip = X (X — XY, ),
i=1 j=1 k=1

and réj (z,y) is the remainder function from Theorem A.1.22. By Theorem 4.3.2, S converges
in probablhty to ) i g aaf (X, )dX? and by Lemma 4.3.4, T}* converges in probability to

DD D J amaf;w (Xs_)d[X?, X7],. Therefore, it will suffice to show that the remainder

term Rt converges in probability to 7;. Note that while we have no guarantee that réj is
measurable, we know that R} is always measurable, since R} = f(X;) — f(Xo) — S — T,
and so the proposition that R} converges in probability to n; is well-defined.

To prove R} £ e, first consider the case where X takes its values in a compact set. In

particular, all second-order partial derivatives of f are uniformly continuous on the range of
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X. Let € > 0. Also fix v > 0, and pick § > 0 parrying ~ for this uniform continuity of the
second-order partial derivatives of f, and assume without loss of generality that 6 < ~. Let
As = {s € [0,t] | |AXs| > §/4}. Note that as X is cadlag, As(w) is a finite set for all w.
Define I, = {k < 2" | As N (t}_,,t}] =0} and J, = {1,...,2"} \ I,,, and define

PP
(R = ZZ ¥ (X )(thg*XZg_l)(Xt]"*thg ,) and
i=1 j=1keJ,
PP , ‘
(RDyr = ZZ ry Xt" o Xap ) (Xin _XZ;;?I)(X?" _ng -
=1 j=1kel,

Furthermore, define

of . "
DX - f(Xao) - (X )AX] - *ZZ 8%8% AXIAXT,

SEAs =1 i=1 j=1

and analogously, n(A§);. As Aj; is finite, we have (RV))? 2% 5(As);. Also noting that
Ay C A5 as § <, we get Af C AS and thus obtain

limsup P(|Ry — n:| > €)

n— oo

< limsup P(I(BY)} = n(As)| = €/2) + PR} — n(A5):| > €/2)
< P(In(AS)| > e/4) + limsup P([(RY)}| > e/4).

n— o0

Next, we bound the limes superior in the above. To this end, recall that as |2zy| < 22 + y?,
we find for any 4,5 < p that

Z Téj(thilaXtZ)(XzZ - Xg?—l)(thz B XtJZl)‘
kel,

27L

1 i i

< 3 <£r.1eax|r2 (Xep ,th,)|> <Z(th ) +Z Xy — Xt 2),
k=1

Now note that by Theorem A.1.22, there is a mapping £ : R? x R? — RP such that

r;j(thiﬂth) . (X, X)) — ﬁ(X ), where £(x,y) always is on the line

Ox;0x; Ox;0x; iy
segment between x and y. In particular, we have
max|rij(Xn , Xip)| < max sup O (Xip_ | +t(Xep — X)) — 0°f (Xer )
ket 2! ! kEln 1cio,1] | OTi0x; k i ti 0x;0z; ad)

and the latter is measurable, since by right-continuity, the supremum may be reduced to a
countable one. Now, by Lemma A.2.5, it holds that

limsupmax sup |X;— X, | <3 sup |Af(X,)| <4,
n—soo KEIntn  <ps<tn s€[0,t]\As
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so for n large enough, depending on w, maxyer, |7”§j(Xt;;_1,th)| < ~. For each w, let N(w)
be the first n such that this bound holds. Then, for n > N, we obtain the bound

R(”?S;ZXP:<Z Xiy = Xy ) +Z Xf, - XJ, 2>,
k=1

i=1j=1

and by Theorem 4.3.3, the latter converges to 3 >0 >°%_ [X']; + [X7]; in probability. We
are now ready to bound limsup,, , ., P(|(RU))p | > ¢/4). By dominated convergence theorem,
we obtain limsup,,_,.. P([(RU)?| > ¢/4) < limsup,,_,.. P((n > N) N ((RD)7]| > /4)),

where

limsup P((n > N) N (I(RT)}] > e/4))

n— o0
~y P P 2" . . 2" -
< limsup P 522 (Z(XZE - XZ271)2 + Z(Xgn thn )2> > 1
n—roo i=1j=1 \k=1 k=1
Y . €
< P 5 ZZ[XZ]t + X > 3
i=1 j=1

All in all, we have now shown that

p p
limsup P(|R} —ni| > ) < P((A)i] > £/4) + P | |2 3D [X + [X]:| >

n— oo

oo ™

i=1 j=1

for all € > 0 and for all v > 0. Now note that Af decreases as v decreases, and we have
Ny>0AS = {s € [0,7] | AX; = 0}. The dominated convergence theorem then yields that
almost surely, 77( A ); converges to zero as y tends to zero. Likewise, 2 37 ) 37 [X"];+[X7];
converges to zero as 7 tends to zero. Letting v tend to zero in the above, we then obtain
limsup,,_, ., P(|R} —n| > €) =0, so R} £, 7 and the proof is complete in the case where

X takes its values in a compact set.

It remains to show R} i 7 in the case of a general X. To this end, define a localising
sequence (T,,,) by putting T3, = inf{t > 0 | |X;| > m}. By Lemma 4.1.8, XT»~ 1.7 ) is
bounded by m. Fix m > 1 and put Y™ = XT""’l(Tm>0), Y™ then takes its values in the

compact set [—m, m]P. Note that on (T}, > t), we have

R?—ZZZT Y V(™) — (V™) (™) — (Y™ )
=1 j=1 k=1
and
S SR ORF (R BF LSRR D) BF = AN AL

0<s<t i=1 i=1 j=1
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Therefore, by what we already have shown, 17, >4 R} N L1, >tyn- Applying Lemma
A 3.1, we obtain R} £, N

We have now proved that 1t6’s formula for a fixed ¢ > 0 holds almost surely. As the processes
on both sides of the formula are cadlag and ¢ > 0 was arbitrary, Lemma 1.1.7 shows that we

have equality up to indistinguishability. This proves the theorem. O

In practical applications, it will occasionally be necessary to apply Itd’s formula in cases
where function f only is defined on some open set. The following corollary shows that It6’s

formula also holds in this case.

Corollary 4.3.6. Let U be an open set in RP, let X be a p-dimensional continuous semi-
martingale taking its values in U and let f : U — R be C?. Then

; 1 p p t agf ; ;
F(X0) = £(Xo) +Z/ (X)X, + szl/ o (Ko XS X o

up to indistinguishability, where

af 1 4 Z
ne= Y f(Xs)— f(Xeo) — 81'( AX] _7223%81] LJAXIAXY.

0<s<t i=1 i=1j5=1

Proof. Let || - || be some norm on R? and let d(z,y) = ||« — y||. Define the set Uy, by putting
Upn = {z € R | d(z,U%) < L}. Put F,, = U, then F,, = {x € R? | d(2,U°) > L}. As
x — d(x,U°) is continuous, U, is open and F,, is closed. Put T,,, = inf{t > 0| X; € Uy,, }.
As U, is open, Lemma 1.1.13 shows that T,, is a stopping time. As (U,,) is decreasing,
(T},) is increasing. We wish to argue that (7)) tends to infinity almost surely and that on
(T > 0), XTm~ takes its values in F,.

To prove that (7),) tends to infinity almost surely, assume that there is w such that T, (w)
has a finite limit T(w). By construction, there is for each € > 0 a t € [T}, (w), Tyn(w) + €]
such that X; € U,,, meaning that d(X;,U°¢) < % Applying right-continuity, this yields
d(Xr, (w),U¢) < L. And by left-continuity, d(Xr(w),U¢) = lim,, d(Xr,, (w),U¢) = 0,
implying Xr(w) € U€, a contradiction. We conclude that (7),) tends almost surely to
infinity. To show that on (T}, > 0), X7~ takes its values in F},, we note that on this set,
X ¢ Uy, for t < T,,, so Xy € F, for t < T,,,, and by left-continuity of X and closedness of

F,., X7,._ € F,, as well. Thus, X7~ takes its values in F},, on (T}, > 0).

Now let m be so large that F,, is nonempty, this is possible as U = U2, F),, and U is

nonempty because X takes its values in U. Let y,, be some point in F,,. Define the
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process Y™ by putting (Y™)i = 1(Tm>o)(Xi)tTm_ + yi1(r, —0)- Y™ is then a p-dimensional
continuous semimartingale taking its values in F,,. Now, by Lemma A.1.23, there is a C?
mapping ¢, : RP — R such that g, and f agree on F,,. By Theorem 4.3.5, It6’s formula
holds using Y and g¢,,,, and as g,, and f agree on F,,, we obtain

fYm) = Fg") (Y™,
2 22_:/ Fesda; e VUYL L

up to indistinguishability, where n™ is the jump sum as given in Theorem 4.3.5. We wish
to argue that as m tends to infinity, all terms in the above converge to the corresponding
terms with Y exchanged by X. Consider the first-order terms. For any ¢ < p, we may use
Lemma 4.2.11 to obtain

af m m\i . ¢ af m IAVA™S
oo [ 2L A0, = A [ AL ax?
of

t
= 1(Tm>t)/0 1(T >0)8 (XTm)d(X )?"

of o
= oy | G

taf )
=1 =2 (X,)dX,
o) || (X)X

and with an application of Lemma 4.1.13, the analogous statement is obtained for the second-
order terms. Also, 1(7,, >¢)f(Y{") = Lir,, >0 f(X¢) and 1, o) f(Y5") = L, >0 f(Xo). All
in all, we conclude that Itd’s formula holds almost surely at time ¢ > 0 on (T3, > t), and
letting m tend to infinity, we obtain that the formula holds at any time ¢t > 0. By Lemma
1.1.7, the result holds up to indistinguishability and the proof is concluded. O

4.4 Exercises

Exercise 4.4.1. Let X € §. We say that X is a special semimartingale and write X € S,
if there exists a decomposition X = Xo+ M + A where M € My and A € V is predictable.
Show that if X € Sy, then the decomposition of X into its local martingale and predictable

finite variation parts is unique up to evanescence.

Exercise 4.4.2. Let X € S and assume that X has initial value zero. Show that X € S, if
and only if X* € A\, where we define the process X* by putting X; = sup,<; | Xl
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Exercise 4.4.3. Let X € S. Show that X € S, if and only if there exists a localising
sequence (T,,) such that X € S, for alln > 1.

Exercise 4.4.4. Let X € §. Show that X is predictable if and only if there exists a decom-
position X = Xg+ M + A where M € My is almost surely continuous and A € V with A
predictable.

Exercise 4.4.5. Let X € §. Show that X has a decomposition of the form X = Xo+ M + A
with M € My almost surely continuous and A € V if and only if for allt > 0, EO<S§ |AX]

s almost surely convergent.

Exercise 4.4.6. Let X € S. Show that X is continuous if and only if there exists a decom-
position X = Xog+ M + A where M € cMy and A €V is continuous.

Exercise 4.4.7. Let M € My and let T be a predictable stopping time. Show that MT~ is
an element of My.

Exercise 4.4.8. Let M € My and let H € 3. Show that H - M € M? if and only if
E [;° H2d[M], is finite, and in the affirmative, E(H - M)2, = E [ HZd[M],.

S S

Exercise 4.4.9. Let M € My and let H € 3. Show that ifEf(;5 H2d[M]; is finite for all
t >0, then H-M € M with E(H - M)? :Engé?d[M]S for allt > 0.

Exercise 4.4.10. Let W be a one-dimensional F; Brownian motion and let H € J. Show
that H - W is in cM? if and only ifEfOOO H?ds is finite. Show that if it holds that for any
t>0, E [] H2ds is finite, then H -W is in cM and E(H - W)? = E [} H2ds for all t > 0.

Exercise 4.4.11. Let A € V} and let H € 3. Show that the compensator of f(f HydA; is
Jy HydITs A,

Exercise 4.4.12. Let N be an F; Poisson process and let T, be its n’th event time. Let
H be bounded and predictable. Show that %fot H,ds converges in probability as t tends to
infinity if and only if % > w_y Hr, converges in probability as n tends to infinity, and in the
affirmative, the limits agree.

Exercise 4.4.13. Let M € My and let A € V be predictable. Show that almost surely for
allt >0, [M,Aly = > oo y<; AM;AA, and show that [M, Al € M,.

Exercise 4.4.14. Let A € V' be predictable and let M € MP. Show that the compensator of
Jo My dA, is [, M, dAs.

Exercise 4.4.15. Let X € S and let H be a predictable semimartingale. Show that almost
surely, it holds for allt >0 that (AH - X): = > go; AHAX.
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Exercise 4.4.16. Let W be a one-dimensional F; Brownian motion and let H be bounded,
adapted and continuous. Show that for any fivedt > 0, (Wyrp—W;) 7! t+h H,dW, converges

in probability to Hy as h tends to zero, where we define |, fh H,dW, = (H W)epn—(H-W),.

Exercise 4.4.17. Let X be a continuous process. Lett > 0 and let t} = k:t2_” Letp > 0 and
assume that Zi:l | Xip — Xyn | |P is convergent in probability. Show that Zk 1 X = Xin |9
converges to zero in probabzlzty forq > p.

—1

Exercise 4.4.18. Let 0 < H < 1 and X be a continuous adapted process such that X has
finite-dimensional distributions which are normally distributed with mean zero and such that
for any s and t with s,t >0, EX,X;, = £(t*" + s> — |t — s|*). Such a process is called a
fractional Brownian motion with Hurst parameter H. Show that if H = %, then X has the
distribution of a Brownian motion. Show that if H # %, then X 1is not in cS.

Exercise 4.4.19. Let W be a p-dimensional F; Bmwm’an motion. Let f : RP — R be C2.

Show that f(W;) is a continuous local martingale if % _, (% L(x) =0 for all x € RP.

Exercise 4.4.20. Let W be a one-dimensional F; Brownian motion. Let f : R? — R be C2.
Show that f(t, W) is a continuous local martingale if 2 5F L(t,x)+ : gzé (t,z) =0 for (t,z) € R?.
Show that in the affirmative, it holds that f(t, W) = £(0,0) + ft 9 (5, W) dWs.

Exercise 4.4.21. Let W be a one-dimensional F;y Brownian motion and let f : Ry — R be
continuous. Show that f € T in the sense that the process (t,w) — f(t) is inJ. Fiz t > 0
and find the distribution of fo s) dWs.

Exercise 4.4.22. Let X, Y e S and f,g € C%(R). With f(X); = f(Xi) and g(Y); = g(Y2),
show that [f(X),g(Y)]: = fo Vo) d[X Y5 + 300 oe A (Xs)Ag(Ys) for allt >0
up to indistinguzshabzlzty. Use thzs to zdentzfy the quadratic variation of WP when W is an

Fi Brownian motion and p > 1.

Exercise 4.4.23. Let W be a p-dimensional F; Brownian motion. Find the quadratic co-

variation process of Wtthj fori,j <p.

Exercise 4.4.24. Assume that M € M?® and put ty = kt27". Show that the sequence
Zi:l(Mtk — My, ,)?* converges in L to [M],.
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Chapter 5

Conclusion

In this final chapter, we review our results and give directions for further reading.

We begin by reviewing each chapter by turn and commenting on relevant litterature. As
stated in the introduction, the theory covered here is intended as a short and rigorous path
through the core of stochastic integration theory. The results of Chapter 1 are for the
most part quite standard and can be found in several books on continuous-time stochastic
processes, Karatzas & Shreve (1991) and Rogers & Williams (2000a) are a good sources in
this regard.

Throughout this monograph, progressive measurability is invoked in order to apply Lemma
1.1.12. An interesting observation is that the apparently weaker requirement of being measur-
able and adapted implies the existence of a progressive modification, see for example Section
IV.30 of Dellacherie & Meyer (1978) or Kaden & Potthoff (2005).

In Theorem 1.3.6, Lemma A.3.7 was applied to obtain the existence of the quadratic variation
process for bounded martingales with initial value zero. The method of taking convex com-
binations to obtain convergence has been used several times previously in probability theory,
see for example Lemma A1.1 of Delbaen & Schachermayer (1994) as well as the results in
Delbaen & Schachermayer (1996) and Beiglbock et al. (2012).

The theme of Chapter 2 is that of the “general theory of processes”, and is also covered in
Dellacherie & Meyer (1978), He et al. (1992) and to some degree in Protter (2005). The
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main result of Section 2.1, Theorem 2.1.12, is a version of the PFA Theorem, see Theorem
VI1.12.6 of Rogers & Williams (2000b). In Section 2.2, the o-algebra Fr_ is introduced. For
more on this, see also Chung & Doob (1965).

In Chapter 3, local martingales are introduced. Our proof in Section 3.2 of the existence of the
compensator is based on ideas from Beiglbock et al.  (2012). Other proofs may be obtained
as corollaries of the Doob-Meyer decomposition, see for example Rogers & Williams (2000b)
or Protter (2005) for this approach. Alternatively, an approach based on the predictable
projection mapping may be applied, this approach generally requires the section theorems for
uniqueness of the predictable projection. See He et al. (1992), Rogers & Williams (2000b)
or Elliott (1982) for this approach.

The proof of the existence of the quadratic variation process in Section 3.3 is based on the de-
composition given in the fundamental theorem of local martingales. Alternative approaches
are given in for example Rogers & Williams (2000b) and He et al. (1992), based on con-
sidering the case of M?, in particular Rogers & Williams (2000b) proves a decomposition
of M? into continuous and purely discontinuous parts and proceeds from there. In Prot-
ter (2005) and Jacod & Shiryaev (2003), the stochastic integral is constructed before the
quadratic variation, and the quadratic variation is then introduced as the remainder term in

the integration-by-parts formula.

The construction of the stochastic integral with respect to a local martingale carried out
in Theorem 4.2.8 of Chapter 4 is inspired by the proof given in Chapter IX of He et al.
(1992). However, while He et al. (1992) applies a decomposition into continuous and purely
discontinuous parts and a characterisation of the jump structure of purely discontinuous
martingales based on the predictable projection, we apply the fundamental theorem of local
martingales. In both cases, however, the Riesz representation theorem for M? is invoked
to obtain existence in some part of the existence proof. Alternative approaches are given in
Rogers & Williams (2000b), Jacod & Shiryaev (2003) and Kallenberg (2002), based on first
defining the integral for elementary types of processes and then extending by linearity and
continuity requirements. An entirely different approach to the construction of the stochatic
integral is given in Protter (2005), where the concept of a semimartingale is introduced
as a process where the integral may be defined for left-continuous processes, afterwards
proceeding to prove equivalence with the ordinary definition and finally extending the integral
to predictable and locally bounded processes.

Our proof of Itd’s formula in Section 4.3 is based on the methods used in Protter (2005).
Another approach is given in Rogers & Williams (2000b) based on the integration-by-parts
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formula and approximation by polynomials. Elliott (1982) gives a proof based on successive

approximations of semimartingales by more regular processes.

As regards further reading, Chapter IV of Rogers & Williams (2000b) includes some pointers
for applications of the stochastic integral for continuous semimartingales. For topics covering
the discontinuous case, He et al. (1992) contains several relevant chapters on for example
changes of measure, martingale spaces, stochastic differential equations, martingale repre-
sentation and weak convergence of semimartingales. Protter (2005) also covers many of the
same topics, and also includes a chapter on expansion of filtrations. For a detailed account
of many topics related to martingale theory, see Jacod (1979).
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Appendix A

Appendices

In these appendices, we review the general analysis, measure theory and probability theory
which are used in the main text, but whose subject matter is either taken to be more or less

well-known or taken to be sufficiently different from our main interests to merit separation.

A.1 Measure theory and analysis

We first recall two fundamental results of basic measure theory.

Lemma A.1.1 (Dynkin’s lemma). Let E be some set, and let E be a family of subsets of E
which is stable under intersections. Let H be another family of subsets of E such that E € H,
if A,B € H with A C B then B\ A € H and if (A,,) is an increasing sequence in H, then
U A, € H. Such a family is called a Dynkin class. If E C H, then o(E) C H.

Proof. See Theorem 2.1.3 of Karatzas & Shreve (1991). O

Theorem A.1.2. Let (E,&) be a measurable space. Let A be an algebra generating £, and
let H be such that whenever (H,,) is an increasing sequence in H, then U2 H, € H, and
whenever (H,,) is a decreasing sequence in H, then NS H, € H. We say that H is a
monotone class. If A CH, then € C H as well.
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Proof. See Theorem 1.3.9 of Ash (2000). O

Next, we consider some results on signed measures. Let (E,&) be a measurable space. A
signed measure on (F, &) is a mapping p : € — R such that u(@) = 0 and whenever (A,,) is
a sequence of disjoint sets in £, Y7 | [u(A,)| is convergent and p(USZ,A,) = > 00 | u(Ay).

Theorem A.1.3. Let p be a signed measure on (E,E). There exists a bounded nonnegative
measure |u| on (E,E) such that |p|(A) = sup > | |u(Ay)|, where the supremum is taken
over all mutually disjoint sequences (A,) in € with A = U2 A,,. The nonnegative measure
|| is called the total variation measure of . In particular, |p(A)| < |p|(4) < |p|(E), s

every signed measure is bounded.

Proof. See Theorem 6.2 and Theorem 6.4 of Rudin (1987). O

Lemma A.1.4. Let p and v be two signed measures on a measurable space (E,E). Let
E = o(E), where E is stable under intersections. If u and v are equal on E and satisfy
w(E) = v(E), they are equal on E.

Proof. We apply Lemma A.1.1. Let H = {4 € £|u(A) = v(A)}. We wish to show that H is
a Dynkin class. By our assumptions, u(E) = v(F), and so E € H. If A, B € H with A C B,
we obtain the equality u(B\ A) = u(B) — p(A) = v(B) —v(A) =v(B\ A),so B\ A € H.
Finally, if (A,) is an increasing sequence of sets in H, we find that {4, A3\ A1, A3\ Aa,...}
is a sequence of disjoint sets in H, and therefore,

o0

UpZiAn) = (AL U (U dn \ Anmr)) = p(Ar) + ) p(An \ Anoy)

n=2

= Z (A \ An—1) = v(A1 U (Uplo A \ An1)) = v(UpZ14An),

where the sums converge absolutely by the definition of a signed measure. Thus, U3, A, € H,
and so H is a Dynkin class. Therefore, H = o(E) = &, and so p = v. O

Theorem A.1.5 (Jordan-Hahn decomposition). Let v be a signed measure on (E,E). There
is a unique pair of positive bounded singular measures p* and p~ such that p = p™ — u~,
given by pt = $(|pu|+p) and = = L(|u|—p). This decomposition also satisfies |pu| = p+p~.
We call this the Jordan-Hahn decomposition of L.
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Proof. By Section 6.6 of Rudin (1987) and Theorem 6.14 of Rudin (1987), the explicit
construction of u* and u~ satisfies the requirements of the theorem. For uniqueness, assume
that u = vT — v~, where v and v~ is another pair of singular positive bounded measures.
Assume that v is concentrated on F* and v~ is concentrated on F~, while u™ is concen-
trated on ET and p~ is concentrated on E~, where F'* and F'~ are disjoint and E* and E~
are disjoint. For any A € £, we then have the inequalities u(ANETNF~) =t (ANF~) >0
and u(ANETNF~) = v (AN ET) <0, yielding u(AN ET N F~) = 0, as well as the
inequalities uW(ANE-NFT)=vT(ANE")>0and pf(ANE-NFT)=—pu (ANFT) <0,
yielding u(AN E~ N F*) = 0. Applying these results, we obtain

pHA) = pHANET) =w(ANEY) = u(ANE*NFT)
= pANFY) =vH(AnF*) =vt(A),

so u+ and v are equal, and therefore 4~ and v~ are equal as well. O

Lemma A.1.6. Let pu be a signed measure on (E,E). Let A be an algebra generating E.
Then |u|(E) = sup >_p_, |1(Ax)|, where the sum is taken over finite disjoint partitions (Ay)
of A, and each element Ay is in A.

Proof. We first show that |u|(E) = sup . ,._, |[#(Ax)|, where the sum is taken over finite
disjoint partitions (Aj) of F, and each element Ay is in £. To this end, let € > 0. There is
a countable disjoint measurable partition (A,) of E such that [pu[(E) < e+ > 07 |n(An)].
Since || is a bounded positive measure, the sum Y >~ | |u|(A,) is convergent, and therefore,

there is & such that |u(US2, Au)| = S350 (A0 < Yo |n(Au)| < T2, [ul(An) < <
As all the numbers in the chain of inequalities are nonnegative, we find in particular that

(U An)l = 2202 [1(An)]] < € and thus

|ul(E <€+Z\u |—€+Z\u |+Z|u n)| < 26 + [(Up2 An \+Zlu

and since the family of sets Ai,..., Ax_1, U2 Ay is a finite disjoint partition of £ with each
element in &, and £ > 0 was arbitrary, we conclude that |u|(E) = sup Y. ,_, |#(Ax)|, where
the supremum is over finite disjoint measurable partitions of F.

Next, we show that it suffices to consider partitions with each element in A. Let ¢ > 0,
we need to locate a finite disjoint partition (4,) of E with elements from A such that
lu|(E) < s+2i’:1 |(Ay)|. From what we have just shown, there is a finite disjoint partition
(A,) of E with each A, in £ such that |u|(E) < e+ Zszl |(Ap)|. For any n < k, we may
use Theorem 1.3.11 of Ash (2000) to obtain some B,, € A with |u|(4,AB,) < +e27%, where
the symmetric difference A,,AB,, is defined by A,AB, = (4, N BS) U (AS N By,).
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Now let P denote the set of all subsets of {1,...,k}, and define the set C, for any a € Py,
by putting C, = {r € E| Vn<k:zeB,ifncaandz e B;ifn¢a}. C,is the
intersection of the B,’s with n € a and the BS’s with n ¢ «. In particular, the family
(Ca)aep, consists of mutually disjoint sets. As for each € E and each n < k, we either
have x € B,, or x € BE, the family (Cy)acp, is a finite disjoint partition of F, and as A is
an algebra, Co € A for all a € P;. We claim that [u|(E) < 3e+ 3 cp, [1(Ca)l.

To prove this, we first note that for any n < k, we have

1(A)] = (B < |1(An) — u(By)]

[1(An N Bo) + Ay 01 BS) = (1A N By) + (A5 1 By))
[1(An N BS) = u(AS 0 B)| < [u(Ay 0 BY)| + (A5 0 By)|
< Jul(An OB + |ul(A5 N By) = [ul(A.AB,),

INIA

which is less than $£27%. Therefore, we obtain

k
\ul(E <e+Z|u |<€+Z|u \+Z|Iu W) = Bl <26+ u(B
n=1

Note that B, = UgmeaCq, with each pair of sets in the union being mutually disjoint. We
will argue that |p|(By) < |u|(Cyny) + 1. To see this, consider some a € P, with more than
one element, assume for definiteness that n,m € a with n # m. As the A,’s are disjoint, we
then find

1](Ca)

IN

1 (Br N B) = [pl(Br N An N By) + |pl(Bn N A5, N Byy,)
|| (An N By) + |l (Bn N A7) = |l (An N A7, 0 Br) + |pl(Bn 0 A7)
< (A, 0 B) + [0l(Ba 1 AS) < [0l (AmABy) + |1l (AnAB,),

IN

which is less than %62_k. We now note, using Cy,y C By, that

|N(C{n})| + ‘N(Bn) - lu'(c{n})|

l(Bn)|

IN

However, |ul(Bn \ Cny) = [0l(Bn) — [6l(Cny) = Xheaariny [11(Ca) and as there are less
than 25~ elements in the sum, with each element according to what was alerady proven

has a value of less than £e27%, we find |u|(B,) < |u/(C(ny) + £ We may now conclude
k k

UI(E) < 22+ X5, 10(Bo)| < 32+ S5, u(Cpap)l < 32+ Toep, [1(Ca)|. As £ was

arbitrary, we conclude that |u(E)| = sup 22:1 |(Ay)|, where the sum is taken over finite

disjoint partitions (Ay) of E, and each element Ay, is in A. O
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Next, we consider two results on algebras and o-algebras.

Lemma A.1.7. Let E be some set, and let A be a set family on E. Let A denote the family

of finite unions of elements of A. Assume that

1. A contains E.
2. A is stable under finite intersections.

3. The complements of sets in A are in A.

Then A is an algebra.

Proof. We need to prove that A is stable under finite unions and intersections. The family 4
is stable under finite unions by construction. It will therefore suffice to show stability under
finite intersections. As we have AN B = (AU B°)¢, it will be sufficient to show stability
under complements. Let A € A with A = U}}_; Ag, where A, € A for k < n. By assumption,
Af € A, so A}, = U™ By, for some B;;, € A. We then have

c __ ~n c __ ~n mEg oo mi o m n i
A - ﬂkzl k — ﬂkzl Ui:l Bq{k - U’ilzl Uznll mklelkk.

Since A is stable under finite intersections, we obtain A€ € A, as desired. O

Lemma A.1.8. Let (E,€) be a measurable space endowed with a bounded positive measure

u, and let A be an algebra generating £. For any A € &, it holds that
w(A) = sup{u(B)|B € As, B C A} =inf{u(B)|B € A,,A C B},

where As and A, denotes the family of countable intersections and countable unions of ele-

ments in A, respectively.

Proof. Let H be the family of sets A in £ with the desired approximation property. We wish
to show that H is equal to £. Clearly, H contains the algebra A generating £. Therefore,
by Theorem A.1.2, we may conclude that # is equal to £ if only we can prove that H is a

monotone class.

To this end, we first let (A,) be an increasing sequence of elements in H and we define
A= U5 A,. We wish to show that A € H as well. We first consider the approximation
of A by elements of As;. Fix ¢ > 0. We may use the continuity of u to find n so large
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that u(A\ A,) < 5. Let B € As with B C A, be such that p(A,) < u(B) + 5, we then
obtain p(A) = u(A\ An) + p(A4,) < u(B)+e. As B C A, C A, we obtain the inequality
pu(A) < sup{u(B)|B € As, B C A}. As the other inequality always holds, this leads os to
conclude that p(A) = sup{u(B)|B € As, B C A}, showing that A may be approximated from
the inside by elements of As. Next, we consider the approximation of A from the outside by
elements of A,. For each n, take B,, € A, such that A,, C B, and u(B,\ A4,) < 2~™. Define
B = U2, B, then B € A, as well. Furthermore, we have A = U2 A, C UX B, = B,
and we find

p(B) = lim p(Uf_y By) = lim p(U_y By \ An) + p(An) = p(A) +lim p(U_, Bi \ An).

Here, as (A,) is increasing, (A%) is decreasing, and so we have

p(Up_1Be \ An) <) P(BrNA5) <> P(BpnAg) <) e27% <o,
k=1 k=1 k=1
allowing us to conclude that u(B) < p(A) + ¢, and so u(A) > inf{u(B)|B € A,,A C B}.
And as the other inequality is obvious, we find that we have equality. This finally allows us
to conclude that A € H.

We have now shown that when (A,,) is an increasing sequence of sets in H, then U2 ; A,, € H
as well. To prove the analogous result for decreasing sequences, we first show that H is
stable under complements. To this end, first note that if (B,) is a sequence in .4, then
(US2 1 By)¢ = N2 BE, where (BS) is also a sequence in A. Therefore, B € As if and only if
B¢ e A,. Now let A € H. We then find that

uw(A°) = p(E) —p(A)

— u(E) — sup{u(B)|B € A;, B C A}

= u(E)+inf{—u(B)|B € A;,B C A}

= inf{u(B°)|B € A;,B C A}

= inf{u(B)|B € A,, A° C B},
and in the same manner, u(A°) = sup{u(B)|B € As, B C A°}. Thus A° € H. In order
to complete the proof that H is a monotone class, now assume that (A,) is a decreasing
sequence in H. Then (A¢) is an increasing sequence in H, so from what we already have

shown, US? A € H. By stability under complements, this yields N9, A, € H as well.
Theorem A.1.2 now allows us to conclude that H is equal to £ and so the lemma holds. O

Finally, we introduce integration measures and prove versions of the Tonelli and Fubini

theorems. For these purposes, the following lemma will come in handy. We use the notation
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that for set families E and IF of subsets of sets E' and F', respectively, E x F denotes the family
{AxB|AcE,BecTF}.

Lemma A.1.9. Let (E,€) and (F,F) be two measurable spaces. Let E be a generator for
& and let F be a generator for F. Assume that there are sequences (E,) C E and (F,) CF
such that E = U2 E, and F = U F,. It then holds that E @ F = o(E x F).

Proof. First define E = EU{E} and F = FU{F}. We begin by proving o(E xF) = o(E x F).
The inclusion o (E xF) C o(E x F) is immediate, so it will suffice to show o(E xF) C o(ExF),
and to do so, it will suffice to prove E x F C o(E x F). To this end, let A € E. We then have
AxF, e ExF s0o AXxF =U2AxF, € o(ExTF). Thus, all sets of the form A x F, where
A €E,is in o(E x F). In the same manner, we may argue that all sets of the form E x B,
where B € T, is in o(E x F). Finally, we also have E x F = U2 E, x F,, € 0(E x F). Thus,
E x F C o(E x F), as claimed, yielding o(E x F) = o(E x F).

Now, let H be the o-algebra generated by E x F. From what we have just shown, to prove
the claim of the lemma, it will suffice to prove £ ® F = H. It is immediate that H C £ ® F,
we need to prove the opposite inclusion. To do so, it will suffice to prove £ x F C H. In order
to obtain this, let F’ be the family of sets B € F such that E x B € H. Then I’ is stable
under complements and countable unions, and F C F’. In particular, F € F’. We conclude
that ' is a o-algebra containing F, therefore 7 C F’. This shows that £ x B € H for any
F € F. Analogously, we can prove that Ax F' € H for any A € £. Letting A € £ and B € F,
we then obtain A x B = (A x F)N(E x B) € H, as desired. We conclude £ x F C H and
therefore £ ® F C H, as was to be proved. O

Next, we consider the existence and properties of integration measures. We will restrict our
attention to the case where (E, &) is countably generated in the sense that there exists a

countable generating family for £. We begin by considering a few lemmas.

Lemma A.1.10. Assume that (E,£) is a countably generated measure space. Then, there
exists a sequence of finite partitions (Pn)n>1 of E with P, C & such that (0(Py))n>1 is
increasing and such that € is generated by U5 Py,.

Proof. This is shown on p. 209 of Stroock (2010). O

Lemma A.1.11. Assume that (E,£) is a countably generated measure space. Then, there

exists a countable algebra generating .
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Proof. By Lemma A.1.10, there exists a sequence of finite partitions (Pp)n>1 of E with
Pn C € such that (o(Pp))n>1 is increasing and such that £ is generated by US>, P,,. Then &
is also generated by US2,0(P,,). As P, is finite, o(P,,) is finite as well. Therefore, USZ ;0 (Py,)
is countable, and it is immediate that it is an algebra. O

Lemma A.1.12. Let (v,,) be a family of signed measures on (E,&). Assume that w — v,,(A)
is F measurable for all A € E. Then w — |v,|(A) is also F measurable for all A € £.

Proof. Note that as £ is countably generated, Lemma A.1.11 shows that £ is generated by a
countable algebra. Thus, we are in the setting of Section 2 of Dubins & Freedman (1964).
Therefore, Theorem 2.9 of Dubins & Freedman (1964) yields the result. O

In the following, assume that (E, ) is countably generated. Assume further given a measur-
able space (2, F) endowed with a probability measure P, and let (v,,) be a family of signed
measures on (E,E). Assume that w — v,(A) is F measurable for all A € £ and assume that
Jo 7u|(E) dP(w) is finite. We then say that (1) is a P-integrable F kernel on £. Note that
Jo I7u|(E) dP(w) always is well-defined by Lemma A.1.12.

Theorem A.1.13. Let (v,) be a P-integrable F-kernel on €. There exists a unique signed
measure A on F ® &, called the integration of (v,,) with respect to P, uniquely characterized
by the requirement that for F € F and A € £, A(F x A) fF v,(A)dP(w). If each v, is

nonnegative, \ is nonnegative.

Proof. Note that the proposed expression for \(F x A) is well-defined, as w +— v, (A) is F
measurable for all A € £. Defining v} = 1(|ve,| + v,) and vy = 3(|vw| — 1), we know
from Theorem A.1.5 that v, = v} — v is the Jordan-Hahn decomposition of v,,. By Lemma
A.1.12, we find that w — v} (A) and w — v, (A) are F measurable for all A € £. By Theorem
4.20 of Pollard (2002), there exists two positive measures AT and A\~ on F ® & Such that
forany F e Fand Ae &, AT(F xA) = [Lv] (w) and A™(F x A) = [ v, (A)dP(w).
As [, [vw|(E)dP(w) is finite, both A* and )\ are bounded. Therefore, we may deﬁne
A = AT — A\~ and obtain a signed measure on F ® £ with the desired qualities. Clearly, if
each v, is nonnegative, v is zero for all w and so A~ is zero, such that X is nonnegative in

this case.

Uniqueness follows from Lemma A.1.4, since the class of sets F' x A where FF € F and A € £
forms a generating family for F ® £ which is stable under intersections. O
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In order to obtain Tonelli’s and Fubini’s theorems for integration measures, we first need to

identify the total variation measure of an integration measure.

Lemma A.1.14. Let (v,) be a P-integrable F-kernel on €. There ezists an F ® E-B mea-
surable mapping h : Q@ x E — R taking its values in {—1,1} such that for all w € Q, the

measure v is concentrated on {x € E | h(w,z) = 1} and the measure v, is concentrated on
{z € F|hw,z) =—1}.

Proof. By Theorem 6.12 of Rudin (1987), for each w € €, there exists a £-B measurable
mapping k(w,-) : E — R with values in {—1,1} which is a version of the Radon-Nikodym
derivative of v, with respect to |v,|. Now let (P,)n>1 be a sequence of finite partitions as

given in Lemma A.1.10, and define
Vo (A)

hn(w,z) = > 1A($)m1(\m(fl)>0)'
AeP,

The mapping h,, is F ® £-B measurable. Furthermore, define G = {w € Q | |v,|(E) # 0}.
By Lemma A.1.12, G is F measurable. For w € G, let p, = |v,|/|vw|(E), we then also have

1
o (0, ) = A;n 1A(x)m/k(w,x) ()1 ()0,

From this, we see that h,(w,-) is the conditional expectation of k(w, -) with respect to o(Py,)
on the probability space (F, &, u). By arguments as in Theorem 5.2.7 of Stroock (2010),
hy, then converges p,, almost surely to the conditional expectation of k(w, -) with respect to

(U2 ,0(Py)), which is almost surely equal to k(w, -).

Now define a mapping h : Q@ x E — R by letting h(w, z) be the limit of h,, whenever this exists
and is equal to either —1 or 1 and w € G, and 1 otherwise. Then h is F ® £-B measurable
and takes its values in {—1,1}. Fix w € 2, we need to show that v is concentrated on
{z € F | h(w,z) =1} and v is concentrated on {z € E | h(w,x) = —1}. If w € G, it holds
that v, is zero, so the result trivially holds in this case. Consider instead w € G. As hy(w,-)
converges (i, almost surely to k(w,-) in this case and k(w,-) takes its values in {—1,1}, it
holds in particular that p, almost surely, h(w, ) = k(w,-). Therefore, this also holds |v,|

almost surely, and so we obtain
vi({z € Bl hw,2) =-1}} = yi({z € E|k(w,z)=~1}}
— [ L= kw.s) i) <0

sovt({z € E | h(w,z) = —1}) = 0 and thus v is concentrated on {z € E | h(w,z) = 1}.
Similarly, we may obtain that v is concentrated on {z € E | h(w,z) = —1}. This concludes
the proof. O
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Lemma A.1.15. Let (v,) be a P-integrable F-kernel on €. Let X be the integration of (v,)
with respect to P. The variation measure of X is the integration of the P-integrable F-kernel
(|vw]) on &.

Proof. By Lemma A.1.14, there exists an F ® £-B measurable mapping h : Q x E — R taking
its values in {—1,1} such that for all w € Q, v is concentrated on {z € F | h(w,z) = 1}
and v is concentrated on {x € E | h(w,z) = —1}. Using Theorem A.1.13, let AT and A~ be
the integrations of (v7) and (v ), respectively. By Lemma A.1.4, we obtain A = AT — A™.
Applying Theorem 4.20 of Pollard (2002), we obtain

//1{(w,a:)€ﬂ><E|h(w,:p):fl}dyj(x) dP(w)

= /V:f({(w,x) € QX E | hw,z) =—-1})dP(w),

A {(w,2) € QX E | h(w,x) = —1})

which is zero, so AT is concentrated on {(w,z) € Q@ x E | h(w,z) = 1}. Similarly, A~ is
concentrated on {(w,x) € Q x E | h(w,z) = —1}. Therefore, we find that AT and A\~ are
singular. By the uniqueness statement of Theorem A.1.5, we conclude that A = AT — A~
is the Jordan-Hahn decomposition of \, and thus |A\| = AT + A, also by Theorem A.1.5.
As AT and A~ are the integrations of (v) and (1)), respectively, this shows that || is the

integration of (|v,|), as desired. O

Theorem A.1.16 (Tonelli’s theorem for integration measures). Let P be a probability mea-
sure on (2, F), let (E,E) be a measurable space and let (v,) be a P-integrable F-kernel on
E. Let \ be the integration of (v,,) with respect to P. For any nonnegative F ® £ measurable
function f: Q x E — [0,00], the following holds:

1. The mapping x — f(w,x) is € measurable for each w € .
2. The mapping w — [ f(w,z)d|v,|(x) is F measurable.

3. [ flw,z)dN(w,z) = [ [ flw,z)dv,|(z) dP(w).

Proof. By Lemma A.1.15, |\| is the integration of the P-integrable F-kernel (|vy])weq on €.
Therefore, the result follows from Theorem 4.20 of Pollard (2002). O

Theorem A.1.17 (Fubini’s theorem for integration measures). Let P be a probability mea-
sure on (Q, F), let (E,E) be a measurable space and let (v,,) be a P-integrable F-kernel on &.
Let A be the integration of (v,,) with respect to P. Let f : QX E — R be an F @ £ measurable

function which is integrable with respect to |A|.
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1. The mapping x — f(w,x) is € measurable for each w € ).

2. For P almost all w, the mapping © — f(w,z) is integrable with respect to v,, and
the mapping w — [ f(w,z) dv,(x) is F measurable and P integrable when put to zero

whenever undefined.

3. It holds that [ f(w,z)d\(w,z) = [ [ f(w,z)dv,(z) dP(w).

Proof. For the first claim, see Theorem 7.5 of Rudin (1987). As regards the second claim,
Theorem A.1.16 yields that for each w, x — | f(w, x)\ is € measurable, w — [ |f(w,z)|| dv|(z)
is F measurable and [ [ |f(w,z)||dv,(z)|dP(w) = [|f(w,2)||dA|(w,z), and the latter is
finite by assumption. Therefore, [|f w,x)||d1/w( )| is finite for P almost all w. In par-
ticular, for such w, = +— f(w,x) is integrable with respect to v,. Now let N be the
null set such that [|f(w,z)||dv, ()| is infinite. As w — [|f(w,z)||dr|(z) is F mea-
surable by Theorem A.1.16, we obtain N € F. Now let fT(w,z) = max{f(w,z),0} and
[~ (w,z) = min{f(w,z),0}, and let AT = (J]A|+A) and A~ = $(]A| = A), By Theorem A.1.5,
AT and A~ are then the positive and negative parts of A in the Jordan-Hahn decomposition
of \. Applying Lemma A.1.15, we find that AT is the integration of (v}),cq with respect to
P, and A~ is the integration of (v ),eq with respect to P. We then have

e () / f@r ) dva(z) = 1ye(w) / f (@) dv () — e () / f (@, 2)dfv (x)
o Awel) [ ) ) = 1ye(w) [ £ ()i (o),

where the right-hand side is 7 measurable by Theorem A.1.16. This proves the second claim.
For the third claim, we note that

/f(w,aj)d)\+(w,x)
/1Nc(w)f+(w,x) A (w, 7) —/1Nc(w)f_(w,x) A\ (w, 2)
/ Ly (@) / £ (w, 2) dv (z) dP(w) — / 1ve (@) / £ (w, ) dvt () dP(w)

:/1Nc /fwxdz/ )dP(w //fwa:dv z) dP(w),

where all integrals are well-defined by Theorem A.1.16. By similar calculations, we obtain

the same result for A\~. Adding positive and negative parts, we obtain the proof of the third

claim. O
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Theorem A.1.18. Let H be a nonempty family of random variables. There exists a variable
X such that for allY € H, Y < X almost surely, and if X' is another variable with this
property, then X < X' almost surely. Furthermore, there exists a sequence (X,) € H such

that X = sup,, X,,. X s called the essential upper envelope of H.

Proof. See Theorem 1.13 of He et al. (1992). O

Lemma A.1.19. Let X be some integrable variable. Let G be a sub-o-algebra of F. If
El1pX >0 for all F € G, then E(X|G) > 0 almost surely.

Proof. Pick n € N and define F = (E(X|G) < —1). As E(X|G) is G measurable, we have
F € G and therefore obtain E1pX = ElpE(X|G) < —1P(F). Therefore, P(F) = 0. By
the continuity properties of probability measures, we conclude P(E(X|G) < 0) = 1, so that
E(X|G) > 0 almost surely. O

Lemma A.1.20. Let X > 0. It holds that X has mean zero if and only if X is almost surely

ZET0.

Proof. Clearly, X has mean zero if X is almost surely zero. Assume instead that X has
mean zero. For any n € N, we have EX > EX1(x>1) > LP(X > 1). Thus, we conclude
P(X > 1) =0 for all n, and therefore P(X > 0) = 0, so that X is almost surely zero. [

Lemma A.1.21. Let X and Y be two integrable variables. Assume that for all bounded
variables &, it holds that EX¢ = EYE. Then X and Y are almost surely equal.

Proof. Put § = 1(x_y>0). Then E(X —Y)I(x_y>0) = 0, yielding that (X —Y)1(x_y~0) is
almost surely zero, so (X —Y > 0) is a null set. Similarly, we obtain that (X —Y < 0) is a

null set, leading us to conclude that X and Y are almost surely equal. O

For the next results, recall that for any open set U in R?, C?(U) denotes the set of mappings
f + U — R such that all second-order partial derivatives of f exists and are continuous.
Furthermore, C*°(U) denotes the set of f : U — R such that all partial derivatives of any
order of f exists, and CS°(U) denotes the set of elements in C°°(U) which have compact

support.
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Theorem A.1.22. Let f € C?(RP), and let x,y € RP. Assume that all second-order partial

derivatives of f are uniformly continuous. It then holds that

F) = 13+ D0 5 @) =0+ 5 0D G ) )0y = ) + Rate),

i=1 i=1 j=1

where Ro(w,y) = Y0y 0y vy (y, %) (yi — w:)(y; — ), and

o (P o1
00) = 5 (5o €)= @) )

where £ (x,y) is some element on the line segment between x and y.

Proof. Define g : R — R by g(t) = f(xz + t(y — x)). Note that g(1) = f(y) and g(0) = f(x).
We will prove the theorem by applying the one-dimensional Taylor formula, see Apostol
(1964) Theorem 7.6, to g. Clearly, g € C?(R), and we obtain g(l) 9(0) + ¢'(0) + 39" (s),

where 0 < s < 1. Applying the chain rule, we find ¢/(¢t) = >0, ax Lz +t(y — o)) (y; — ;)
and ¢"(t) = >0, ? 1 ax 83: (x+t(y — z))(yi — x;)(y; — x;). Substituting and writing

&=z + s(y — x), we may Conclude

p p 2
)= 1)+ 3 g =) + 5 33 5 €0~ )0 ).
: i =1 j=1 A

In particular, we find Ro(z,y) = >27_, >0, i (y, @) (yi — x:)(y; — x;), where 7 : R2 — R

ij 1/ &f >’f

where £ of course depends on z and y, as it is on the line segment between the two. This

is defined by putting

proves the result. O

Lemma A.1.23. Let U be an open set in RP and let f € C?*(U). Lete > 0. With || - ||
denoting some norm on RP and d(z,y) = ||z — y||, put F = {z € RP|d(z,U*¢) > e}. There
exists g € C%(RP) such that f and g agree on F.

Proof. Let G = {x € RP|d(x,U°) > §} and H = {x € RP|d(x,U°) > 7}. We first prove that

there exists a mapping x € C°°(RP) such that x is one on F and zero on H¢. From Lemma

2.1 of Grubb (2008) and Section 0.B of Zimmer (1990), there exists a mapping ¢ € C°(RP)

such that pr z)dz =1 and 9 is zero outside of the open euclidean ball B centered at the
g

origin with radlus $- Define x : R? — R by putting x(x pr la(y)¥(xz — y) dy, this is
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well-defined as 1) has compact support, and compact sets have finite Lebesgue measure. We
claim that x satisfies the requirements. Applying the methods of the proof of Proposition
B.3 of Zimmer (1990), we find that x € C°°(RP). Note that by the translation invariance of

Lebesgue measure, we have

x(z) = / Lola - y)uly) dy = /B la(z — y)b(y) dy.

Now, given some z € F', we find that for any y € B, d(z,U¢) < d(z — y,U°) + ||y|| and so
d(x —y,U°) > d(z,U°) = |ly|| > e — 5 > 5. Thus, z —y € G and so x(z) = [z ¥(y)dy = 1.
Conversely, if 2 € H€, it holds that d(z —y,U¢) < d(z,U°) +|ly| < §+5 =5, 502 -y ¢ G,
and x(z) = 0. Thus, x is in C*°(RP) and x(z) =1 when = € F and x(x) = 0 when = € H°.
We now define g : RP — R by putting g(x) = f(z)x(z) when z € U and g(x) = 0 otherwise.
We claim that g satisfies the requirements of the lemma.

To see this, first note that when z € F, g(x) = f(z)x(z) = f(x), so g and f agree on F'.
Therefore, we merely need to check that g is C2. To see this, note that on U, g is the product
of an C? mapping and an C'™ mapping, so g is C? on U. Conversely, as x is zero on H¢, we
find that g is in particular C? on H¢. As H C U, U° C H® and so R? = U U H®. Therefore,
we conclude that g is in C%(RP), as desired. O

A.2 C(Cadlag and finite variation mappings

In this section, we introduce cadlag mappings and finite variation mappings and consider
their connection to pairs of positive singular measures. These types of mappings will be
important in our consideration of continuous-time stochastic processes of finite variation, of
which the quadratic covariation will be a primary example. Consider a mapping f : Ry — R.
We say that f is cadlag if f is right-continuous on R, and has limits from the left on (0, 00).

For t > 0, we write f(t—) for the limit of f(s) with s converging upwards to ¢. By convention,

f(0=) = f(0). We define Af(t) = f(t) — f(t-).

Furthermore, for any mapping f : R, — R, we define the variation of f on [0,¢] by V;(0) =0
and Vy(t) = sup|f(tk+1) — f(tx)], where the supremum is over all partitions of the type
0=ty <--- <t, =t Wesay that f is of finite variation on [0,¢] if V}(¢) is finite. We say
that f is of finite variation if V(t) is finite for ¢ > 0. We say that f is of bounded variation
if sup, V() is finite.

Finally, by FV, we denote the cadlag mappings f : R; — R of finite variation, and by FV|
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we define the elements of FV with initial value zero. By cFV, we denote the elements of FV
which are continuous, and by cFV, we denote the elements of FV which are continuous.
Note that any monotone function has finite variation. Also, it holds that for any increasing
function f : Ry — R with initial value zero, V;(t) = f(¢).

We begin by considering some results solely relating to cadlag mappings.

Lemma A.2.1. Let A be an infinite subset of R. A contains either a strictly increasing

sequence or a strictly decreasing subsequence.

Proof. Assume that A contains no strictly decreasing sequence. Let (t,) be a sequence of
distinct elements in A, then (t,,) does not contain a strictly decreasing sequence either. Define
Sp, = inf>y t, then (s,,) is increasing. Assume, expecting a contradiction, that (s, ) contains
only finitely many different elements. Then (s,) is constant from some point onwards, say
N. For any n > N, we then have min{¢,,,infy>,41 5} = infy>, tp = infr>ni1 ti, so t, >ty
for k > n+ 1. We conclude that (tz)r>r is decreasing. As the elements of (¢,,) are distinct,
(tk)k>n is a strictly decreasing sequence of elements, a contradiction. We conclude that s,
contains infinitely many different numbers. In particular, there is a subsequence (s, ) which

is strictly increasing.

Next, assume, again expecting a contradiction, that s,, does not attain its infimum. Then,
for any € > 0, there exists 5 with k& > n such that s, < tx < s, + ¢. In particular, there
exists a decreasing sequence of distinct elements in {t;};>n. Consisting of distinct elements,
the sequence in fact constitutes a strictly decreasing sequence in A, a contradiction. We
conclude that s, attains its infimum. In particular, s,, = t,, for some my. (t,, ) is then a

strictly increasing sequence in A, since (s, ) is strictly increasing. O

Lemma A.2.2. If f: R, — R is cadlag, then f is bounded on compact sets.

Proof. Tt suffices to prove that f is bounded on [0,t] for ¢ > 0. Assume contrarily that
there is some ¢ > 0 such f is not bounded on [0,¢]. There exists a sequence (s, ) such that
f(sn) is unbounded. In particular, (s,) is infinite and we may assume that |f(s,)| has no
convergent subsequence. By Lemma A.2.1, (s,) has either a strictly increasing subsequence
(Sn, ) or a strictly decreasing subsequence (sy, ). In both cases, f(sp,) is convergent by the
cadlag property, which is in contradiction with the assumption that |f(s,)| has no convergent

subsequence. We conclude that f is bounded on [0, ¢]. O

Lemma A.2.3. Let f : Ry — R be a cadlag mapping and let t > 0. For any € > 0,
|Af(s)| > e only for finitely many s € [0,t]. In particular, f only has countably many jumps.
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Proof. Let ¢ > 0 and ¢ > 0, and assume contrarily that there is a sequence (¢,) in [0, ¢]
such that |Af(¢,)| > ¢ for all n and such that all the numbers ¢,, are distinct. By Lemma
A.2.1, (t,) has a strictly increasing convergent subsequence or (¢,) has a strictly decreasing

convergent subsequence.

Assume first that (¢,) has a strictly increasing subsequence (t,,) with limit s. For any
0 > 0, there exists k such that s — 6 < t,, < s. As |Af(tn,)| > €, we must have either
|f(tn,) = f(s=)| > § or |f(tn,—) — f(s—)| > 5. In any case, we see that there is u with
5 — 06 <u < ssuch that [f(u) — f(—s)| > §. As 0 was arbitrary, this is a contradiction. We
conclude that (¢,) cannot have a strictly increasing subsequence. Analogously, we may prove
that (¢,,) cannot have a strictly decreasing subsequence. We have obtain a contradiction and
conclude that for any € > 0, |Af(s)| > € only for finitely many s € [0,¢]. As we can write
{t > 0|Af(t) # 0} = g2, U2, {t € [0,n]||Af(t)] = 1}, we find in particular that f only
has countably many jumps. O

Lemma A.2.4. Let f : Ry — R be cadlag. Fiz ¢ > 0. For any t > 0, there exists
fs) = fr) <e.

0=1to < <ty =1 such that for i <p, sup;, | <g <1,

Proof. Let € > 0 be given and let A be the set of t > 0 such that the finitely many numbers
exists. We wish to prove that A = (0,00). To this end, first consider some ¢t € A and
let 0 < v < ¢, we will prove that w € A. Let 0 = tg < --- < t, = t be such that
SUpy, <sr<t, |f(8) = f(r)] < efori <p. Let u; =t; Au for i < p. Clearly, for i such that
ti < U, SUP,, | <5<y, [f(8) = f(r)] < e. Let g be the first i such that u; = u, we then have
SUP,, <sru; [F(8) = f(r)] < supy, | <5 cr, [f(5) = f(r)] < e. Therefore, {ug,...,u,} is a
partition of [0,u] such that sup,. <., [f(s) = f(r)| < e Thus, u € A. We conclude
that whenever t € A, u € A as well for all u with 0 < w < t. Next, also note that as f is
right-continuous at zero, it is immediate that A contains (0, d] for some 6 > 0. Combining

our observations, we find that in order to show that A = R, it suffices to show that sup A
is infinite.

To this end, assume that sup A is finite, we wish to obtain a contradiction. Let 7 denote the
supremum. By our previous results, we then have [0,7) C A. Let ,_ denote the left limit
of X at 7. Since X has a left-limit and is right-continuous at 7, there exists § > 0 such that
whenever t € [7—4,7), we have |f(7—)—f(t)| < §,and whent € [1,7+4], | f(7)—-f(t)| < 5. In
particular, for any s,7 € [T —4,7) we have |f(s) — f(r)] < |f(s)— f(r=)|+|f(7—) = f(r)] <&,
and for any s,r € [1,7 4 J), we have |f(s) — f(r)| < [f(s) = f(T)|+ |f(7) — f(r)| <e.

Now, as 7 — § € A, we may pick finitely many numbers 0 = ¢y < --- < t, = 7 — J such



A.2 Cadlag and finite variation mappings 153

that sup,, | <<y, [f(5) = f(r)] < e for i < p. Putting u; = t; for i < p, upr1 = 7 and
Upt2 = T+ 0, we then obtain that that the sequence wy, ..., u,42 shows that 7+ € A. This
is in contradiction with the fact that 7 is the finite supremum of A, and we conclude that

the supremum must be infinite. This concludes the proof. O

Lemma A.2.5. Let f : Ry — R be cadlag. Let t > 0 and let (t})k<k, be a sequence
of partitions of [0,t] with mesh tending to zero. Let A be some subset of [0,t]. Defining
I,={1<k<K,|AN(t}_,,t}] =0}, it holds that

limsupmax  sup  |f(s)— f(r)] <3 sup |Af(x)].
n—oo k€I, ty_ <rs<ty z€[0,t]\A

Proof. Fix t > 0 and consider n > 0. Fix n and k € I,. Using that f is right-continuous,
pick 0 > 0 with ¢?_; + 6 < ¢ such that |f(s) — f(t7_,)| < n whenever s € [t}_,,t}_, +d].
Then, for s € [t}_,,t}_, + 0], we obtain |f(s) — f(t}_,)| < n, and for s € (t}_, + J,t}], we
obtain | f(s) — f(t}_1)| < n+|f(s) — f(t}_, + 0)|. This shows that

sup |[f(s) = f(r)[ <n+ sup |f(s) = f(r)l,

tp_ <r,s<t} ty_ <r,s<tp

and as 1) > 0 was arbitrary, sup;n <, o<in [f(s) = f(r)] < supgn o o<pn [f(s) = f(r)]. Next,
note that

sup [f(s) = f(r)[ < sup [f(s) = f(r)[+ sup [f(tg) = f(r)]-

tr_ <r,s<tp tn_ <r,s<t} tn_ <r<ty

As An(tp_,,t7] = 0, we in particular have t} ¢ A, so

sup [f(tR) = f()] < |AfE)I+  sup  [f(tg—) — f(r)]
th_ <r<ty th_ <r<ty
< sup |Af(@)|+  sup|f(s) = f(r)],
z€[0,t]\ A tp_, <r,s<tp

so that all in all, we obtain

max sup [f(s) = f(tg_y)| < sup [Af(z)|+2max sup [f(s) — f(r)].
k€Intn  <rs<ty zel0,t]\A keln ¢n  <rs<tp

We consider the limes superior of the latter term. Again, fix n > 0. By Lemma A.2.4, there
fs)=f(r) <m

for all i < p. Now let n be so large that for each k < K, each interval [t}_,,t}] contains at

is a partition 0 = sg < --- < s, = t with the property that max,, <, s<s,

most one element of {sq,...,sp,}, this is possible as the mesh of the partitions tend to zero.
Let k € I,,. If (t}_,,t}) does not contain any of the points in {so,...,sp}, then (t}_,,t}) is

included in [s;_1,s;) for some i and so sup;n ;. ocpn [f(s) = f(r)| < n. Contrarily, assume
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that (t7_,,t}) contains some s;. Let tf_, <r,s <tf. Ift}_ |, <r,s <s;ors; <r,s <ty
we obtain |f(s) — f(r)] < n. If instead ¢}, <7 < s; < s < t}, we obtain

[f(s) = F()l < 1F(s) = fls)l + [ f(si) = f(r)]
< FGs) = flsol + [AF(so)| + [ f(si=) = f(r)]
< 2+ [AF (sl

and similarly for ¢} | < s <s; <r <t}. As we have assumed s; € (£}_,,t}) and k € I,,, we
have s; ¢ A, so |Af(si)| < supgejo g\ [Af(2)]. Allin all, we obtain that for n large enough
and for all k € I, for such n, supyn oy sepn [£(8) = f(r)] < 20+ supgepo gy a |Af(2)]. From
this, we conclude

limsupmax  sup  [f(s) — f(r)| < sup |Af(2)],
n—oo k€I, t2_1<7',3<tg zE[O,t]\A

and combining this with our earlier results, we obtain the desired result. O

Lemma A.2.6. Let (f,) be a sequence of bounded cadlig mappings from Ry to R. If (fn)
is Cauchy in the uniform norm, there is a bounded cadlag mapping f from Ry to R such
that sup,> | fn(t) — f(t)| tends to zero. In this case, it holds that sup,~q | fn(t—) — f(t—)| and
sup;>q |Afn(t) — Af(t)] tends to zero as well.

Proof. Assume that for any ¢ > 0, for n and m large enough, sup;~ [ fn(t) — fm(t)| < e. This
implies that (f,,(t))n>1 is Cauchy for any ¢ > 0, therefore convergent. Let f(¢) be the limit.
Now note that as (f,,) is Cauchy in the uniform norm, (f,) is bounded in the uniform norm,
and therefore sup,~q | f(t)| < sup,,>1 sup;>q |fn(t)], so f is bounded as well. In order to obtain
uniform convergence, let € > 0. Let k be such that for m,n >k, sup,>¢ | fn(t) — fm(t)| < €.
Fix ¢ > 0, we then obtain for n > k that |f(t) — fn(t)] = limy, |fim(t) — fu(t)] < e. Therfore,
sup;>q [f(t) — fa(t)| < €, and so f, converges uniformly to f.

We now show that f is cadlag. Let ¢t > 0, we will show that f is right-continuous at ¢. Take
€ > 0 and take n so that sup;>q [ f(t) — fu(t)| < e. Let 6 > 0 be such that |f,(t) — fu(s)| < e
for 5 € [t,+ 6], then [ () — ()| < |F(5) — fal)] + |falt) = fa(s)] + |fuls) — F(5)] < 32
for such s. Therefore, f is right-continuous at t. Now let ¢ > 0, we claim that f has
a left limit at ¢. First note that for n and m large enough, it holds for any ¢t > 0 that
Fa(t=) = fon(t=)] < 5uPys | fa(8) — Fn(t)]. Therefore, the sequence (f, ()1 is Canchy,
and so convergent to some limit {(¢). Now let ¢ > 0 and take n so that sup,~ [ f(t)—fu(t)] < €
and | fn(t—) —&(t)| < e. Let 6 > 0 be such that ¢t —§ > 0 and such that whenever s € [t —6,1),
()= Falt=)] < &. Then |£(s)~€(1)] < |F()— FalS)]+1fn(s) — Fu (=) || fult—) —€(1)] < 3¢
for any such s. Therefore, f has a left limit at ¢. This shows that f is cadlag.
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Finally, we have for any ¢ > 0 and any sequence (s,) converging strictly upwards to ¢ that

[f(t=) = fu(t=)] = Timp, [ (sm) = fa(sn)| < supysq | £ () = fa(B)], 50 supsg [f(E=) = fu(t—)]

converges to zero as well. Therefore, sup,q |Af(t) — Af,(t)| converges to zero as well. [

Lemma A.2.7. Let (f,) be a sequence of nonnegative increasing cadlag mappings from Ry
to R. Assume that Y | fn converges pointwise to some mapping f from Ry — R. Then,
the convergence is uniform on compacts, and f is a nonnegative increasing cadlag mapping.

If f(t) has a limit as t tends to infinity, the convergence is uniform on R.

Proof. Fix t > 0. For m > n, we have

m

n m m
sup Y fils) =D fels)| = sup Y fuls)= > falt),
0<s<t 1 k=1 OSSStk: +1 k=n+1

which tends to zero as m and n tend to infinity. Therefore, (3_;_, fx) is uniformly Cauchy
on [0,t], and so has a cadlag limit on [0,¢]. As this limit must agree with the pointwise
limit, we conclude that Y, _, fi converges uniformly on compacts to f, and therefore f is

nonnegative, increasing and cadlag.

It remains to consider the case where f(t) has a limit f(oo) as t tends to infinity. In this
case, we find that lim; f,,(¢) < lim; f(¢t) = f(00), so fn(¢t) has a limit f,(c0) as ¢ tends to

infinity as well. Fixing n > 1, we have

ka(oo) = Ztligfk(t):}ggoz}ck(t) < lim f(t) = f(c0).
k=1 k=1 k=1
Therefore, (fi(c0)) is absolutely summable. As we have

:%12'&) Z fk(t)z Z fk(oo)7

=" k=n+1 k=n-+1

m

> Fe®) = felt)
k=1

k=1

sup
o<t

we find that (3}_7_, fx) is uniformly Cauchy on R, and therefore uniformly convergent. As
the limit must agree with the pointwise limit, we conclude that f,, converges uniformly to f

on R;. This concludes the proof. O

Next, we consider cadlag finite variation mappings, in particular introducing the integral

with respect to such a mapping.

Lemma A.2.8. If f € FVy, then V; is cadlag and AVi(t) = |Af(t)|. If f € cFVy, Vi is

continuous.
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Proof. That V; is cadlag when f € FV, and V; is continuous when f € cFV, follows
from Theorem 13.9 of Carothers (2000). It remains to prove that AVy = |Af(t)]. We
may restrict our attention to ¢ > 0. We will show Vy(t) = Vy(t—) + |Af(t)|. First, note
that Vy(t—) = sup > p_, |f(tx) — f(tr—1)|, where (¢;) is a partition of [0, s] for some s < .
Now consider a sequence of partitions of [0,¢], 0 = " < ... < ¢ =t, such that we have
Vi(t) = limg, > [f(E7) — f(t7,)]. We can assume without loss of generality that ¢} _;
tends to t. We then have

Mom —

Vi(t) = Tim|f(6) = £t DI+ D P = fE)]
k=1
< Vi(t=) +lm | f(8) = f(t7, 1) = Vi(t=) + [AF(D)]-

On the other hand, let (P,) be a sequence of partitions of [0,t), P, = (t7*,...,t" ), such

that Vy(t—) = lim,, Y07 [ F(E7) — f(¢,)|. Here, we can assume without loss of generality
that ¢ tends to t. We then obtain

Vi(t=) + AFO] = lim |F(2) — F(E)] +1m > £ — FH)] < Vi),
k=1
This proves the lemma. O

Theorem A.2.9. Let f € FVy. There is a unique decomposition f = f+ — f~ such that f+
and f~ are increasing functions in 'V with the property that there exists two unique positive
singular measures ,u}" and Iy with zero point mass at zero such that for any 0 < a < b,
uj{(a,b] = fT(b) — f*(a) and py(a,b] = f7(b) — f~(a). The decomposition is given by
fr= %(Vf +f)and f~ = %(Vf — f). In particular, the measures u? and p; are finite on
bounded intervals, and (,u;cr + uy)(a, 0] = Vi(b) — Vi(a).

Proof. We first show that the explicit construction of f+ and f~ satisfies the properties
required. It is immediate that f* and f~ are increasing and zero at zero, and so, as monotone
function are of finite variation, we conclude that f+ and f~ are in FVy, the cadlag property
being a consequence of Lemma A.2.8. By Theorem 1.4.4 of Ash (2000), there exists unique
nonnegative measures u}f and Iy with zero point mass at zero such that for any 0 < a < b,
pf(a,b] = F+(6) — £+ (a) and iy (a,6] = F=()~ F~(@). Then (uf +47)(a,5] = Vy(b)~ Vy(a)
as well. It remains to prove that u}“ and p, are singular, and to this end, it suffices to prove

that the measures are singular on [0, ] for any ¢ > 0.

To do so, fix t > 0. Put u? = u? — py on By, then u? is a signed measure on B;, and
for any 0 < a < b <t, p(a,b] = f(b) — f(a). We consider the total variation of u}. Fix



A.2 Cadlag and finite variation mappings 157

0 <a<b<tandlet A be the set of finite unions of intervals of the form (c,d] with
a<c<d<b, Ais an algebra generating the Borel-o-algebra on (a,b]. Lemma A.1.6 shows
that we have |uf|(a,b] = sup 22:1 |1 (An)|, where (Ay) is a finite disjoint partition of (a,d]
with elements from A. In particular, we obtain |u%[(a,b] < Vi(t), and as we trivially have
Vi(t) < |pfl(a,b], we have equality. Thus, |uf|(a,b] = Vi(b) — Vi(a). Let (u%)* and (u})~
be the Jordan-Hahn decomposition of Theorem A.1.5, we then obtain

(1) " (a,0) = 5(Ipfl(a, 0] + iy (a,b]) = 5(Vy(b) — Vi(a) + f(b) — f(a)) = pf (a, ],

and so we find that (u%)* and M? agree on B;. Analogously, (u})” and p} agree on By as
well. As the components of the Jordan-Hahn decomposition are singular, we conclude that

,u‘f" and py are singular on [0, ¢], and so u}' and py are singular measures.

It remains to prove uniqueness. Assume that f = g7 — g~ is another decomposition with
the same properties. Let ij and vy be the two corresponding singular positive measures.
As earlier, we may then define v/} = 1/;{ — vy on B;. Then v} and pf are equal, and so in
particular, we have the Jordan-Hahn decompositions ,uﬁc = ,u;{ — Wy and M? = y} = 1/;{ — vy
on B;. By uniqueness of the decomposition, we conclude u}' = V;_ and By =vg, and so

ft=g" and f~ =g, proving uniqueness. ]

Theorem A.2.9 shows that cadlag finite variation mappings with initial value zero correspond
to pairs of positive singular measures. As stated in the theorem, for any f € FV(, we denote
by fT and f~ the increasing and decreasing parts of f, given by f* = %(Vf + f) and
= %(Vf — f). Furthermore, we denote by ,u‘f" and Wy the two corrresponding positive
singular measures, and we put |u¢| = ut + = and call |pf| the total variation measure of f.
By Theorem A.2.9, |us| is the measure induced by the increasing function Vy using Theorem
1.4.4 of Ash (2000). As u? and p; has finite mass on bounded intervals, so does |pfl, in
particular we have |uf|([0,t]) = V¢(t) according to Theorem A.2.9. Also note that if f is

increasing, Vy = f and so u~ is zero.

These results lead to a concept of integration with respect to cadlag functions of finite varia-
tion. Let f € FV( and let h: Ry — R be some measurable function. We say that h is inte-
grable with respect to f if fot |h(s)|d|pf|s is finite for all ¢ > 0, and in the affirmative, we put
fot h(s)df(s) = fot h(s)d(u})s — fot h(s)d(uy)s and call fot h(s)df(s) the integral of h with
respect to f over [0,t]. Furthermore, we denote by fot h(s)| dfs| the integral fot h(s)d|ug]s.
Next, we consider some further properties of finite variation mappings and their integrals.

Lemma A.2.10. Let f € FVy. Then |f(t)| < Vi(t) for allt > 0.
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Proof. As{0,t} is a partition of [0, ], | f(¢)| = | f(t)—f(0)] < sup|f(tr)—f(te—1)| = Vi(t). O

Lemma A.2.11. Let f € FVq. Ifg: R™ — R is continuous, then g is integrable with respect
to f, and for each t > 0 and sequence of partitions 0 =ty < --- < t,, = t, the Riemann sums

Y oreq 9(tk—1)(f(tx) — f(tk—1)) converge to fo s)df(s) as the mesh maxg<y |tp — tx—1| of
the partition tends to zero.

Proof. As g is continuous, ¢ is bounded on compacts, and therefore ¢ is integrable with
respect to f. We have

n

D at-)(f(te) = f(th)) = thk OiF (1o te]) = D gt py (ts-1,ta])
k=1

k=1 k=1

t t
= s d,u+—/ Spduy,
/0 nEry o nErf

where s, =Y 1_; 9(tk—1)1(t,_,.¢,]- As the mesh tends to zero, s, tends to g by the continuity
of g. As g is bounded on [0, t], two applications of the dominated convergence theorem yields
the result. O

Lemma A.2.12. Let f € FVq and let h be integrable with respect to f. It then holds that
| Jo P(s)dfs] < [o [R(s)][dfs]-

Proof. We find

t t t t
[rear] = | [uoang - [ nea] <| [ 06|+ | [ 06 )
0 0 0 0 0
t t t
< [+ [ welang = [ e,
and the latter is what we denote by fg [h(s)|] dfs]- O

Lemma A.2.13 (Integration by parts). Let f,g € FV, then for anyt >0,
F(t)g(t) = / F(5-) dg, + / dfe+ Y Af(s)Ag(s)
0<s<t

where the sum converges absolutely.

Proof. To obtain the absolute convergence of the sum, we note that Lemma A.2.8 and the

fact that V; and V; are both increasing functions allows us to conclude

ST IAL()Ag(s) < D AVE(s)AV(s) S Vi) > AVy(s) < Vi(t)V,(t).

0<s<t 0<s<t 0<s<t
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For the proof of the integration-by-parts formula, see Section IV.18 of Rogers & Williams
(2000D). O

Lemma A.2.14. Let f € FVg be increasing, let uy be the positive measure induced by f
and let g : Ry — R be measurable. Define 8 : Ry — R by 5(s) = inf{t > 0|f(t) > s}. Then
g is integrable with respect to py if and only if s — g(B(s))1(5(s)<oc) is Lebesgue integrable,

and in the affirmative case,

/ " gy dus(t) = / " G(B(5) Lsey <o .
0 0

Proof. First note that the conclusion is well-defined, since 3 is increasing and thus measur-
able. As the set of g such that the result holds is a vector space stable under pointwise
increasing convergence of nonnegative mappings, it will suffice to prove the results for the
mapping g = 1jg ), u > 0. Therefore, let u > 0. First off, we have fooo i, (t) dpeg (t) = f(u).
To analyze the expression containing f3, first note that since 1y, is well-defined in infinity
as zero, we can write [~ 1jg.4(8(5))1((s)<o0) ds =[5 1jo,u(B(s))ds. Next, note that if
B(s) < t, then f(t) > s. And if (s) = t, there is a sequence t,, converging downwards to ¢
such that f(t,) > s. By right-continuity, f(¢) > s. In total, we conclude that if 8(s) < ¢,
then f(t) > s. Likewise, if f(t) > s, then 3(s) < t. We therefore obtain

| oG as = [ 1000 ds = s,
as desired. O

Lemma A.2.15. If f € FVy, then V; can be written as Vy(t) =sup Y _, |F(tg) — F(tx—1)],

where the supremum is taken over partitions in Q4 U {t}.

Proof. Tt will suffice to prove that for any ¢ > 0 and partition (tg, . .., t,), there exists another
partition (4o, a) such that | X7 (k) — F(te-1)| — Xpoy [f (@) = Flae-1)ll < & To
this end, choose 0 parrying 5~ for the right-continuity of F' in the points g, ...,t,_1. Let,
for k < n, g be some rational with g > t; and |q — tx| < 6, and put ¢, = t,,. It then holds
that |(f(tx) — f(trk-1)) — (f(ar) — f(ar-1))| < £, and since | - | is a contraction, this implies
1f(te) = f(te—1)| = [f(ar) — flar—1)|| < 5, finally yielding

n

D 1f(tR) = Flt-) = D 1f(ar) = flar—)]
k=1

k=1
< D) = )l = [F(ar) = Fla-)]] < e,
k=1

proving the result. O
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Lemma A.2.16. Let f : Ry — R be cadlag. If f has finite variation, Zo<s§t [Af(s)P is
finite for all p>1 and t > 0. If f has bounded variation, ) _, |Af(t)|P is finite as well.

Proof. We first prove the claim in the case where p = 1. First assume that f has finite
variation and fix ¢ > 0. By Lemma A.2.3, f has only countably many jumps on [0,¢], let
(t) be an enumeration of the jumps of f on [0,¢]. Fix n, let € > 0 and let s1,...,s, be the
ordered values of t1,...,t,. Defining sg = 0, for each k < n, take uy € (sg_1, sx) such that
[ f(sk) = flur)] — [Af(sx)|| < 5. We then have

STIALE) =Y IAF (s < e+ D 1f(sk) — flur)] < Vi(t) +e,
k=1 k=1 k=1

as the set (Sg, U1, $1,...,Un, Sn,t) constitutes a partition of [0,¢]. As e > 0 was arbitrary, we
conclude >3 |Af(ty)| < Vi(t). As n was arbitrary, this shows Y., |Af(s)] < Vi(t),
so the sum converges. In the case where f has bounded variation, we can apply the same

argument to obtain ) ,_, |Af(t)| < Vy(oc0), so the sum also converges in this case.
Now let p > 1. In the case where f has finite variation, fix ¢ > 0 and note that by Lemma

A.2.3, f only have finitely many jumps of magnitude larger than 1, say t¢1,...,%,. We then
obtain

YA = Y IAfE)P+ Y 1AL asei<)

0<s<t k=1 0<s<t
< S CIAFEIP+ D AL,
k=1 0<s<t

which is finite by what we already proved. Finally, assume that f has bounded variation.
In this case, f can only have finitely many jumps larger than 1 on all of R, so the same
argument as above applies to show that ) _, |Af(£)|P is finite. O

The following two results which will aid us in the proof of the Kunita-Watanabe inequality.

Lemma A.2.17. Let o,y > 0 and 8 € R. It then holds that |3| < /o /7 if and only if
ANa+2X\8+~ >0 for all X € Q.

Proof. First note that by continuity, the requirement that A2a +2A3 4+~ > 0 for all A € Q
is equivalent to the same requirement for all A € R.
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Consider first the case a = 0. If [3| < /o /7, clearly 8 = 0, and the criterion is trivially
satisfied. Conversely, assume that the criterion holds, which in this case is equivalent to
2\8 4+~ >0 for all A € Q. Letting A tend to infinity or minus infinity depending on the sign
of B, the requirement that v be nonnegative forces 8 = 0, so that § < y/a,/7. This proves
the result in the case a = 0. Next, consider the case o # 0, so that a > 0. The mapping

A2a + 205 + v > 0 takes its minimum at —g, and the minimum value is

2 2
2 1
inf Na+ 203+ = (_ﬁ> a- 22 +y=—(ay - 8%,
AER a a «
which is nonnegative if and only if |3| < y/a, /4. This proves the result. O

Lemma A.2.18. Let f,g,h : Ry — R be in FVy, with f and g increasing. If it holds
for all 0 < s < t that |h(t) — h(s)| < \/f(t) — f(s)\/g(t) — g(s), then for any measurable
z,y : Ry — R, we have

[ wetowenianon < ([ oo df(t))% ([ wo2astn)

Proof. Let py, pg and py be the measures corresponding to the finite variation mappings f,
g and h. Clearly, the measures 1y, g and py are all absolutely continuous with respect to
v = s+ pg + |ptn]. Then, by the Radon-Nikodym Theorem, there exists densities ¢y, ¢4
and ¢y, of the three measures with respect to v, and it therefore suffices to prove

T laty@len®lav®)) < ([ sresmav® ) ([ uwre,mavm).
0 0 0

To this end, we wish to argue that |¢,(t)| < /@ (t)\/pg(t), almost everywhere with respect
to v. By Lemma A.2.17, this is equivalent to proving that almost everywhere in ¢ with
respect to v, it holds that for all A € Q that A2 () + 2Apn(t) + g(t) > 0. As a countable

intersection of null sets is again a null set, it suffices to prove that for any A € Q, it holds

2

that A0 (t) + 2Xpn(t) + @4(t) > 0 almost everywhere with respect to v. However, for any
0 < s <t, we have

/ /\2<pf(t) + 2o () + g (t) dr(t) = )\QMf(s,t] + 2up (s, t] + pg(s,tl,

and as |pn(s,t]] < /ps(s, t]\/1g(s,t] by assumption, the above is nonnegative by Lemma
A.2.17. By an extension argument, we obtain that [, N@(t) + 2 ¢n(t) + @q(t) dv(t) > 0
for any A € By, in particular A2p(t) + 2Xpn(t) + ¢4 () > 0 almost everywhere with respect

to v. Thus, we finally conclude |5 (t)| < \/9f(t)\/@q(t). The Cauchy-Schwartz inequality
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then immediately yields

/Ooo [z()y(@)llen ()] dv(t) < /Ooolx(t) er(Olly(t)y/eq ()] dv(?)

</ooo (t)*¢s(t) dz/(t)) 2 </OOO y(t) 20, (t) dy(t)> 3

([ ewrasn) é ([ v df(t)>; 7

as desired. ]

IN

Lemma A.2.19. Let f : Ry — R be some cadlag mapping. Let U(f,a,b) denote the number

of upcrossings from a to b of f, meaning that
U(f,a,b) =sup{n| 30<s1 <t1 <---8, <tpn: f(sr)<a,f(te) > bk <n}.

It holds that f(t) has a limit in [—o0,00] as t tends to infinity if U(f,a,b) is finite for all
a,b e Q with a < b.

Proof. Assume that U(f,a,b) is finite for all a,b € Q with a < b. Assume, expecting a
contradiction, that f(¢) does not converge to any limit in [—o00,00] as ¢ tends to infinity.
Then liminf; f(¢) < limsup, f(¢). In particular, there exists a,b € Q with a < b such that
liminfy, f(¢) < a < b < limsup, f(t).

Now consider U(f, a,b), we wish to derive a contradiction with our assumption that U(f, a,b)
is finite. If U(f,a,b) is zero, either f(t) > a for all ¢ > 0, or f(t) < a for some t and
f(t) < b from a point onwards. In this first case, liminf; f(¢) > a, and in the second case,
limsup, f(t) < b, both leading to contradictions. Therefore, U(f, a,b) must be nonzero. As
we have assumed that U(f, a, ) is finite, we obtain that either f(¢) > a from a point onwards,
or f(t) < b from a point onwards. In the first case, liminf; f(¢) > a and in the second case,
limsup, f(t) < b. Again, we obtain a contradiction, and so conclude that f(t) must exist as

a limit in [—oo, 00]. O

A.3 Convergence results and uniform integrability

In this section, we recall some basic results on convergence of random variables. Let (2, F, P)
be a probability triple. Let X,, be a sequence of random variables and let X be another
random variable. By £P, p > 1, we denote the variables X where E|X|P is finite. If X, (w)
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converges to X (w) for all w except on a null set, we say that X,, converges almost surely to
X and write X,, &% X. If it holds for all £ > 0 that lim,, P(|X,, — X| > ¢) = 0, we say that
X, converges in probability to X under P and write X, Lox 1 lim, E|X,, — X|? =0,
we say that X,, converges to X in £P and write X, £ x. Convergence in £P and almost
sure convergence both imply convergence in probability. Convergence in probability implies
convergence almost surely along a subsequence.

The following lemmas will be useful at various points in the main text.

Lemma A.3.1. Let X,, be a sequence of random variables, let X be another random variable

and let (F,) € F. Assume that X,1p, N X1p, for all k > 1 and that lim, P(FY) = 0.
P

Then X,, — X as well.

Proof. For any € > 0, we find

P(X,—X|>¢)

P((|Xn — X| > £) N Fy) + P((|Xn — X| > £) N FY)
< P(|Xn1Fk _X]-Fk| > 5) +P(F]§),

and may therefore conclude limsup,, P(| X, — X| > €) < P(FY). Letting k tend to infinity,
we obtain X, EiNS'S O

Lemma A.3.2. Let (X,,) and (Y,) be two sequences of variables convergent in probability
to X andY, respectively. If X,, <Y, almost surely for all n, then X <Y almost surely.

Proof. Picking nested subsequences, we find that for some subsequence, X,,, tends almost
surely to X and Y}, tends almost surely to Y. From the properties of ordinary convergence,
we obtain X <Y almost surely. O

Next, we consider the concept of uniform integrability, its basic properties and its relation to
convergence of random variables. Let (X;);cr be a family of random variables. We say that
X, is uniformly integrable if it holds that

lim SupE|Xi|1(|Xi\>)\) =0.

A—=00 4T
Note that as sup,c; E|Xi|1(x,|>x) is decreasing in ), the limit always exists in [0, 00]. We
will review some basic results about uniform integrability. We refer the results mainly for

discrete sequences of variables, but many results extend to sequences indexed by R as well.
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Lemma A.3.3. Let (X;)icr be some family of variables. (X;) is uniformly integrable if and
only if it holds that (X;) is bounded in L', and for every ¢ > 0, it holds that there is § > 0
such that whenever F € F with P(F) < 6, we have E1p|X;| <e for alli e 1.

Proof. First assume that (X;);er is uniformly integrable. Clearly, we then have

IN

sup E|.X;|

sup E|X;|1(x,1>x) +sup Bl Xi[1(x;1<n)
i€l el iel

< A +sup B[ XG[1(x, >0
icl

and as the latter term converges to zero, it is in particular finite from a point onwards, and
so sup;¢; E|X;| is finite, proving that (X;) is bounded in £'. Now fix € > 0. For any A > 0,
we have EIF‘XZ| = E1F|Xi‘1(|X,-|>)\) + E1F|Xi|1(|Xi|§)\) < SUP;er E|X¢|1(|X”>)\) + )\P(F)

€

5y, We obtain

Therefore, picking A so large that sup;c; E|X;|1(x,/>x) < § and putting 6 =
Elp|X;| <eforall i € I, as desired.

In order to obtain the converse, assume that (X;);cr is bounded in L' and that for all
e > 0, there is § > 0 such that whenever F' € F with P(F) < ¢, we have Elp|X;| < ¢
for all i € I. We need to prove that (X;);cs is uniformly integrable. Fix ¢ > 0, we wish
to prove that there is A > 0 such that sup;c; F|X;|1(x,j>x) < €. To this end, let § > 0 be
such that whenever P(F') < ¢, we have Elp|X;| < ¢ for all i € I. Note that by Markov’s
inequality, P(|X;| > A) < +E|X;| < §sup;; E|X;|, which is finite as (X;);es is bounded
in £!. Therefore, there is A > 0 such that P(|X;| > \) < § for all i. For this A\, we then
have E|X;|1(x,>x) < ¢ for all i € I, in particular sup,c; E|X;|1(x,>x) < € for this A and
all larger A as well, proving limy o sup;c; E|X;|1(|x,;>») = 0 and thus proving uniform
integrability. O

Lemma A.3.4. The property of being uniformly integrable satisfies the following properties.

1. If (X})ier is a finite family of integrable variables, then (X;) is uniformly integrable.
2. If (X)ier and (Yj) e are uniformly integrable, then their union is uniformly integrable.
3. If (X;)ier and (Y;)icr are uniformly integrable, so is (aX; + BY;)ier for o, B € R.

4. If (Xi)icr ts uniformly integrable and J C I, then (X;);cs is uniformly integrable.

5. If (X;)ier is bounded in LP for some p > 1, (X;)icr is uniformly integrable.

6. If (X;)ier is uniformly integrable and |Y;| < |X;|, then (Y;)ier is uniformly integrable.
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Proof. Proof of (1). Assume that (X;);cs is a finite family of integrable variables. The
dominated convergence theorem then yields

lim supE|X 11(1x;50) < hm ZE\X I1(1x:|>x) = ZE hm | X101 x, 150

A—o0 ;¢
zeI el

which is zero. Therefore, (X;)es is uniformly integrable.

Proof of (2). As the maximum function is continuous, we find
lirn max{sup E‘Xi|1(|xi|>/\)7S.uLI])E|}/J'|1(|Yj\>/\)}

= max{ lim supE\X |1(|X |>A)5 lim SlelgE|Y}|1(‘yj‘>)\)}7
0

A—00 icel

which is zero when the two families (X;);c; and (Yj);cs are uniformly integrable, and the
result follows.

Proof of (3). Assume that (X;);c; and (Y;);es are uniformly integrable. If o and 3
are both zero, the result is trivial, so we assume that this is not the case. Let ¢ > 0.
Using Lemma A.3.3, pick § > 0 such that whenever P(F) < §, we have the inequalities
Fl1p|X;| <e(lal+|8])7! and E1g|Y;| < e(|al + |B])~! for any i € I. Then
Elp|aX; + 8Yi| < |a|Elp|X;| + |B|E1r|Yi|
< lale(lal + 87"+ [Ble(lal +18) 7! <,

so that by Lemma A.3.3, the result holds.

Proof of (4). As J C I, we have sup,c; E|X;[1(x,>x) < sup;es E|Xill(x,|>x), and the
result follows.

Proof of (5). Assume that (X;);cs is bounded in £ for some p > 1. We have

lim sup E|X;[1(x,/>x) < hm M =P sup E|X; [P L(x,1>0) <bupE|X | hm AP,

A— 00 icl el

which is zero, as p — 1 > 0, so (X;);es is uniformly integrable.

Proof of (6). In the case where (X;)cs is uniformly integrable and (Y;);cs is such that
[Y;| < | X4, we get E|Yi|l(y,>x < E|Xi|l(x,|>x) for all 4, and it follows immediately that
(Y;)ier is uniformly integrable. O

Lemma A.3.5. Let (X,) be a sequence of random variables indexed by N, and let X be

another variable. X,, converges in L' to X if and only if (X,,) is uniformly integrable and
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converges in probability to X. If (X;) is a sequence of random variables indexed by Ry, X;

converges to X in L' if (X;) is uniformly integrable and converges in probability to X .

Proof. Consider first the discrete-time case. Assume that X,, converges to X in £!, we need
to prove that (X,) is uniformly integrable. We use the criterion from Lemma A.3.3. As
(X,) is convergent in £, (X,,) is bounded in £!, and X,, converges to X in probability. Fix
e > 0 and let m be such that whenever n > m, E|X,, — X| < % As the finite-variable family
{X1,..., Xon, X} is uniformly integrable by Lemma A.3.4, using Lemma A.3.3 we may obtain
d > 0 such that whenever P(F) < 4§, Elp|X| < 5 and Elp|X,| < § for n < m. We then
obtain that for all such F € F,

sup E1F|Xn| < sup E1F|Xn| =+ sup E1F|Xn|

n n<m n>m
< %+E1F|X|+Sgp E1F|Xn7X|
< Z+sup E|X, - X|<e,

n>m

so (X,,) is uniformly integrable.

Consider the converse statement, where we assume that (X,,) is uniformly integrable and
converges to X in probability. As (X,,) is uniformly integrable, (X,,) is bounded in L.
Using that there is a subsequence (X, ) converging to X almost surely, we obtain by Fatou’s
lemma that E|X| = Elimy |X,,| < liminf; E|X,,,| < sup,, E|X,]|, so X is integrable. By
Lemma A.3.4, (X,, — X) is uniformly integrable. Let ¢ > 0. Using Lemma A.3.3, we pick
4 > 0 such that whenever P(F) < §, we have Fl1p|X,, — X| < e. As X, £, X, there is
m such that whenever n > m, we have P(|X, — X| > ¢) < §. For such n, we then find
EX,—-X|= El(\Xn—X\Sa)LXn - X|+ El(\Xn—X\>s)|Xn — X| < 2e, proving that X,, tends
to X in L.

As for the case of a family (X;);>0 indexed by R, we see that the proof that X, is convergent
in £! to X if X, is convergent in probability to X and is uniformly integrable may be copied

more or less verbatim from the discrete-time case. O

Lemma A.3.6. Let X be any integrable random variable on probability space (Q, F, P). Let
I be the set of all sub-o-algebras of F. Then, (E(X|G))ger is uniformly integrable.

Proof. Using Jensen’s inequality and the fact that (E(|X||G) > A\) € G, we have

sup E|E(X[G)[1((x|9)>x) < sup EE(|X[|G)1(g(x|1g)>x) = sup E|X[1(g(x|/g)>)-
gel gel gel
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Fix € > 0, we show that for A\ large enough, the above is smaller than . To this end, note
that for any sub-o-algebra G of F, we have P(E(|X||G) > ) < +EE(|X||G) = 1E|X]
by Markov’s inequality. Applying Lemma A.3.3 with the family {X}, we know that there
is & > 0 such that whenever P(F) < §, Elp|X| < e. Therefore, picking A so large that
1+E|X| < 8, we obtain P(E(|X||G) > A) < § and so supge; E|X|1(5(x|ig)>») < €. This

concludes the proof. O

Lemma A.3.7 (Mazur’s lemma). Let (X,) be sequence of variables bounded in L£2. There
exists a sequence (Y,) such that each Y, is a convex combination of a finite set of elements
in {Xn, Xnt1,-..} and (V) is convergent in L2.

Proof. Let ay, be the infimum of EZ2, where Z ranges through all convex combinations of
elements in {X,, X,,11,...}, and define o = sup,, ov,. If Z = Z?:nn A Xy for some convex
weights A, ..., Ak, , we obtain VEZ? < ZkK:"n /\Z\/EiX,f < sup,, @, in particular we
have a,, < sup,, EX?2 and so a < sup,, EX?2 as well, proving that « is finite. For each n,
there is a variable Y,, which is a finite convex combination of elements in {X,, X,t1,...}
such that E(Yn)2 < ay + % Let n be so large that o,, > o — %, and let m > n, we then

obtain

E(Y, -Yy,)? = 2BEY?+2EY? - E(Y, +Y,)?
2EY,? + 2EY,} —4E(3 (Y, + Yi))?
2(an + 1)+ 2(ap + 1) — day,
2(2 + L)+ 2(a — an).

n

IA

As (o) is convergent, it is Cauchy. Therefore, the above shows that (Y;,) is Cauchy in £2,

therefore convergent, proving the lemma. O

Lemma A.3.8. Let (X,,) be a uniformly integrable sequence of variables. It then holds that

limsup FX,, < Elimsup X,,.

n—oo n— 00

Proof. Since (X,,) is uniformly integrable, it holds that
0 < lim sup EX,1(x, > < lim sup E|X,|1(x,>x) =0
A—=0 n A—00 p

Let € > 0 be given, we may then pick A so large that EX,,1(x,~x) < € for all n. Now, the
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sequence (A — X, 1(x, <x))n>1 is nonnegative, and Fatou’s lemma therefore yields

)\fElimsuanl(Xng,\) Eliminf()\anl(XnS)\))

n—00 n—00

liminf E(A — X, 1(x, <))

n—oo

IA

= A—limsup EX,1(x,<»)-

n—oo
The terms involving the limes superior may be infinite and are therefore a priori not amenable
to arbitrary arithmetic manipulation. However, by subtracting A and multiplying by minus
one, we may still conclude that limsup,, ., FX,1(x, <y < Elimsup,, , Xnl(x,<)). As
we have ensured that EX,1(x, >x) < ¢ for all n, this yields
limsup FX,, <&+ Elimsup X, 1(x,<x) < &+ Elimsup Xy,

n—oo n— 00 n—oo

and as € > 0 was arbitrary, the result follows. O

A.4 Discrete-time martingales

In this section, we review the basic results from discrete-time martingale theory. Assume
given a probability field (Q, F, P). If (F,) is a sequence of sub-c-algebras of F indexed by N
which are increasing in the sense that F,, C F, 1, we say that (F,) is a filtration. We then
refer to (Q, F, (F,), P) as a filtered probability space. In the remainder of this section, we

will assume given a filtered probability space of this kind.

A discrete-time stochastic process is a sequence X = (X,,) of random variables defined on
(Q,F). If X,, is F,, measurable, we say that the process X is adapted. If X is adapted and
E(X,|Fi) = Xi whenever n > k, we say that X is a martingale. If instead E(X,,|Fx) < X},
we say that X is a supermartingale and if E(X,|Fy) > X}, we say that X is a submartingale.
Any martingale is also a submartingale and a supermartingale. Furthermore, if X is a

supermartingale, then —X is a submartingale and vice versa.

A stopping time is a random variable T : Q@ — N U {oo} such that (T < n) € F, for any
n € N. We say that T is finite if T maps into N. We say that T is bounded if T" maps into a
bounded subset of N. If X is a stochastic process and T is a stopping time, we denote by X7
the process X1 = Xpp, and call XT the process stopped at T. Furthermore, we define the
stopping time o-algebra Fr by putting Fr = {A € FIAN (T <n) € F, for all n € No}. Fr
is a o-algebra, and if T is constant, the stopping time o-algebra is the same as the filtration

o-algebra.
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Lemma A.4.1 (Doob’s upcrossing lemma). Let Z be a supermartingale which is bounded in
LY. Define U(Z,a,b) =sup{n | 31 < s <ty < -8, <ty:Zs <a,Zy >bk<n} for
any a,b € R with a < b. We refer to U(Z,a,b) as the number of upcrossings from a to b by

Z. Then
_ la] +sup, 12,

EU(Z,a,b) o

Proof. See Corollary 11.48.4 of Rogers & Williams (2000a). O

Theorem A.4.2 (Doob’s supermartingale convergence theorem). Let Z be a supermartin-
gale. If Z is bounded in L', Z is almost surely convergent. If Z is uniformly integrable, Z
is also convergent in L', and the limit Z, satisfies that for all n, E(Zxo|Fn) < Z, almost

surely.

Proof. That Z converges almost surely follows from Theorem 11.49.1 of Rogers & Williams
(2000a). The results for the case where Z is uniformly integrable follows from Theorem
I1.50.1 of Rogers & Williams (2000a). O

Theorem A.4.3 (Uniformly integrable martingale convergence theorem). Let M be a discrete-

time martingale. The following are equivalent:

1. M is uniformly integrable.
2. M is convergent almost surely and in L.

3. There is some integrable variable & such that M, = E(§|F,) forn > 1.

In the affirmative, with My, denoting the limit of M,, almost surely and in L', we have for all
n > 1 that M,, = E(Mx|Fy,) almost surely, and Mo, = E(§|Fx), where Foo = o(US2 1 Fp).

Proof. From Theorem I1.50.1 in Rogers & Williams (2000a), it follows that if (1) holds, then
(2) and (3) holds as well. From Theorem I1.50.3 of Rogers & Williams (2000a), we find that
if (3) holds, then (1) and (2) holds. Finally, (2) implies (1) by Lemma A.3.5.

In the affirmative case, Theorem I1.50.3 of Rogers & Williams (2000a) shows that we have
My = E(§|Fx), and so in particular, M,, = E({|F,) = E(E(§|Fx)|Fn) = E(Mx|Fn)
almost surely. O
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Lemma A.4.4 (Doob’s £? inequality). Let M be a martingale such that SUpP,,>1 EM? is
finite. Then M is convergent almost surely and in L? to a square-integrable variable M,
and EM2 < AEMZ,, where MY, = sup,>q |My,| and M2 = (M%)

Proof. This is Theorem I1.52.6 of Rogers & Williams (2000a). O

Lemma A.4.5 (Optional sampling theorem). Let Z be a discrete-time supermartingale,
and let S < T be two stopping times. If Z is uniformly integrable, then Z is almost surely
convergent, Zg and Zr are integrable, and E(Zr|Fs) < Zs.

Proof. That Z is almost surely convergent follows from Theorem I1.49.1 of Rogers & Williams
(2000a). That Zg and Zr are integrable and that E(Zr|Fg) < Zg then follows from Theorem
I1.59.1 of Rogers & Williams (2000a). O

Next, we consider backwards martingales. Let (F,,),>1 be a decreasing sequence of o-algebras
and let (Z,,) be some process. If Z,, is F,, measurable and integrable and X,, = F(X|F,)
for n > k, we say that (Z,,) is a backwards martingale. If instead Z,, < E(Zy|F,), we say
that (Z,) is a backwards supermartingale, and if Z,, > E(Zy|F,), we say that (Z,) is a
backwards submartingale.

Note that for both ordinary supermartingales and backwards supermartingales, the definition
is essentially the same. A process Z is a supermartingale when, for n > k, E(Z,|F;) < Zy,
while Z is a backwards supermartingale when, for n > k, Z,, < E(Zy|F,). Furthermore, if
Z is a backwards supermartingale, then —Z is a backwards submartingale and vice versa.

Theorem A.4.6 (Backwards supermartingale convergence theorem). Let (F,) be a decreas-
ing sequence of o-algebras, and let (Z,) be a backwards supermartingale. If sup,>1 EZ, is
finite, then Z is uniformly integrable and convergent almost surely and in L'. Furthermore,
the limit satisfies Zoo > FE(Zn|Foo), where Foo is the o-algebra NS Fr,.

Proof. See Theorem I1.51.1 of Rogers & Williams (2000a). O

Finally, we give a result on discrete-time compensators. Let (A,,),>0 be an increasing adapted
process with A,, integrable for each n. Assume that A has initial value zero, meaning that
Ap = 0. Define a process (By,)n>0 by putting B,, = ZZZl E(Ap — Ag—1|Fk-1). By Theorem
I1.54.1 of Rogers & Williams (2000a), A — B is then a martingale. We refer to B as the
compensator of A.
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Lemma A.4.7. Let A be an increasing adapted process such that Ao is bounded by c. Let
B be the compensator of A. Then B is square-integrable and EB2, < 2c2.

Proof. First note that for n > 1,

n—1 n—1 n—1
B2 = 2B2-Y B}, -B}=2Y Bu(Bi1—By)- Y B, — B}
k=0 k=0 k=0

i
L

= 2(By — Bi)(Biy1 — Br) — (Brs1 — Br)®.
0

=
Il

Taking means and recalling that By is Fj, measurable, this yields

n—1 n—1
EB) < Y 2E(Bn—Bi)(Biy1 —By)=EY 2E(B, — Bi|Fi)(Bis1 — By)
k=0 k=0
n—1 n—1
= EY 2B(Ay — Ag|Fi)(Bryr — Br) <2¢EY By — By
k=0 k=0

= 2¢EB, = 2cEA, < 2.

Letting n tend to infinity, the monotone convergence theorem yields that B2 is square-
integrable and that FB% = Elim,, B2 = lim,, EB2 < 2¢?, as desired. O
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Appendix B

Hints for exercises

B.1 Hints for Chapter 1

Hints for exercise 1.5.1. Pick n so that n <t < n+ 1 and € so small that t + & < n + 1.
Rewrite Ng~tFs in terms of Fy for t < s <t +e¢. o

Hints for exercise 1.5.2. First pick ¢ > 0 and show that the restriction of X to [0,¢) x § is

B; ® F; measurable. o

Hints for exercise 1.5.3. First argue that
(T<t)y=U22(Fs€eRy:s<t— 21 and X, € F).
Next, show that
(3seRy:s<t—Land X, € F)=m2(FqeQr:qg<t—Land X, €Up),

where U, = {z € R| 3y € F : |z — y| < +}. Argue that the right-hand side is in F; and use

this to obtain the result. o

Hints for exercise 1.5.4. First argue that it suffices to show that for all ¢t > 0, the set

(FseRy:s<tand it holds that X; € F or X;_ € F)



174 Hints for exercises

is 7, measurable. To do so, define Uy = {z € R|Jy € F : [z — y| < +} and show that

(dseR;:s<tandit holds that X; € F or X;_ € F)
= Np21(3q€ Qi U{t}:q<tandit holds that X, € Uy).

Hints for exercise 1.5.5. Use Exercise 1.5.3 to conclude that T is a stopping time. To show
that X7 = a whenever T' < oo, show that whenever T is finite, there is a sequence (uy)
depending on w such that T < u, <T + % and such that X,,, = a. Use this to obtain the

desired result. o

Hints for exercise 1.5.6. For the inclusion Fgyr C o(Fg, Fr), use that for any F, it holds
that F = (FN((S<T)UFnNn(T<9)). o

Hints for exercise 1.5.7. Use Lemma 1.1.9, to show Fr C NS, Fr,. In order to obtain the
other inclusion, let F' € N3, Fr, . Show that FN(T < t) = Mo U M7 FN (T < t++).
Use this and the right-continuity of the filtration to prove that FN(T < t) € F;, and conclude
N2, Fr, € Fr from this. o

Hints for exercise 1.5.8. To show that M is not uniformly integrable, assume that M is
in fact uniformly integrable. Prove that %Mt then converges to zero in £! and obtain a

contradiction from this. o

Hints for exercise 1.5.10. In order to prove that M is a martingale, recall that for any
0<s<t, Wy —W; is independent of F,; and has a normal distribution with mean zero and
variance ¢t — s. In order to obtain the result on the Laplace transform of the stopping time
T, first reduce to the case of a > 0. Note that by the properties of Brownian motion, T is
almost surely finite. Show that (M“)7 is uniformly integrable and use the optional sampling
theorem in order to obtain the result. o

Hints for exercise 1.5.11. For the first process, use W = (W, —Wy)?+3W2W,—3W, W2+ W3
and calculate conditional expectations using the properties of the F; Brownian motion. Apply

a similar method to obtain the martingale property of the second process. o

Hints for exercise 1.5.12. To show the equality for P(T < o0), consider the martingale M“
defined in Exercise 1.5.10 by M = exp(aW; — %azt) for @« € R. Show that the equality
El(p<oo)M3?® = exp(2ab) P(T < o0) holds. Recalling that lim; o %+ = 0, use the optional
sampling theorem and the dominated convergence theorem to show that F 1(T<OO)M72~I’ =1.
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Use this to obtain the result. o
Hints for exercise 1.5.13. First show that we always have 0 < T' < 1 and W2 = a(1-T). From
Theorem 1.2.13 and Exercise 1.5.11, it is known that the processes W2 —t and W —6tW2+3t2

are in cM. Use these facts to obtain expressions for ET and ET?. o

Hints for exercise 1.5.14. Use that N? = (N; — N)? + 2N; Ny — N2 and that N, — N; is

Poisson distributed with paramter ¢t — s and independent of F. )

Hints for exercise 1.5.15. Use that for 0 < s < t, N, — Ny is independent of Fg, and recall
the formula for the moment generating function of the Poisson distribution. o

B.2 Hints for Chapter 2

Hints for exercise 2.4.2. Define U, = (a — 1/n,a+ 1/n), S, = inf{t > 0| X; € U,} and
T, = S, An. Argue that (7},) is an announcing sequence for 7. o

Hints for exercise 2.4.3. Apply Lemma 2.2.4. )

Hints for exercise 2.4.5. Let (gn) be an enumeration of g,, define a sequence of stopping
times (7},) by putting T, = n A S(s4q,>7) A (S + @n)(s+q,<7) and apply Exercise 2.4.4. o

Hints for exercise 2.4.6. Apply Lemma 2.2.6 and Lemma 2.2.5. o
Hints for exercise 2.4.7. Apply Lemma 2.2.7. )
Hints for exercise 2.4.9. To show that T is predictable when (T = S) € Fg_ for all pre-
dictable stopping times S, take a sequence of predictable times (S, ) with the property that

[T] € Up,[Sn], consider T, = (Sy)(r=s,) and apply Lemma 2.1.9. o

Hints for exercise 2.4.11. Define a sequence of stopping times (7)) by approximating T
through the dyadic rationals D from above. o
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B.3 Hints for Chapter 3

Hints for exercise 3.5.2. In order to obtain that M € M" when (Mr)rec is uniformly
integrable, use Lemma 1.2.8 and Lemma A.3.5. o

Hints for exercise 3.5.3. Apply Fatou’s lemma. o

Hints for exercise 3.5.4. First consider the case where M € M™ and note that in this case,

| M| is integrable for all stopping times T'. o
Hints for exercise 3.5.5. First consider M € M" and apply Lemma 3.1.8. o
Hints for exercise 8.5.6. Apply Exercise 3.5.5. o

Hints for exercise 3.5.9. First consider the case where A € A. Use Lemma 3.2.6 to obtain
A € Aj. For the case where A € V, decompose A as in Lemma 1.4.1 and use Theorem 2.3.9
to show that each component in the decomposition is predictable. o
Hints for exercise 3.5.10. To show that the process f(f Ns_ dMy is in My, apply Lemma 3.3.2.
To show that the process fot Ny dM; is not in My, assume to the contrary that the process
is a local martingale. Let T}, be the n’th jump time of N. Argue that both f(f N,_ dM, and
fg NgdMy, when stopped at T),, are in M™. Obtain a contradiction from this. o

Hints for exercise 3.5.11. Fix A > 0. Use Lemma 3.3.2 and its proof to obtain
(oo}
Eexp(—Al A1) = E/ exp(—AIL As) dIT As.
0

Apply Lemma A.2.14 to calculate the right-hand side in the above. )

Hints for exercise 3.5.13. In order to obtain the final two convergences in probability, apply

the relation Wt2 =2 Zill th_l (Wt;‘z — Wtz,_l) + Zinzl(wtﬁ — Wt2_1)2' @)
Hints for exercise 3.5.14. Apply Theorem 3.3.10. )
Hints for exercise 3.5.17. Apply Lemma 3.4.4. )

Hints for exercise 3.5.18. Apply Lemma 3.4.6. o
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B.4 Hints for Chapter 4

Hints for exercise 4.4.1. Apply Theorem 3.1.9. )
Hints for exercise 4.4.2. Apply Lemma 4.2.3 and Exercise 3.5.4. o

Hints for exercise 4.4.5. To prove that X = Xo+ M + A with M € M, almost surely contin-
uous and A € V, apply Theorem 3.4.7 Theorem 3.4.11 to obtain the desired decomposition.

[e]

Hints for exercise 4.4.6. Use Theorem 3.4.11. o

Hints for exercise 4.4.7. First consider the case where M € M", and apply Lemma 3.1.8
and Lemma 3.2.10 to obtain that M7~ € M, in this case. o

Hints for exercise 4.4.12. Prove that %(H - M); and % converge in probability to zero and

one, respectively. Use this to obtain the result. o

Hints for exercise 4.4.13. To show that [M, A] € My, first use Theorem 3.3.1 to argue that
it suffices to consider the two cases M € MY and M € fvM,. In order to prove the result
for M € M5, first consider the case M € M® and A € A® with A predictable. Argue that
in this case, AM is almost surely integrable on [0, c0) with respect to A, and the result has
finite mean, in particular implying that [M, A] € V. Defining T} = inf{s > 0|A, > t}, argue
that T; is a predictable stopping time and use Lemma 3.1.8 and Lemma A.2.14 to obtain
E[M, Al = 0. Apply Lemma 1.2.8 to obtain that [M, A] € M* in this case.

Extend the result to M € /\/lll? and A € V by localisation arguments and Lemma 4.2.3. o
Hints for exercise 4.4.14. Apply Exercise 4.4.13. o
Hints for exercise 4.4.15. Use Theorem 4.2.9 to argue that it suffices to show that (AH-M); =
ZO<S§ AH,AX,. Use Exercise 4.4.4 to argue that AH = AB for a predictable process
B € V. Use Exercise 4.4.13 to obtain the desired result. o
Hints for exercise 4.4.16. First show that it suffices to prove the convergence to zero in

probability of the variables that (W, —W;)~! tt+h(HS — Hy) 11,00 AW, where the indicator
1[t,00[ is included to ensure that the integrand is progressively measurable. To show this, fix
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6 > 0 and show that

L(Wysn—Wi|>6) /t+h P
_ Hs — Hy) 1l oo dWs — 0,
Wein — W, J, ( ) Litool
using Chebychev’s inequality and the results from Lemma 4.4.10. Then apply Lemma A.3.1

to obtain the result. o

Hints for exercise 4.4.18. To prove that X has the same distribution as a Brownian motion
for H = %, let W be a Brownian motion and show that X and W have the same finite-

dimensional distributions.

To show that X is not in ¢S when H # %, first fix t > 0, put ¢} = tk27" and consider
> ,;1 | Xip — Xip [P for p > 0. Use the fact that normal distributions are determined by their
mean and covariance structure to argue that the distribution of Zill | Xin — Xip_ [P is the
same as the distribution of 2-"PH Zill | X —Xk—1/P. Show that the process (X —Xj_1)r>1
is stationary. Now recall that the ergodic theorem for discrete-time stationary processes
states that for a stationary process (Y,),>1 and a mapping f : R — R such that f(Y7) is
integrable, it holds that % >or_, f(Yk) converges almost surely and in £'. Use this to argue
that 5 Zi;l | Xk — Xk—1|P converges almost surely and in £! to a variable Z, which is not
almost surely zero.

Finally, use this to prove that X is not in ¢S when H # % To do so, first consider the
case H < % In this case, assume that X € ¢S and seek a contradiction. Use the result of
Exercise 4.4.17 to show that Ziil | X — th_1|% converges to zero in probability. Obtain
a contradiction with the results obtained above. In the case where H > %, use that % <2
and Exercise 4.4.17 to show that Zi:l | Xin — Xgn |2 converges in probability to zero, and
use this to argue that [X] is evanescent. Conclude that X has paths of finite variation, and

use this to obtain a contradiction with our earlier results. o

Hints for exercise 4.4.20. Apply 1td’s formula to the two-dimensional continuous semimartin-
gale (t, Wy). o

Hints for exercise 4.4.21. Use Theorem 4.3.2 to show that f(f f(s) dWy is the limit in prob-
ability of a sequence of variables whose distribution may be calculated explicitly. Use that

convergence in probability implies weak convergence to obtain the desired result. o

Hints for exercise 4.4.23. In the case where i = 7, use Itd’s formula with the function
f(x) = 2%, and in the case i # j, use [t6’s formula with the function f(x,y) = zy. Afterwards,

apply Lemma 4.1.13 and Lemma 4.2.11 to obtain the result. o
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Hints for exercise 4.4.24. First note that in order to prove the result, it suffices to prove that
the sequence Zi:l(Mtk — My, ,)? is bounded in £2. To do so, write

2n 2 n
E (Z(Mtk - Mtk1)2> = EZ(Mtk - Mtk—1)4 + EZ(Mtk - Mtk71)2(Mti - Mti—l)Q'
k=1 k=1 k#i

Let C > 0 be a constant such that |M;| < C for all t > 0. By repeated use of the martingale
property, prove that the first term is less than 4C2 and that the second term is less than

2C?2, thus proving boundedness in £2. o
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Appendix C

Solutions for exercises

C.1 Solutions for Chapter 1

Solution to exercise 1.5.1. Fix t > 0 and let n = [t], the largest integer smaller than or equal
to t. We then have n <t <n+1, and so F; = G,,. Fix e > 0 so small that t +e <n+1, we
then also have F3 = G, for t < s <t + ¢, and it follows that

ms>t-/.'.s = m1&<s§t+e-/l_'.s - gn - fta

as desired. 0

Solution to exercise 1.5.2. Fix t > 0 and 0 < 0 < t. By our assumptions, it holds for any
€ > 0 that the restriction X|jg;—_sxn of X to [0,£—35] x Qis B ® F;_s1. measurable. Picking
¢ smaller than 9, we obtain that X\jp;_sxq is By ® F; measurable. This means that for any
B € B and 6 > 0, it holds that

{t,w) eRE x Q| Xy(w) € B} N[0, =] x Qe B, @F,N[0,t— 3] x Q.
As B, @ Fy N [0,t — 6] x Q C By ® F, we also obtain that for all B € B and § > 0,
{(t,w) e Ry x Q| X¢(w) € B}N[0,t -] x Q € B, @ Fy.
As a consequence, we find that

{(tw) ERy x Q| Xy(w) € BYN[0,t) x Q € B, ® Fi.
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Since we have assumed that X is adapted, it holds that X; is F; measurable, and the above
therefore shows that the restriction of X to [0, t] x Q is B, ® F; measurable, so X is progressive

with respect to (F;)i>o0- O

Solution to ezercise 1.5.3. Define U, = {zx € R |3y € F : [z — y| < 1}. We claim that U, is
open, that U,, decreases to F' and that Un+1 C U, where Un+1 denotes the closure of Uy, 1.
As we have that U, = Uyer{z € R | |z — y| < 1}, U, is open as a union of open sets. We
have F' C U, for all n, and conversely, if z € NS, U,,, we have that there is a sequence (yy,)
in F such that |y, — z| < % for all n. In particular, ¥, tends to x, and as F is closed, we
conclude € F. Thus, F = N2 ,U,. Furthermore, if x is in the closure U, 1, there is a
sequence (zy) in Uy,41 such that |zx — 2| < 1, and there is a sequence (yi) in F such that
|xe — yk| < %ﬂ, showing that |z — yi| < % + n%rl Taking k so large that % + n%rl < %, we
see that U,4+1 C U,.

Now note that whenever ¢t > 0, we have
(T<t):(35€]R+:s<tandXSGF):UTOL":l(EsERJr:sgtf%andXSEF),

so by Lemma 1.1.9, it suffices to prove that (3 s € Ry : s <t and X € F) is F; measurable
for all £ > 0. We claim that

(FseRy:s<tand X; € F)=N21(3 g€ Q4 : ¢ <tand X, € Uy).

To see this, first consider the inclusion towards the right. If there is s € Ry with s <t and
X, € F, then we also have X € Uy for all k. As Uy, is open, there is ¢ > 0 such that the ball
of size € around X, is in Uj. In particular, there is ¢ € Q4 with ¢ < t such that X, € Uj.
This proves the inclusion towards the right. In order to obtain the inclusion towards the left,
assume that for all k, there is g, € Q4 with ¢x < ¢ such that X,, € Uy. As [0,] is compact,
there exists s € Ry with s < ¢ such that for some subsequence, lim,, q;,, = s. By continuity,
Xs = lim, Xy, . As X, € Uy
Therefore, we conclude X € N2, U; C N2, U; = F, proving the other inclusion. This shows

the desired result. O

we have for any i that X,, € U; for m large enough.

m 7

Solution to exercise 1.5.4. First note that whenever ¢ > 0, it holds that

(T'<t) = (IFseRi:s<tanditholdsthat X; € For X;_ € F)
= UpZ,(FseRy:s<t— 2L anditholds that X, € F or X,_ € F).

Therefore, applying Lemma 1.1.9, it suffices to prove that for all £ > 0, the set

(FseRy:s<tand it holds that X; € F or X;_ € F)
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is 7, measurable. To this end, fix t > 0. Define U, = {z €R |y € F: |z —y| <1} Asin
1.5.3, we find that each U, is open, the sequence (U,,) decreases to F' and Un+1 CcU,. We
claim that

(dse Ry :s<tandit holds that X; € F or X;_ € F)
= Mp21(3gq€QpU{t}:g<tandit holds that X, € Uy).

To prove this, define

C = (3seRy:s<tanditholds that X, € For X,_ € F)
D = nNi2(3¢geQquU{t}:q<tandit holds that X, € Uy).

First assume that w € C, meaning that there exists s € Ry with s <t such that Xs(w) € F.
It s =t, w € D is immediate. Therefore, assume s < t. We then also have X;(w) € Uy, for
all £k > 1, and as X is right-continuous and Uy is open, there is for each £k > 1 a ¢ € Q4
with 0 < ¢ < t such that X (w) € Uy, again yielding w € D. Assume next that there exists
s € Ry with s < ¢ such that X;_(w) € F. We then also obtain X,_(w) € Uy, for all k& > 1.
If s =0, we have s € Q4 and X,_ = X, sow € D. If s > 0, there exists ¢ € Q4 with
0 < ¢ < s <tsuch that X (w) € Ug, sow € D. All in all, this shows C C D.

Next, we consider the other inclusion. Assume that w € D. For each k, let ¢; be an
element of Q4 U {t} with g, <t such that X, (w) € Uy. The sequence (gx) has a monotone
= X;s(w).

If gi, is increasing with g, < s infinitely often, we obtain g, < s eventually and so we

subsequence (g,) with limit s € [0,¢]. If gx, is decreasing, we find that lim; X,
conclude lim; Xy, (w) = Xs—(w). If gy, is increasing with gy, > s eventually, we have
lim; Xy, (w) = Xs(w). In all cases, the sequence X,, (w) is convergent to either X,(w) or
Xs—(w). As X, (w) € Uy,, we also obtain the the limit is in N, U;, which is a subset of F.
Thus, we either have X (w) € F or X;_(w) € F, so w € C and thus D C C.

This proves C' = D. As D € F; since X is adapted, T is a stopping time. O

Solution to exercise 1.5.5. As one-point sets are closed, we know from Exercise 1.5.3 that T’
is a stopping time. When T < oo, it holds that {t > 0|X; = a} is nonempty, and for any n,
T+ L is not a lower bound for the set {t > 0 | X; = a}. Therefore, there is u, < T + % such
that u € {t > 0 | X; = a}. Furthermore, as T is a lower bound for {¢ > 0| X; = a}, u, > T.
Thus, by continuity, X7 = lim,, X,,, = a. O

Solution to ezxercise 1.5.6. By Lemma 1.1.9, Fs C Fgyr and Fr C Fgyr, showing that
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o(Fs,Fr) C Fsyr. We need to prove the other implication. Let F' € Fgyr. We find

FNS<T)N(T<t) = FN(S<T)N(SVT <t)
= (FNSVT<t)n((S<T)N(SVT <t)).

Here, FN(SVT <t)e Fras F € Foyr, and (S < T)N(SVT < t) € F as we have
(S <T) e Fsar € Fsyr by Lemma 1.1.11. We conclude F'N (S < T) € Fr. Analogously,
FN (T <S) e Fg. From this, we obtain F € o(Fg, Fr), as desired. O

Solution to exercise 1.5.7. First note that by Lemma 1.1.10, T is a stopping time. In
particular, Fr is well-defined. Using Lemma 1.1.9, the relation T' < T, yields Fr C Fr,, so
that Fr C N2, Fr,. Conversely, let F' € N2, Fr, , we want to show F' € Fr, and to this end,
we have to show FN(T < t) € F; for any ¢t > 0. Fixing ¢t > 0, the convergence of T,, to T yields
FN(T<t) =, Ue_ N2 FN (T, <t+2). Now, as F € N3, Fr,, we have F € Fr,
for all n. Therefore, F N (T, <t+1)e F, 1, andsoUS_ N2, FN (T <t+1)eF s,
As this sequence of sets is decreasing in n, we find that N U N2 FN (T <t+ %n)
is in N2, F;, 1. By right-continuity of the filtration, N5, F,, 1 = F;, and so we finally
conclude F'N (nT <t) € Fi, proving F' € Fp. We have now shown Nee 1 Fr, € Fr, and so
Fr =Ny, Fr,. This concludes the proof. O

Solution to exercise 1.5.8. Recall from Theorem 1.2.13 that M is a martingale. In order to
show that M is not uniformly integrable, assume that M is in fact uniformly integrable, we
seek a contradiction. We know by Theorem 1.2.4 that there is M., such that M; converges
almost surely and in £' to M,,. However, we then obtain

lim E[{M;| = lim 1E|M,| < lim 1E|M; — Mso| + $E|Ms| =0,
t—o0 g t—o0 t—o0

SO %Mt converges in £! to zero. In particular %Mt converges in distribution to the Dirac
measure at zero, which is in contradiction to the fact that as %Mt = (%Wt)2 -1, %Mt has
the law of a standard normal distribution transformed by the transformation z + 22 — 1 for
any t > 0. Therefore, M, cannot be convergent in £!, and then, again by Theorem 1.2.4, M

cannot be uniformly integrable. 0

Solution to exercise 1.5.9. By Lemma 1.2.8, it holds that if M € M", then My is integrable
with EMp = 0 for all stopping times T'. It therefore suffices to prove the converse implication.
Assume that My is integrable with EMp = 0 for all stopping times T which take at most
two values in [0,00]. Fix t > 0 and F € F;. Then tp is a stopping time taking the two values
t and oo, so |My,| is integrable and EM;,. = 0. As we have EM,;, = E1lpM; + Elpc My
and we also have FM,, = E1p My, + Elpe M., we conclude EFl1pM; = E1p M, leading to
M; = E(Mu|F:). Thus, M € M and so M € M" by Theorem 1.2.4. O
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Solution to exercise 1.5.10. Fix o and let 0 < s <t. We then find

E(MP|F) = M{E(exp(a(Wy — W) — 3a?(t — 5))| Fe)
= MZE(exp(a(W; — W) — %012(15 —39)) =M,

using that Wy — Wy is independent of F, and normally distributed, and for any variable X
which is standard normally distributed, E exp(tX) = exp(%t2) for any t € R. Thus, M? is a

martingale.

Next, we consider the result on the stopping time 7. By symmetry, it suffices to consider
the case where a > 0. By the law of the iterated logarithm, 7 is almost surely finite.
Therefore, W7 is bounded from above by a and Wy = a. Fixing some o > 0, we then
find (M) = exp(aW[ — 2a?(T A t)) < exp(aa). Therefore, by Lemma A.3.4 (M*)T
uniformly integrable. Now, the almost sure limit of (M*)7 is exp(aa — 3a*T). By Theorem
1.2.6, we therefore find 1 = E(M®)L = Eexp(aa — %aQT) = exp(aa)E eXp(—%aQT). This
shows E exp(—3a2T) = exp(—aa). Thus, if we now fix 8 > 0, we find

Eexp(~BT) = Eexp(~1(/26)T) = exp(~/2Ba),

as desired. =

Solution to exercise 1.5.11. Fix 0 < s < t. As (W — W,)3 = W2 — 3W2W, + 3W, W2 — W3,
we obtain

E(W? — 3tW,| Fs) E(W, — Wo)3|F,) + EBW2EW, — 3W,W2 + W3|F,) — 3tW,
= E(W; —W,)3 +3W,E(W2F,) — 3W2E(W,|Fs) + W2 — 3tW,

SWE(WE —t|Fy) — 2W2 = 3W, (W2 — 5) — 2W2 = W2 — 3sW,.

As regards the second process, we have (W, —W)* = W2 =AW W, +6W2W2 —4W, W3+ W2,

and so

EW{|Fs) = E((Wy = W)'|F) + EGWIW, — 6WZW? +4W, W) — W |F,)
= 3(t—s)? +AW,E(W2|F,) — 6W2E(WE|Fs) + AW3E(W,|Fs) —
= 3(t—5)? + AW, E(W} — 3tW,|Fs) + 12tW2 — 6W2E(W2|Fs) + 3W 2

= 3(t—s)2 +12(t — s)W2 — 6W2E(W?2 — t|F,) — 6tW2 + TW2
= 3(t +12(t — s)W2 — 6W2(W2 — 5) — 6tW2 + TW?
= 3(t 6(t —s)W2 + Wi

( )
(t—s)?
= 3(t—s)2 +AW,(W3 = 3sW,) + 12tW?2 — 6W2E(W2|F,) + 3W2
(t—s)?
(t—s)?
(t—s)*+

S
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Therefore, we find

EW —6tW72 +3t2|F) = 3(t—s)?+6(t—s)W2+ W2 — 6tE(WZ|Fs) + 3t°
= 3(t—s)?+6(t—s)W2+W2—6tE(W? — t|Fs) — 3¢t
= 3(t—s)?+6(t—s)W2+W2—6t(W2—5)—3t2
= W2 —6sW2+3(t —s)*+ 6st — 312
= W —6sW2+ 352,

as desired. O

Solution to exercise 1.5.12. We have T' = inf{t > 0 | W; — a — bt > 0}, where the process
Wy — a — bt is continuous and adapted. Therefore, Exercise 1.5.3 shows that 7" is a stopping
time. Now consider a > 0 and b > 0. Note that W; — a — bt has initial value —a # 0, so we
always have T > 0. In particular, again using continuity, we have Wp = a 4+ bT whenever T
is finite. Now, by Exercise 1.5.10, we know that for any a € R, the process M“ defined by
My = exp(aW, — $a?t) is a martingale. We then find

El(rcoayMi = Elir<oo)exp(aWr — 50°T)
= Elrcoo exp(a(a+bT) — 1a°T)
= exp(aa)El(p<q) exp(T(ab — 3a?)).

Now note that the equation ab = %042 has the unique nonzero solution o« = 2b. Therefore,
we obtain El(r<o) M2’ = exp(2ab)P(T < 00). In order to show the desired equality, it
therefore suffices to prove El(T<OO)M%b = 1. To this end, note that by the law of the
iterated logarithm, using that b # 0, lim;_, o, 20W; — %(2b)2t = limy_, oo t(2b% —2b%) = —o0,
so that limy o, MZ® = 0. Therefore, 1(7<o0) M2’ = M2® and it suffices to prove EM2’ = 1.
To this end, note that

1
M2b, = exp <2bWTM - 5(21;)2(T A t))

IN

1
exp <2b(a +b(T AL)) — 5(2b)2(T A t)> = exp(2ba).
Therefore, (M?*)T is bounded by the constant exp(2ba), in particular it is uniformly inte-
grable. Thus, Theorem 1.2.6 shows that EM2> = E(M?")T = 1. From this, we finally

conclude P(T < o0) = exp(—2ab). O

Solution to exercise 1.5.13. Since W2 — a(1 — t) is a continuous adapted process, Exercise
1.5.3 shows that T is a stopping time. Now let a > 0. As W2 — a(1 — t) has initial value
—a # 0, we always have T" > 0. Furthermore, as a(1 —t) < 0 when ¢t > 1, we must have
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T <1, s0 T is a bounded stopping time. In particular, 7" has moments of all orders, and by
continuity, W2 = a(1 —1T).

In order to find the mean of T, recall from Theorem 1.2.13 that W2 — t is a martingale. As
T is a bounded stopping time, we find 0= E(W2 —T)=E(a(1-T)—T) =a— (1 +a)ET
by Theorem 1.2.6, so ET = 1_%& Next, we consider the second moment. Recall by Exercise
1.5.11 that W — 6tW2 + 3t? is in cM. Again using Theorem 1.2.6, we obtain

0 = E(Wi—6TW243T?)
= E(a*(1-T)?—-6Ta(l —T)+37T?)
= E(a*(1 -2T +T?) +6a(T? - T) + 3T?)

= (a®* +6a+3)ET? — (20> + 6a)ET + a°.

Recalling that ET = we find

_a
14+a’

22 1 2 3 2
(2a2+6a)ET—a2:a( a®+6a) (1+a)a _a’+5a 7

1+a 1+a 1+4+a
from which we conclude
ET? — a® + 5a? _ a® + 5a®
(1+a)(a®+6a+3) a®>+7a%>+9a+3’
concluding the solution to the exercise. O

Solution to exercise 1.5.14. As N is a Poisson process, it is immediate that M; is integrable
forallt > 0. Let 0 < s <t. As N; — N, is Poisson distributed with paramter t — s and is
independent of Fy, we obtain, applying Theorem 1.2.15, that

E(M|F.) = EBE(N}|F.)—2tE(N|F,) + 1> —t
= E((N; — No)?|Fs) + E(2N; N, — N2|F,) — 2t(t + Ny — s) + 1% —t
= E(N; — N)?+2Ny(t + Ny —8) — N> = 2t(t + Ny — 5) + 1> — ¢
= (t—5)?+ N2+2N(t—s) —2t(t+ Ny —s)+1* —s
= N2+ N2t —s)—2t)+(t—s)?+2ts—t* —s
= N? -2sN, + s> — 5= M,,

so M is a martingale, as desired. O

Solution to exercise 1.5.15. Fix a € R. As N is a Poisson process, it is immediate that M
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is integrable for all t > 0. Let 0 < s <t. As N; — N, is independent of F,, we obtain

E(M|Fs) = E(exp(aNg — (e* — 1)t)|Fs)
= FE(exp(a(Nt — N;))|Fs) exp(—(e® — 1)(t — s)) exp(alNs — (¥ —1)s)
= Fexp(a(N; — Ng))exp(—(e* —1)(t — s)) M,

and as Ny — N is Poisson distributed with paramter t — s, we have
Eexp(a(Ny — N;)) = exp((e® — 1)(t — 5)),

which all in all yields E(MJ|Fs) = M2, as desired. O

C.2 Solutions for Chapter 2

Solution to exercise 2.4.1. By Lemma 1.1.4, every adapted caglad process may be approxi-
mated by adapted cadlag processes. Therefore, 2P C 3°. And by Lemma 1.1.6, every cadlag
adapted process is progressive, and therefore %° C 7. O

Solution to exercise 2.4.2. First note that by Lemma 1.5.3, T is a stopping time. We show
that it is predictable. For each n, define U, = (a — 1/n,a + 1/n). Then U, is an open set
containing a. Define a mapping by putting S,, = inf{¢t > 0 | X; € U,}. By Lemma 1.1.13,
Sy is a stopping time. Put T,, = S, A n, then (T},) is a sequence of stopping times. we will

argue that (7)) is an announcing sequence for 7'

To this end, first note that as the U, are decreasing, the sequence (5,,) is increasing and
thus the sequence (T),) is increasing. Also, as a € U,, we have T,, < S,, < T for all n.
Note that as X has initial value zero and a # 0, we always have T > 0. Also, for n
large enough, [a@ — 1/n,a + 1/n] does not contain zero. For such n, 0 < S,,, and therefore
Xs, € [a—1/n,a+ 1/n] for such n.

We first argue that S,, increases to T'. Consider the case where T is finite, in particular
S, is finite for all n. Assume that lim, S, < T. As Xg, € [a — 1/n,a + 1/n] for n large

enough, we obtain Xjim, g, = a by left-continuity, a contradiction with lim,, S,, < T. Thus,

lim,, S,, = T. Next, consider the case where T is infinite. If lim,, S,, is finite, we again have
Xs, € [a—1/n,a+ 1/n] from a point onwards and so Xjim, s, = a. Therefore, T is not

infinite, a contradiction. We conclude that in all cases, S,, increases to 7.

As S, increases to T', so does T,,. Therefore, in order to show that (7)) is an announcing
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sequence for T, it suffices to show that 7,, < 7. This is immediate when T is infinite,
therefore, consider the case where T is finite, so that X7 = a. For n large enough, 0 < S,,.
As Xy ¢ (a—1/n,a+1/n) for 0 <t < S, and Xg, € [a—1/n,a+ 1/n], we must either have
Xs, =a—1/nor Xg = a+1/nin this case. In particular, S,, # T, so S, < T and we thus
obtain T, < T.

We conclude that (7},) is an announcing sequence for T, and so T is predictable. O

Solution to exercise 2.4.5. By Lemma 2.2.2, it is immediate that Fgar)— € Fs— AFr_. To
prove the converse implication, assume that F' € Fg_ A Fr_. By Lemma 2.2.4, FN (S <T)
and F'N(T < S) are both F(g,7)— measurable. Therefore, F' is F(gnr)— measurable as well,
proving the result. O

Solution to exercise 2.4.4. It is immediate from Lemma 1.1.10 that T is a stopping time, so
it suffices to show that T is predictable. Define R,, = maxy<y, Tx. By Lemma 1.1.9, (R,,)
is a sequence of stopping times. It is immediate that (R,) is increasing and that R, < T
whenever T > 0. Also,

lim R, = limmax Ty =supT, =T,
n n k<n n>1

so R, is an announcing sequence for 7', and thus 7T is predictable. O

Solution to exercise 2.4.5. Let (¢,) be an enumeration of Q4 and define

Sn = S(s+,21) N (S + Gn) (4, <1)-

Note that as (S + ¢, > T) € Fr = Fg, the above is a stopping time by Lemma 1.1.9. Put

T, =nAS,. We claim that the sequence (T},) satisfies the requirements of Exercise 2.4.4.

We first show that T,, < T whenever T' > 0. Thus, assume that 7' > 0. If T is infinite, it is
immediate that T,, < T as T,, is finite. If T is finite, then S is finite and thus S < T, so that
S(stqn>r) < T if S+¢, > T and (S + qn)(s+q,<1) < T if S+ ¢, < T. In both cases, we
obtain T,, < S,, < T.

Next, we show that sup,, 1, = T. It is immediate that T,, < T for all n. In the case where
T is infinite and S is infinite, we have T,, = n and thus sup7,, = T. In the case where T is
infinite and S is finite, we obtain S,, = S + ¢, and T;, = n A (S + ¢,). For any k > 1, we
have ¢, > k infinitely often and n > k eventually, yielding T,, > k infinitely often and thus
sup T, = T in this case as well. Finally, consider the case where T is finite, so that .S also is
finite and S < T. Fix e > 0 and k > T. There exists n > k such that T —e < S+ ¢, < T,
and thus T'— e < T;,. This shows sup,, T, = T in this case as well.
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The results of Exercise 2.4.4 now shows that T is a predictable stopping time. O

Solution to exercise 2.4.6. By Lemma 2.2.6, it holds that Xp is Fp_ measurable whenever
X is predictable. From this, we obtain that o({Xr | X is predictable }) C Fr_. Conversely,
fix some F' € Fr_ and define X = 1pljp o By Lemma 2.2.5, X is predictable, and
Xr = 1p. Therefore, F € o({Xr | X is predictable }). This allows us to conclude that
Fr— Co({Xr | X is predictable }), proving the desired result. O

Solution to exercise 2.4.7. By Lemma 2.2.7, Xp_ is Fp_ measurable whenever X is cadlag
adapted. From this, we obtain that o({Xr_ | X is cadlag adapted }) € Fr_. To prove
the other inclusion, let F' € Fr_ and define X = 1plpp - Then X is cadlag adapted,
and X7 = 1p. Therefore, F' € o({X7 | X is cadlag adapted }) and thus it holds that
Fr— Co({Xr | X is cadlag adapted }). This concludes the proof of the exercise. O

Solution to exercise 2.4.8. Assume that T takes its values in the countable set {t,, | n > 1}.
By Lemma 2.1.5, t, is a predictable stopping time for each n > 1, and we have [T] C
U2, [[tn]]- Thus, T is accessible. O

Solution to exercise 2.4.9. If T is predictable, Lemma 2.2.4 yields (T' = S) € Fg_ for all
predictable stopping times S. Assume conversely that T is accessible and that (T' = S) € Fg_
for all predictable stopping times S. Let (S,) be a sequence of predictable stopping times
such that [T] C UpZ, [Sn]. Put T3, = (Sn)(r=s,)- By our assumptions, (7' = S,) € Fs, —,
so T,, is a predictable stopping time by Lemma 2.2.3, and T,, is either equal to T or infinity.
Let R,, = ming<, T}, by Lemma 2.1.5, (R,,) is a sequence of predictable stopping times. It is
immediate that (R,,) is decreasing. If there is some k such that T, = T, then R,, decreases to
T and is constant from a point onwards. If there is no k such that Ty = T, then T is infinite,
R,, is infinite for all n and thus is equal to T and also constant from a point onwards. By
Lemma 2.1.9, T is a predictable stopping time. O

Solution to exercise 2.4.10. As Lemma 1.2.8 provides that My is integrable with EMp = 0
for all stopping times T" whenever M € M, it suffices to prove the converse implication.
However, as all stopping times taking only countably many values are accessible by Exercise
2.4.8, the desired result follows from Exercise 1.5.9. 0

Solution to ewercise 2.4.11. Let tj = k27" for n,k > 0. Fix n > 1 and define a stopping time
T, by putting T,, = co when T' = oo and, for k > 1, T, = k27" when ¢}}_; < T < t}. Then
(T},) is a sequence of stopping times taking values in the dyadic rationals D} and infinity

and converging downwards to 7. By Exercise 2.4.8, each T,, is accessible. This proves the
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result. O

C.3 Solutions for Chapter 3

Solution to exercise 3.5.1. Since X°"T = (X*)T we find by Lemma 1.2.7 that X7 is in
M¥.As Xgnr + Xrae = X(samae + X(surae, we find X9V = X9 4 XT — XN g0 XSVT

is in M as well, since it is a linear combination of elements in M. O

Solution to exercise 8.5.2. If M € M", we have by Theorem 1.2.6 that My = E(Ms|Fr) for
all T € C. Therefore, Lemma A.3.6 shows that (Mr)7ec is uniformly integrable. Conversely,
assume that (M7 )rec is uniformly integrable, we will use Lemma 1.2.8 to show that M € M.
Let S be any bounded stopping time, and let (T},) be a localising sequence with the property
that MT» € M%. As S is bounded, Mr, g converges almost surely to Mg. As it holds
that (M, rs) € (Mr1)Tec, (Mr, As) is uniformly integrable, and so Lemma A.3.5 shows that
My, s converges in L' to Mg. In particular, EMs = lim, EMy, rs = lim,, EMZ* =0
by Theorem 1.2.6. Lemma 1.2.8 then shows that M € M. As (M;)i>0 € (Mr)rec, M is
uniformly integrable, and so M € M" as well. O

Solution to exercise 3.5.3. Let (T),) be a localising sequence for M. For ¢t > 0, Fatou’s lemma
yields
EM, = Eliminf M < liminf EM = EM,,
n n

so M, is integrable for all ¢ > 0. Letting 0 < s < ¢, we obtain
E(M;|F,) = E(liminf M "|F,) < liminf E(M;"|F,) = liminf M = M,,
n n n

so M is a supermartingale. U

Solution to exercise 3.5.4. First consider the case where M € M". Let T,, = inf{t > 0 |
|M;| > n}, (T),) is then a localising sequence. We then obtain

EMz, <n+ El(1, <o) |AMT,| < 1+ El(1, <o0)|Mr,| <1+ E|Mr, |,

which is finite. Thus, (M*)™ € A" and so M* € A} in this case. Consider the case of a
general element M € M,. Let (T,) be a localising sequence. From what we already have
shown, there exists for each n > 1 a localising sequence (Tp,)r>1 such that (M*)Tns € AC.
Let S, = maxy<, max;<p, Tk, then S, is a localising sequence and (M*)g, € At so M* € AZ,

as was to be shown. O
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Solution to exercise 3.5.5. First consider the case where M € M™. Let T be a predictable
stopping time. By Lemma 3.1.8, it holds that AM7 is integrable and E(AMp|Fr_) = 0. As
AM; > 0, this implies that AM7p is almost surely zero.

Now consider the case of a general M € M,. Fix a predictable stopping time 7. Let (T},)
be a localising sequence such that M™» € M for n > 1. By what we already have shown,
AMTT” is almost surely zero. However, AM%" = l(r<1,)AMr. Letting n tend to infinity,
this shows that 1(7)AM7 and thus AMr is almost surely zero, as desired. O

Solution to exercise 3.5.6. Define M; = Ny —t. By Theorem 1.2.15, M € M,. Also,
AM = AN > 0. Therefore, by Exercise 3.5.5, AMr = 0 almost surely for all predictable
stopping times T. As AMp, = 1, we therefore obtain for any predictable stopping time T
that P(T' =T, < o0) < P(AMp = AMy,) =0, so T, is totally inaccessible. O

Solution to exercise 3.5.7. Let T, be the n’th jump time of N, (T},) is then a localising
sequence and N7 is bounded, therefore N7» € A* and so N € A}. As N; —t is in My by
Theorem 1.2.15 and the process (¢,w) +— t is predictable as it is continuous, it follows that
N = t. d

Solution to exercise 3.5.8. First consider the case where A € A’. By Lemma 3.2.4, ;A
is then in A" as well and A —II3 A is in M". Letting T be any predictable stopping time,
Lemma 3.1.8 then shows that AMr is integrable with E(AMy|Fr—) = 0. As [Ty A is almost
surely continuous, AM; = AAp almost surely. Thus, F(AAp|Fr_) = 0 almost surely, which

implies that AA7 is almost surely zero.

Now consider the case A € A}}. Letting (7,) be a localising sequence, we then find that for
any predictable stopping time 7', AA%" is almost surely zero. Letting n tend to infinity, this

implies that AAr is almost surely zero. O

Solution to exercise 3.5.9. First consider the case where A € A. Define for n > 1 a mapping
T, by putting T,, = inf{t > 0 | A; > n}, then T,, is a predictable stopping time by Lemma
3.2.6, and it is positive as A has initial value zero. Let (Ty;)r>1 be a localising sequence, it
then always holds that T}, < T}, and thus A”#* is bounded by n. Therefore, AT™»* € A*. As
sup,, supy, Tnx = sup,, T}, = oo, this shows that A € A’.

Next, consider the case where A € V. We then have A = At — A, where At = (V4 + A)
and A~ = (V4 — A). By Lemma 1.4.1, A" and A~ are in A. And as V, is cadlag with
AV4 = |AA|, Theorem 2.3.9 shows that V, is predictable. Therefore, AT and A~ are both
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predictable, and therefore in A}. As a consequence, A is in V}, as desired. O

Solution to exercise 3.5.10. We first note that with 7;, denoting the n’th jump time of
N, both NT» and N7» are bounded, so both fot N,_ dM, and fot N, dM, are well-defined.
Furthermore, as N_ is adapted and left-continuous, it is predictable. Therefore, Lemma 3.3.2
shows that fg Ng_dMs; is in M. It remains to argue that the process fot Ny dMy is not in
My. To this end, assume that fg NydM, in fact is in My, we seek a contradiction. First
note that for all stopping times S, it holds that

SAT,, SAT,
/ N, dM,| < / N, d(Var)s < Nr (N, +T) = n(n +Ty),
0 0

N,_dM;| < n(n+T,). As T, is integrable, Exercise 3.5.2 shows that

tAT, .
" Ny_ dN, are in M". However, we have

and similarly, | fOS/\T”

[ N, dN, and [,

0 0
T, Ty Tn
/ Ns dMs = / N@— dMs + / AN@ dMs
0 0 0
Tn
= / No_dM,+ > AN,AM,
0 0<s<Ty,

Tn
= / Ng_dMg +n,
0

which by the uniformly integrable martingale property implies E/ fOT" Ny;dMg = n, a contra-
diction. We conclude that the process fot NydM;, is not in M. O

Solution to exercise 3.5.11. Fix A > 0. As A has a single jump of size one at T', we have
Eexp(—AlI;Ar) = E/ exp(—AIL;A,) dA;.
0

Next, note that by Lemma 3.2.10, II} A is almost surely continuous and has initial value
zero. Therefore, exp(— AT} A;) is almost surely integrable with respect to any finite variation
process and so, by Lemma 3.3.2, fg exp(—AIFA,) d(A — II5A) is in M. As II3A € A,
we have exp(f)\H;‘,As) < 1, and so the proof of Lemma 3.3.2 demonstrates that the integral

process is in M*, yielding
E/ exp(—AMI;A,) dAg = E/ exp(—AIL A,) AT A,
0 0

Next, note that as AT = A, it holds that A — H;AT is in M*, and from this we conclude that
EIGAr = EAw = Ell A, As I A7 <117 Ao, this implies 1T A = TI; A7 almost surely.
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Putting Bs = inf{t > 0 | II[;A; > s}, we then obtain (85 < oo) = (s < II;Ar). Applying
Lemma A.2.14 and continuity of I} A, we then obtain

o0 o0
/ exp(—AIT; A,) dIT A, / exp(—)\H;Aﬁs)l(ﬁs<oo) ds
0 0

H;AT 1 SZH;AT
= / exp(—As)ds = {—exp(—/\s)]
0 A s=0
= L lpexp(-Amiay)
= b\ X exp pT)-
Collecting our conclusions and rearranging, this yields
Eexp(—MI}Ar) 1 14 N !
X — = — - [ —
PR A=) By 1+ N
which is the Laplace transform of the exponential distribution. O

Solution to exercise 3.5.12. By Lemma 3.3.8, we have
[MT = M) = [MT] = 2[MT, M) + [MP] = [M]" = 2[M)% + [M®] = [M]" — [M]*.

Therefore, if [M]s = [M]r almost surely, we obtain that [MT — M¥], is almost surely zero.
As [MT — M*®] is increasing, this implies that [M7 — M*®] is evanescent, and so by Lemma
3.3.8, M™T = M* almost surely. O

Solution to exercise 3.5.13. Put U,, = Zi:l(Wtk — Wt£71)27 we need to show that U, Lo
By the properties of the Brownian motion W, the variables Wir» —W}»_ are independent and
normally distributed with mean zero and variance t27". Defining the variables Z}' by putting
Zy = (#(th thZ_l))2, we find that Z7}, k = 1,...,2" are independent and distributed
as an 2 distribution with one degree of freedom, and we have U, = t27" Ziil Zp. As
EZ =1 and VZ} = 2, we then obtain EU,, =t and VU, = (t27")? Ziil 2=2t22"". In
particular, Chebychev’s inequality yields for any € > 0 that

lim P(|U, —t|>¢) < % lim E(U, —t)> =% lim VU, = $2¢* lim 27" =0,

n—oo n— oo n—oo n—oo
which proves that U, N t, as desired. The two convergences in probability then follow from
the equalities

on 2"
WE = 2 Z Wt;_l(th - Wt;_l) + Z(WtZ - Wt2—1)2
k=1 k=1

on on

= 2 Z Wir (Wip = Win ) — Z(Wt;; — W )2,
k=1 k=1



C.4 Solutions for Chapter 4 195

by rearrangement and letting n tend to infinity. O

Solution to exercise 3.5.14. First assume that M € M%. Let T,, be a localising sequence
such that M7+ € M2. By Theorem 3.3.10, [M*»] € A" and therefore, by Lemma 3.3.8,
[M]T" € A'. Therefore, [M] € Aj.

Conversely, assume that [M] € A} and let (T5,) be a localising sequence such that [M]T» € A"
As [MT»] = [M]** by Lemma 3.3.8, we obtain [M 7] € A" and thus MT» € M? by Theorem
3.3.10. This yields M € M2, as desired. O

Solution to evercise 3.5.15. Let (T,) be a localising sequence such that MT» € M? and
NT» ¢ M2 By Theorem 3.3.10, [MT» NT»] € Vi, By Lemma 3.3.8, this implies that
[M,N]T» € V¥, so that [M, N] € Vj. a

Solution to exercise 3.5.16. If M is evanescent, Lemma 3.3.8 shows that [M] is evanescent,
so (M) is evanescent as well. Conversely, assume that (M) is evanescent. This implies that
[M] € My. Let (T},) be a localising sequence such that [M]™» is in M*, we then obtain
E[M]r, = 0 and thus [M]r, is almost surely zero. Letting n tend to infinity, this implies

that [M] is evanescent and thus M is evanescent by Lemma 3.3.8. g

Solution to exercise 3.5.17. By Lemma 3.4.4, we have
(M), = > (AM,)*= > (AN,)>= > AN, =N,
0<s<t 0<s<t 0<s<t

as desired. 0

Solution to exercise 3.5.18. By Lemma 3.4.6, there exists M¢ € dM? with AM? = AM
almost surely. Letting M¢ be a continuous modification of M — M, it is immediate that
M¢ € ecM? and M = M€ + M? almost surely. O

C.4 Solutions for Chapter 4

Solution to exercise 4.4.1. Assume given two decompositions X = Xg+ M + A and X =
Xo+ N + B, where M, N € My and A, B € V with A and B predictable. Then M — N =
B— A, where M — N € Myand B— A € V and B — A is predictable. Thus, M — N is a
predictable element of My, thus evanescent by Theorem 3.1.9. It follows that M and N are
indistinguishable and A and B are indistinguishable, as desired. (]



196 Solutions for exercises

Solution to exercise 4.4.2. First assume that X € Sp, such that X = M + A where M € M,
and A € V is predictable. By Exercise 3.5.4, M* € A}, and by Lemma 4.2.3, A* € A}. As
X* < M* + A*, it follows that X* € A}'@ as well.

Conversely, assume that X* € A}, Let X = M + A where M € My and A € V. As
M* € A} by Exercise 3.5.4, we conclude that A* € A} as well. Therefore, A € V}, and so the
compensator of A is well-defined. We may then write X = M + (A — II;A) + II; A, where
M + (A —-TI;A) € My and IT; A is a predictable element of V, proving that X € S,. O

Solution to exercise 4.4.3. If X € S, we have X = Xo+ M + A where M € M, and A is
predictable in V. Then X7 = Xy, + M7 + AT for any stopping time T, where M” € M, by
Lemma 3.1.3 and A is predictable by Lemma 2.2.8. Therefore, taking for example T,, = n,
we obtain that (73,) is a localising sequence such that X € S, for all n > 1.

Conversely, assume that (7},) is a localising sequence with X7» € S, for all n > 1. We
then obtain X1» = X + M™ + A", where M™ € M, and A" € V with A" predictable. By
Exercise 4.4.1, we obtain that (A"*1)T» = A™ almost surely. Therefore, we may paste the
processes A™ together to a process A which is a predictable element of V such that for all
n > 1, AT = A" almost surely. Likewise, the processes M™ may be pasted together to a
process M € M, satisfying M™» = M™. We now have X = X+ M + A almost surely, where
M € My and A € V with A predictable. Letting N = X — Xqg — M — A, we obtain that
N e Mg, s0 X =Xo+ (M+ N)+ A and we conclude X € S,. O

Solution to exercise 4.4.4. f X = Xo+ M + A with M € cM, and A € V, it is immediate
that X is predictable. Assume conversely that X is predictable. Put Y = X — X, Y is then
predictable as well. By Lemma 4.2.3, Y* € A}, and so Exercise 4.4.2 shows that Y € S,.
This yields Y = M + A where A is predictable, and so M is predictable. By Theorem 3.1.9,
M 1is then almost surely continuous. Thus, we obtain X = Xy + M + A where M € My is
almost surely continuous and A € V with A predictable. g

Solution to exercise 4.4.5. First assume that X = Xg+ M + A with M € M, almost surely
continuous. Then AX = AA almost surely. As A € V, it almost surely holds for all ¢ > 0
that > o, |[AA,| and thus > o, |AX,| is almost surely convergent.

Conversely, assume that for all t > 0, >, -, |[AX,| is almost surely convergent. As A € V,
we also have that for all £ >0, > ., |AX?| is almost surely convergent. Therefore, for all
t >0, 5oy |[AM]is almost surely convergent, yielding AM € V. Recall by Theorem 3.4.7
that M = M¢ + M? almosts surely for some M¢ € cMy and M4 € dM,. As AM? = AM¢,
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Theorem 3.4.11 shows that M¢ € fvM, C V. We may thus decompose
X = Xo + M+ (M + A)

almost surely, where M? 4+ A € V. Modifying M¢ on a null set, we obtain the result. O

Solution to exercise 4.4.6. It is immediate that if X = X+ M + A with M and A continuous,
then X is continuous as well. Conversely, assume that X is continuous. We then obtain
AM = —AA, so Theorem 3.4.11 yields M? € fv.M,. We then obtain X = Xo+M°+(M?+A)
almost surely, where M?% + A € V. Modifying M¢ and M? + A on a null set, we obtain the
result. O

Solution to ezxercise 4.4.7. First consider the case where M € M™. We always have the
relationship M7~ = MTfAMTll[Tmﬂ. Here, M™T € M, by Lemma 3.1.3 and AMrlr,o0f €
My by Lemma 3.1.8 and Lemma 3.2.10. This proves the result in the case where M € M.
Now consider the case M € M,. Let (T},) be a localising sequence such that MT» € M.
We then obtain
(MT){" = MLg, — AMrplgar, >
= (M™)§ = AMrlasm)ler,>)
= (M™)] — AM}"1ysry = (M™)T,

and so, by what we already have shown, (M7 ~)T» € M,, yielding M7~ € M,. O

Solution to exercise 4.4.8. By Theorem 4.2.8 and Lemma 4.2.11, we find that H - M € M,
and [H - M| = H? - [M]. Therefore, Theorem 3.3.10 yields the result. O

Solution to exercise 4.4.9. By Exercise 4.4.8, we have that (H - M) is in M? for all t > 0 and
that E(H - M)? = Efot H?d[M], for all t > 0. In particular, this shows that H- M € M. O

Solution to exercise 4.4.10. As [W]; =t by Theorem 3.3.6, this is immediate from Exercise
4.4.8 and Exercise 4.4.9. O

Solution to exercise 4.4.11. As A —TIy A is in M, by Theorem 3.2.3, H - (A —1I; A) is in M,
by Theorem 4.2.8, so the result follows by Theorem 3.2.3. O

Solution to exercise 4.4.12. Put M; = N; — t, then M € My by Theorem 1.2.15, and so by
Theorem 4.2.8, H - M € M,. Using Lemma 4.2.11 and Theorem 4.2.9, we have

t t Nt t
(H-M)t:/ Hsts—/ Hsds:ZHTk—/ H,ds,
0 0 1 0
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and thus,
Ny

1/t 1 N 1

S Hyds=~(H-M),+ =S Hy,.

t/o =1l )t+tNt; T
Now let ¢ > 0 be a bound for H and note that [H - M|, = fot H2d[M]s < ¢2N;. Therefore,
E[H - M), is finite for all £ > 0 and so, by Exercise 4.4.9, E(H - M)? = E[H - M]; < 2Ny,

and so
2

1 2 1 2 c
_ 2 _
E(t(H-M)t> —tQE(H~M)tSt2ENt_ 0

proving that %(H - M), converges in probability to zero as ¢ tends to infinity. As we also have

N, S| , 1 1
E(tl) :?E(Nt*t) :tjE[M]t:P
we conclude that N/t P, Collecting our conclusions, the result follows. g

Solution to exercise 4.4.13. As A has zero continuous martingale part, it is immediate that
almost surely for all ¢ > 0, [M, Al = 3 .o, AM;AA;.

It remains to show that [M, A] € M. By Theorem 3.3.1, it suffices to prove this in the
cases M € MY and M € fvM,. If M € fvM,, we have [M, A]; = fot AA,dM,. Note that
AA is predictable, and by arguments similar to those employed in the solution of Exercise
3.5.9, locally bounded. Therefore, Lemma 3.3.2 yields the result in this case. It remains to
consider the case M € MY.

To this end, we first consider the case where M € M? and A € A" with A predictable.
In this case, AM is almost surely integrable on [0, 00) with respect to A, and as it holds
that > ., |[AM,AA,| = fg |AM;|dAs, this implies [M, A] € Vi. For each t > 0, define
T; = inf{s > 0|As > t}. By Lemma 3.2.6, T} is a predictable stopping time. In particular, as
(Ty < o0) is in Fr,, Lemma 3.1.8 shows that EAMr,1(7,<o) = 0 and so, applying Lemma
A.2.14, we obtain

E[M, A}oo == E/ AMt dAt = E/ AMTtl(Tt<oo) dt = / EAMTtl(T1,<OO) dt = 0
0 0 0

By Lemma 2.2.8, A7 is also predictable for any stopping time T, so the above yields
E[M,Alr = E[M,AT],, = 0 for all stopping times T, and so Lemma 1.2.8 shows that
[M, A] is in M™ in this case.

Next, consider the case where M € M} and A € A with A predictable. By Lemma 4.2.3,
there is a localising sequence (7},) such that M7+ € M® and AT+ € A’. We then obtain that
(M, A]T» = [MT  AT"] € My, so [M, A] € M, as well.
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Finally, consider the case where M € MY and A € V with A predictable. Then A = AT — A~
with At = 1(Va + A) and A~ = (Va4 — A) where AT, A~ € A and both processes are
predictable. We thus have [M, A1), [M,A™] € My and so [M, A] = [M,AT]|—[M,A~] € My,
as desired. O

Solution to exercise 4.4.14. Note that as A € V' and M € M?, it holds that M - A is in V?,

so the compensator of fg My dA; is well-defined. Furthermore,

t t t
/ MsdAs—/ M,_ dAS:/ AM,dA, = Z AMAA;,
0 0 0

0<s<t
and the latter is in My by Exercise 4.4.13. Therefore, Theorem 3.2.3 yields the result. O

Solution to exercise 4.4.15. Note that as X and H are semimartingales, it holds that the
sum » ., AH,AX, almost surely is absolutely convergent for all ¢ > 0 by Lemma 4.1.11.
Let X = X_o + M + A be a decomposition of X, where M € My and A € V. Lemma 4.2.11
and Theorem 4.2.9 then yields

t t t
/ AH,dX, / AH,dM, + / AH, dA,
0 0 0

t
/ AH dM,+ Y AHAA,.
0

0<s<t

Also, by Exercise 4.4.4, H = Xy + N + B almost surely where N € cM, and B € V with
B predictable. We then obtain fg AH,dM, = fot AB,dM,. Note that for any N € c My,
[AB-M,N]=AB-[M,N] =0 as [M,N] is continuous. Thus, AB- M € dM,. Next, put
Li =) gcs<; AB;AM,. By Exercise 4.4.13, L € M,. Furthermore, as L has paths of finite
variation, L € dM_ as well by Lemma 3.4.5. Finally, note that A(AB-M) = AMAM = AL.
Combining our conclusions, Lemma 3.4.3 shows that L — AB - M is evanescent so that

AB - M = L. Recalling our earlier observations, we may now conclude

tAHS dX.= Y ABAM,+ Y AHAA, = > AHAX,

0 0<s<t 0<s<t 0<s<t

as desired. O

Solution to exercise 4.4.16. Note that the conclusion is well-defined, as W, — W, is almost

surely never zero. To show the result, first note that Lemma 4.2.11 yields, up to indistin-
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guishability,

t+h
/ H, AW,
t

t+h t+h t+h
/ H g oo dWs = / Hilp oop AW +/ (Hs — Hi) 1,00y AW
t t t
t+h
= H(Wip —Wy) +/ (Hs — H) 1, 00p AW,
¢

where the indicators [t, co[ are included as a formality to ensure that the integrals are well-
defined. Therefore, it suffices to show that (W4, —W;)~* tt+h(HS —Hy)1 [ 00y AW converges
in probability to zero as h tends to zero. To this end, let ¢ be a bound for H and note that
by Exercise 4.4.10, we have

1 t+h 2 ] 4h
v \/E/ (Hs = H)lpp,oop dWs | = EE/ (H, — H;)* ds.
t t

As H is bounded and continuous, the dominated convergence theorem shows that the above

tends to zero as h tends to zero. Thus, ﬁ ftt+h(Hs — H3) 1,00y AW tends to zero in L2,

Now fix §, M > 0. With Y}, = ﬁ ft+h(Hs — Hi)1 001 AW, we have

t
>5>

t+h
P (‘(th - W) / (Hs — Hi)lpp,00p AW
t

Vh Vh Vh
< Pllsg—W > |——F | SM|+P| || >M
(‘Wt+hwt " Wi =W Wisn — Wi
5 vVh
< PV — Pl|m———|>M).
< <| hl > M>+ <‘Wt+h—Wt > )

Here, P(Vh(Wiyp,—W;)~! > M) does not depend on h, as (Wi, —W;)(v/h) ! is a standard
normal distribution. For definiteness, we define ¢(M) = P(Vh(Wiyp — W;)~' > M). The
above then allows us to conclude

t+h
lim sup P ( (Wign — Wt)*l/ (Hs — H) 100y dWs| > 5) < (M),
h—o0 t
and letting M tend to infinity, we obtain the desired result. O

Solution to exercise 4.4.17. For g > p, we have

> 1Xy = X | < (,znzx [ Xep = Xop, l) DX = X 1"
k=1 - k=1

As X has continuous paths, the paths of X are uniformly continuous on [0,¢]. In particular,

maxy<on th — Xt}g,1|q_p converges almost surely to zero. Therefore, this variable also
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converges to zero in probability, and so Zill |XtZ — X, |7 converges in probability to zero,

as was to be proven. O

Solution to exercise 4.4.18. First, consider the case where H = é In this case, X is a process
whose finite-dimensional distributions are normally distributed with mean zero and with the
property that for any s,t > 0, EX, X, = %(t+s —|t—s]). For a Brownian motion W, we have
that when 0 < s <t, EW,W; = EW,(W; — W)+ EW2 = EW,E(W; — W)+ EW2 = 5. In
this case, [t — s| =t — s, and so EW,W; = £(t + s — |t — s|). In the case where 0 <t < s,
EW W, =t=21(t+s+(t—s))=21(t+s—|t—s|) as well. Thus, X and W are processes
whose finite-dimensional distributions are normally distributed and have the same mean
and covariance structure. Therefore, their distributions are the same, and so X has the

distribution of a Brownian motion.

In order to show that X is not in ¢S when H # %, we first fix ¢ > 0 and consider the sum
> ,;1 | Xip — Xyp_ | |P for p > 0. Understanding the convergence of such sums will allow us
to prove our desired result. We know that the collection of variables th — th_l follows
a multivariate normal distribution with E (th — thll) = 0 and, using the property that
EX, X, = 3(t*7 4+ s2H — |t — s|*H), we obtain

E(th _ thil)(Xt?’ _ Xt?,1> — EXtZXt? — EXtEXt?,l — EXt;71Xt;L + EXt;cl—1Xt?*
_ 2—2nH%(|k —i+ 1|2H +k—1— i|2H — 2k — i|2H).

1

Here, the parameter n only enters the expression through the constant multiplicative factor
272nH  Therefore, as normal distributions are determined by their covariance structure, it
follows that the distribution of the variables (Xi» — Xyn ) for k < 2" is the same as the
distribution of the variables 2*”H(Xk — Xk—1) for k < 2™. In particular, it follows that the
distributions of Zill | Xin — Xgp [P and 27721 Zill | Xk — Xp—1/P are the same. We wish
to apply the ergodic theorem for stationary processes to the sequence (Xj — Xjp—1)k>1. To
this end, we first check that this sequence is in fact stationary. To do so, we need to check
for any m > 1 that the variables X, — X1 for & < n have the same distribution as the
variables X, 1 — X;nyk—1 for & < n. As both families of variables are normally distributed
with mean zero, it suffices to check that the covariance structure is the same. However, by

what we already have shown,
BE(Xy — Xgp—1)(Xpn — Xi1)
= (k=i + 1" + |k —1— " — 2]k —i]*")
= E(Xerk - Xm+k71)(Xt;‘q’+i - Xm+i71)~

This allows us to conclude that the sequence (Xj —Xg_1)r>1 is stationary. As E| X, —Xj_1|P

is finite, the ergodic theorem shows that %2221 | X5 — Xi—1|P converges almost surely and
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in £! to some variable Z,, where Z, is integrable and EZ, = E|X; — Xo|? = E|X:|? > 0.
This property ensures that Z, is not almost surely zero. Next, we observe that we have
2 npH Ziil | X), — Xpoa|P = 2n(-PH) (L Ziil | Xx — Xk—1|P), where we have just checked
that the latter factor always converges almost surely and in £! to Z,. Having this result at
hand, we are ready to prove that X is not in ¢S when H # %

First consider the case where H < % In this case, % > 2. If X € ¢S, we have that
Zill | X — Xin_ |* converges in probability to [X];. Therefore, by Exercise, 4.4.17, we find
that Zi;l | Xin — XtZ,1|% converges to zero in probability. As Zill | Xin — Xthl‘% has
the same distribution as 5 Ziil | X} — Xp_1|#, we conclude that this sequence converges
to zero in probability. However, this is in contradiction with what we have already shown,
namely that this sequence converges in probability to a variable Z ER which is not almost

surely zero. We conclude that in the case H < %, X cannot be in cS§.

Next, consider the case H > % Again, we assume that X € ¢S and hope for a contradiction.
In this case, 1 — 2H < 0, so 2"(1=2H) converges to zero and so, by our previous results,
2n(1=2H) (L Zill | X — Xi_1]?) converges to zero in probability. Therefore, we find that
Zill |Xt;3 — Xt271|2 converges to zero in probability as well, since this sequence has the
same distribution as the previously considered sequence. By Theorem 4.3.3, this implies
[X]¢+ = 0 almost surely. As ¢ > 0 was arbitrary, we conclude that [X] is evanescent. With
X = M + A being the decomposition of X into its continuous local martingale part and its
continuous finite variation part, we have [X] = [M], so [M] is evanescent and so by Lemma
3.3.8, M is evanescent. Therefore, X almost surely has paths of finite variation. In particular,
Ziil | Xip — Xip_ | is almost surely convergent, in particular convergent in probability. As
H < 1, we have % > 1, so by Exercise 4.4.17, ZZil |Xt}3 — X |% converges in probability
to zero. Therefore, 2% Zill | X% — Xk,1|% converges to zero in probability as well. As in
the previous case, this is in contradiction with the fact that that this sequence converges in
probability to a variable Z% which is not almost surely zero. We conclude that in the case
H< %, X cannot be in ¢S either. O

Solution to exercise 4.4.19. By Itd’s formula of Theorem 4.3.5 and Theorem 3.3.6, we have

FW) — £(0) = Z/ §j< yawi + 1 ZZ/ M% W) AW, W),

11]1

) dW?E + Z / 33:1830] W) ds,

I
S~
?8:

and by our assumptions on f, this is equal to le fo gml (W) dW, since the second term
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vanishes. Here, > 7, J%(Ws) dW! is in eM,. Therefore, f(W;) — f(0) is in eM, and so

f(W,) is a continuous local martingale. O

Solution to exercise 4.4.20. Define the two-dimensional process X by putting X; = (¢, Ws).
With A; = ¢, we have [A,W]; = 0, so It6’s formula of Theorem 4.3.5 shows

tof Lorf
f&, W) — £(0,0) = o 8t(SW d8+/8 sW)dW+ 82(sW)d
B Lof 10%f
=/ E(S’W)+282(SW ds+/ Iz (s, Ws) dWs,
which is equal to [ g£ (s, Ws)dW; by our assumptions on f, and this is in ¢ M. Therefore,
f(t,W,) is a continuous local martingale, and f(t,W;) = f(0,0) + ft 9 (5, W) dW,. O

Solution to exercise 4.4.21. As f is adapted and continuous, f € J by Lemma 4.2.4.
Put t} = kt27". By Theorem 4.3.2, we find that Zin L f(th_ ) (Wip — Win ) converges
in probability to fo s)dWs. However, the finite sequence of variables Wip — Wyn | for
k=1,...,2" are 1ndependent and normally distributed with mean zero and variance ¢27".
Therefore, we find that Ziil ftr_1)(Wip — Win ) is normally distributed with mean zero
and variance t27" Eill F(t? )% As f is continuous, this converges to fo 2ds. There-
fore, Zi:l fty_1)(Wip — Win_ ) converges weakly to a normal dlStI‘lbuthn with mean

zero and variance fg 5)?2ds. As this sequence of variables also converges in probability

to fo s)dWy, and convergence in probability implies weak convergence, we conclude by
unlqueness of limits that fo s) dW; follows a normal distribution with mean zero and vari-
ance fo 2ds. O

Solution to exercise 4.4.22. First note that by Theorem 4.3.5, f(X) and ¢(Y) are semi-

martingales, so the quadratic covariation is well-defined. By construction, we have

[FX), 9V )] = [FXO)% (V)T + Y AF(X,)Ag(Y5).

0<s<t

Furthermore, by Theorem 4.3.5, we obtain

F(X0) = £(Xo) /f )dX, o /f” (X, +

up to indistinguishability, where 7 is in V. From this, we see that the continuous martingale

part of f(X) is f/(X_)- X°. Similarly, the continuous martingale part of g(Y) is ¢/(Y_) - Y°.
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Applying Lemma 4.2.11, we thus obtain

F(X), g = [F(X2)- X0 (Y2)- Y+ Y Af(X,)Ag(Ya)
0<s<t
- /f Y,_)d[X¢, Y], Z Af(X Ys)
0<s<t
- / (X dX° Y+ D AF(X)Ag(YS),
0<s<t

where we also have used that [X¢, Y] is continuous, so changing the integrand in countably
many points does not change the value of the integral. This shows in particular that with W
an F; Brownian motion, [W?], = fot(pWSp_l)2 d[Wls = p? f(f w2 gs. O

Solution to exercise 4.4.23. In the case where i = j, we may apply It6’s formula with the
function f : R — R defined by f(z) = 2? and obtain (W?%)? = 2f0t WidW! +t. Lemma

4.1.13 then shows that [(W?)?], = 4[W* W], =4 fot(l/Vg)2 ds. Next, consider the case where
i # j. Applying It6’s formula with the function f : R? — R defined by f(z,y) = 2y, we have

t t
wiwi = [ wiaws+ [Twiaw
0 0
Using Lemma 4.1.13 and Lemma 4.2.11, we then obtain

WiW7), = (W' W, +2W*- W WI- Wi, + (W7 - W,

t t t
/(W;)2ds+2/ W;ng[wi,wj]er/ (W) ds
0 0 0

/Ot(wg‘f ds + /Ot(wg)st.

O

Solution to exercise 4.4.24. By Theorem 4.3.3, we know that Zill(Mtk — My, ,)? converges
to [M]; in probability. Therefore, by Lemma A.3.5, we have convergence in £! if and only
if the sequence of variables is uniformly integrable. To show uniform integrability, it suffices
by Lemma A.3.4 to show boundedness in £2. To prove this, we first note the relationship
B(S i, (Myy, = My, )2 = E Y5, (Myy, = My, ) 4 E S (My, = My, )2 (My, = M, )2,
With C > 0 being a constant such that |M;| < C for all t > 0, we may use the martingale
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property to obtain

2" 2"
EZ(Mtk - Mtk—1)4 < 4C® Z E(Mtk - Mtk—1)2
k=1 k=1
on
= 4C?> EM] +EM}_, —2EM, M,
k=1
on
= 4C?Y EM} — EM}  <4C".
k=1
Furthermore, we have by symmetry that
on_q on
EZ(Mtk - Mtk—l)Q(Mti - Mti—l)2 =2E Z Z (My, — Mtk—l)Q(Mti - Mt¢71)2)
ki k=1 i=k+1

and this is equal to 2B Y7 (My, — My, )iy E(My, — My, ,)?|Fs,), since M is

adapted. Here, we may apply the martingale property to obtain

2" 2n
> B(My, — My, )*|F) = Y, B(MZ —2M,M,_, + M} ||F,)
i=k+1 i=k+1

-
> E(M; - M{_|Fy) = E(M} — Mg |F,) < C,
i=k+1

which finally yields

2" —1
EZ(Mtk - Mtk—l)z(Mti - Mti—l)z < 202E Z (Mtk - Mtk—l)z
ki k=1
2" —1
= 207 )" BE(M? —2M;, M, _, + M )
k=1
2" —1

2 2 2 4
= 20* > EMZ - EMZ_, <2C*.
k=1

Thus, we conclude E(Ziil(Mtk — My, ,)?)? < 60C%, and so the sequence is bounded in £2.
From our previous deliberations, we may now conclude that Zizl(Mtk — M, _,)? converges
in £ to [M];. O
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Probability space
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Jordan-Hahn decomposition, 136 Purely discontinuous local martingale, 88

Kernel, 141 Quadratic variation
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Kunita-Watanabe inequalities, 86 approximation, 119
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and predictable stopping, 66 properties, 84, 102
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finite variation, 75, 76, 79, 94 Riesz’ representation theorem, 27
fundamental theorem, 77
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purely discontinuous, 88 quadratic variation, 101
Signed measure, 136

Martingale, 12 Stochastic integral
convergence, 15, 25 and the Lebesgue integral, 111
criterion for being, 20 approximation, 118
evanescent, 21 existence, 108, 111
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optional sampling, 17 Stochastic process, 2
square-integrable, 24 adapted, 3
stopped, 19 cadlag, 3

uniformly integrable, 15 caglad, 3

b
Mazur’s lemma, 163 continuous, 3

Optional sampling theorem, 17 evanescent, 3, 5

finite variation, 33

Poisson process, 23 indistinguishability, 2

Pre-stopping, 99 jumps, 9, 10, 59

Predictable o-algebra limit and jump conventions, 3
generator, 40, 43 measurable, 3

Predictable stopping time, 42 modification, 3
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predictable, 55, 60, 79
progressive, 3, 5, 11
sample paths, 2
versions, 2

Stopping time, 6
accessible, 55
decomposition, 56
first entrance, 7
predictable, 42
properties, 6, 7
regular sequence of, 58
totally inaccessible, 55

Submartingale, 12

Supermartingale, 12
convergence, 15

Supermartingale convergence theorem, 15

Taylor’s formula, 145
Tonelli’s theorem, 143

Uniform integrability, 160



