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Preface

This monograph concerns itself with the theory of continuous-time martingales and the theory

of stochastic integration with respect to general semimartingales. One primary question in

the theory of stochastic integration is the following: For what integrators X and integrands

H can the integral ∫ t

0

Hs dXs

be defined in a sensible manner? As many stochastic processes of interest as integrators, for

example the Brownian motion, have paths which almost surely are of infinite variation, this

integral cannot immediately be defined by reference to ordinary Lebesgue integration theory.

Therefore, another approach is necessary. It turns out that the proper notion of integrator X

is that of a semimartingale, which is the sum of a local martingale and a process with paths

of finite variation, while the natural measurability requirement on the integrand H is that it

be measurable with respect to the predictable σ-algebra, which is the σ-algebra on R+ × Ω

generated by the left-continuous and adapted processes. That these are the correct answers

is by no means self-evident, and builds on the deep insights of many people.

Once the stochastic integral has been constructed, its properties may be investigated, leading

for example to Itô’s formula, the change-of-variables theorem for stochastic calculus, the entry

point for making stochastic calculus an operational theory applicable to both other fields of

probability theory and to practical statistical modeling.

Several introductory accounts of the theory of stochastic integration exist. One of the first

complete accounts is given in Dellacherie & Meyer (1978). Good alternative books are He et

al. (1992), Rogers & Williams (2000b), Kallenberg (2002), Jacod & Shiryaev (2003) and

Protter (2005), for example. The purpose of this monograph is to apply certain techniques

to simplify the theory so as to present a very direct path to the fundamentals of martingale

theory, the general theory of processes and the stochastic integral.
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As prerequisites, the reader is assumed to have a reasonable grasp of basic analysis, measure

theory and discrete-time martingale theory, as can be obtained through the books Carothers

(2000), Ash (2000) and Rogers & Williams (2000a). Familiarity with continuous-time

stochastic processes and the theory of stochastic integration with respect to continuous semi-

martingales as in Karatzas & Shreve (1991) is also beneficial, though not strictly required.

I would like to extend my warm thanks to Lars Lynne Hansen for pointing out many misprints

and errors in previous versions of this manuscript, as well as for giving numerous suggestions

for improvements.

Finally, I would like to thank my own teachers in probability theory, Ernst Hansen and

Martin Jacobsen, for teaching me probability theory.

Alexander Sokol

København, 2013



Chapter 1

Continuous-time stochastic

processes

In this chapter, we develop the basic results of stochastic processes in continuous time,

covering mostly some basic measurability results as well as the theory of continuous-time

martingales. The results of this chapter form an essential part of the fundament for the

theory to be developed in the following chapters.

In Section 1.1, we concern ourselves with the measurability properties of stochastic processes

in continuous time, introducing the most frequently occurring path properties, as well as reg-

ularity properties such as being measurable, adapted and progressive. We introduce stopping

times and prove that several classes of frequently occurring random variables are stopping

times.

Section 1.2 concerns itself with continuous-time martingales. Applying the results from

discrete-time martingale theory, we show the supermartingale convergence theorem, the op-

tional sampling theorem and related results.

Section 1.3 introduces square-integrable martingales. Using the results developed in this

section, we prove the existence of the quadratic variation process for bounded martingales,

a particular case of the much more general construction to be carried out in Chapter 3. The

construction made in this section, however, is remarkable for requiring almost no advanced



2 Continuous-time stochastic processes

theory.

In Section 1.4, we introduce the Lebesgue integral process with respect to a process with

paths of finite variation, and ensure that we may always obtain a version of such an integral

process satisfying certain measurability properties. The results of this section are elementary,

yet will be important for the development of the theory of local martingales in Chapter 3, as

well as for the development of the stochastic integral in Chapter 4.

1.1 Measurability and stopping times

We begin by reviewing basic results on continuous-time stochastic processes. We will work

in the context of a filtered probability space (Ω,F , (Ft), P ). Here, Ω denotes some set, F is

a σ-algebra on Ω, P is a probability measure on (Ω,F) and (Ft)t≥0 is a family of σ-algebras

such that Fs ⊆ Ft whenever 0 ≤ s ≤ t and such that Ft ⊆ F for all t ≥ 0. We refer to

(Ft)t≥0 as the filtration of the probability space. We will require that the filtered probability

space satisfies certain regularity properties given in the following definition. Recall that a P

null set of F is a set F ⊆ Ω with the property that there exists G ∈ F with P (G) = 0 such

that F ⊆ G.

Definition 1.1.1. A filtered probability space (Ω,F , (Ft)t≥0, P ) is said to satisfy the usual

conditions if it holds that the filtration is right-continuous in the sense that Ft = ∩s>tFs for

all t ≥ 0, and for all t ≥ 0, Ft contains all P null sets of F . In particular, all P null sets of

F are F measurable.

We will always assume that the usual conditions hold.

We define F∞ = σ(∪t≥0Ft). A stochastic process is a family (Xt)t≥0 of random variables

taking values in R. The sample paths of the stochastic process X are the functions X(ω) for

ω ∈ Ω.

In the following, B denotes the Borel-σ-algebra on R. We put R+ = [0,∞) and let B+ denote

the Borel-σ-algebra on R+, and we let Bt denote the Borel-σ-algebra on [0, t]. We say that

two processes X and Y are versions if P (Xt = Yt) = 1 for all t ≥ 0. In this case, we say that

Y is a version of X and vice versa. We say that two processes X and Y are indistinguishable

if their sample paths are almost surely equal, in the sense that the set where X and Y are

not equal is a null set, meaning that the set {ω ∈ Ω | ∃ t ≥ 0 : Xt(ω) 6= Yt(ω)} is a null set.
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We then say that X is a modification of Y and vice versa. We call a process evanescent

if it is indistinguishable from the zero process, and we call a set A ∈ B+ ⊗ F evanescent

if the process 1A is evanescent. We say that a result holds up to evanescence, or up to

indistinguishability, if it holds except perhaps on an evanescent set. We have the following

three measurability concepts for stochastic processes.

Definition 1.1.2. Let X be a stochastic process. We say that X is adapted if Xt is Ft
measurable for all t ≥ 0. We say that X is measurable if (t, ω) 7→ Xt(ω) is B+⊗F measurable.

We say that X is progressive if, for t ≥ 0, the restriction of (t, ω) 7→ Xt(ω) to [0, t] × Ω is

Bt ⊗Ft measurable.

If a process X has sample paths which are all continuous, we say that X is continuous, and

likewise for right-continuity, left-continuity, having right-continuous paths with left limits and

having left-continuous paths with right limits. We refer to a mapping with right-continuous

paths and left limits as a càdlàg mapping, and we refer to a mapping with left-continuous

paths and right limits as a càglàd mapping. We refer to a process with càdlàg paths as a

càdlàg process and we refer to a process with càglàd paths as a càglàd process. Note that we

always require that path properties hold for all paths and not only almost surely.

For a càdlàg process X, the left limit lims→t− Xs is well-defined for all t > 0 and is denoted

by Xt−. We use the convention that X0− = X0. Writing (X−)t = Xt−, the process X− is

then well-defined on all of R+. We also introduce ∆X = X − X− and refer to ∆X as the

jump process of X. Note that by our conventions, ∆X always has initial value zero, so that

there is no jump at the timepoint zero. Also, we define ∆X∞ = 0. For any càdlàg process,

∆Xt is then defined for all t ∈ [0,∞]. Next, we introduce the progressive σ-algebra Σπ and

consider its basic properties.

Lemma 1.1.3. Let Σπ be the family of sets A ∈ B+ ⊗ F such that A ∩ [0, t]× Ω ∈ Bt ⊗ Ft
for all t ∈ R+. Then Σπ is a σ-algebra, and a process X is progressively measurable if and

only if it is Σπ-measurable.

Proof. We first show that Σπ is a σ-algebra. It holds that Σπ contains R+ × Ω. If A ∈ Σπ,

we have A∩ [0, t]×Ω ∈ Bt⊗Ft for all t ≥ 0. As Ac ∩ [0, t]×Ω = ([0, t]×Ω) \ (A∩ [0, t]×Ω),

Ac∩ [0, t]×Ω is the complement of A∩ [0, t]×Ω relative to [0, t]×Ω. Therefore, as Bt⊗Ft is

stable under complements, we find that Ac∩ [0, t]×Ω is in Bt⊗Ft as well for all t ≥ 0. Thus,

Σπ is stable under taking complements. Analogously, we find that Σπ is stable under taking

countable unions, and so Σπ is a σ-algebra. As regards the statement on measurability, we
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first note for any A ∈ B the equality

{(s, ω) ∈ R+ × Ω | X(s, ω) ∈ A} ∩ [0, t]× Ω = {(s, ω) ∈ [0, t]× Ω | X|[0,t]×Ω(s, ω) ∈ A}.

Now assume that X is progressive. Fix a set A ∈ B. From the above, we then obtain

{(t, ω) ∈ R+ × Ω | X(t, ω) ∈ A} ∩ [0, t]× Ω ∈ Bt ⊗Ft, so that X is Σπ measurable. In order

to obtain the converse implication, assume that X is Σπ measurable. The above then shows

{(s, ω) ∈ [0, t] × Ω | X|[0,t]×Ω(s, ω) ∈ A} ∈ Bt ⊗ Ft. Thus, being progressive is equivalent to

being Σπ measurable.

Lemma 1.1.4. Let X be left-continuous. Define Xn
t =

∑∞
k=0Xk2−n1[k2−n,(k+1)2−n)(t).

Then Xn converges pointwise to X.

Proof. Fix ω ∈ Ω. It is immediate that X0(ω) = limnX
n
0 (ω), so it suffices to prove that

Xt(ω) = limnX
n
t (ω) for t > 0. Fix t > 0. Let ε > 0, and take δ > 0 with δ ≤ t such that

|Xt(ω) −Xs(ω)| ≤ ε whenever s ∈ [t − δ, t]. Take n so large that 2−n ≤ δ. We then obtain

Xn
t (ω) = Xk2−n(ω) for some k with k2−n ≤ t < (k+ 1)2−n, so k2−n ∈ [t− 2−n, t] ⊆ [t− δ, t]

and thus |Xn
t (ω)−Xt(ω)| ≤ ε. We conclude that Xt(ω) = limnX

n
t (ω), as desired.

Lemma 1.1.5. Let X be right-continuous. Fix t ≥ 0. For s ≥ 0, define a process Xn

by putting Xn
s = X01{0}(s) +

∑2n−1
k=0 Xt(k+1)2−n1(tk2−n,t(k+1)2−n](s). Then Xs = limnX

n
s

pointwise for 0 ≤ s ≤ t.

Proof. Fix ω ∈ Ω and t ≥ 0. It is immediate that X0(ω) = limnX
n
0 (ω), so it suffices to

consider the case 0 < s ≤ t and prove Xs(ω) = limnX
n
s (ω). To this end, let ε > 0, and take

δ > 0 such that |Xs(ω)−Xu(ω)| ≤ ε whenever u ∈ [s, s+ δ]. Pick n so large that t2−n ≤ δ.
Then Xn

s (ω) = Xt(k+1)2−n(ω) for some k ≤ 2n−1 with tk2−n < s ≤ t(k+1)2−n. This yields

t(k + 1)2−n ∈ [s, s+ t2−n] ⊆ [s, s+ δ] and thus |Xn
s (ω)−Xs(ω)| ≤ ε. From this, we obtain

Xs(ω) = limnX
n
s (ω), as desired.

Lemma 1.1.6. Let X be an adapted process. Assume that X either is left-continuous or

right-continuous. Then X is progressive.

Proof. First consider the case where X is adapted and has left-continuous paths. By Lemma

1.1.4, Xt = limnX
n
t pointwise, where Xn

t =
∑∞
k=0Xk2−n1[k2−n,(k+1)2−n)(t). Therefore, using

the result from Lemma 1.1.3 that being progressive means measurability with respect to the

σ-algebra Σπ, we find that in order to show the result, it suffices to show that the process

t 7→ Xk2−n1[k2−n,(k+1)2−n)(t) is progressive for any n ≥ 1 and k ≥ 0, since in this case, X

inherits measurability with respect to Σπ as a limit of Σπ measurable maps. In order to show
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that t 7→ Xk2−n1[k2−n,(k+1)2−n)(t) is progressive, let A ∈ B with 0 /∈ A. For any t ≥ 0, we

then have

{(s, ω) ∈ [0, t]× Ω | Xk2−n1[k2−n,(k+1)2−n)(s) ∈ A}

= [k2−n, (k + 1)2−n) ∩ [0, t]× (Xk2−n ∈ A).

If k2−n > t, this is empty and so in Bt ⊗Ft, and if k2−n ≤ t, this is in Bt ⊗Ft as a product

of a set in Bt and a set in Ft. Thus, in both cases, we obtain an element of Bt⊗Ft, and from

this we conclude that the restriction of t 7→ Xk2−n1[k2−n,(k+1)2−n)(t) to [0, t] × Ω is Bt ⊗ Ft
measurable, demonstrating that the process is progressive. This shows that X is progressive.

Next, consider the case where X is adapted and has right-continuous paths. In this case, we

fix t ≥ 0 and define, for 0 ≤ s ≤ t, Xn
s = X01{0}(s) +

∑2n−1
k=0 Xt(k+1)2−n1(tk2−n,t(k+1)2−n](s).

By Lemma 1.1.5, Xs = limnX
n
s pointwise for 0 ≤ s ≤ t. Also, each term in the sum defining

Xn is Bt ⊗ Ft measurable, and therefore, Xn is Bt ⊗ Ft measurable. As a consequence, the

restriction of X to [0, t]× Ω is Bt ⊗ Ft measurable, and so X is progressive. This concludes

the proof.

Lemma 1.1.7. Let X be right-continuous or left-continuous. If Xt is almost surely zero for

all t ≥ 0, X is evanescent.

Proof. We claim that {ω ∈ Ω | ∀ t ≥ 0 : Xt(ω) = 0} = ∩q∈Q+{ω ∈ Ω | Xq(ω) = 0} in

both cases. The inclusion towards the right is immediate. In order to show the inclusion

towards the left, assume that ω is such that Xq(ω) is zero for all q ∈ Q+. Let t ∈ R+. If

X is left-continuous, we can use the density properties of Q+ in relation to R+ to obtain a

sequence (qn) in Q+ converging upwards t, yielding Xt(ω) = limnXqn(ω) = 0. If X is right-

continuous, we may instead pick a sequence converging downwards to t and again obtain that

Xt(ω) = 0. This proves the inclusion towards the left. Now, as a countable intersection of

almost sure sets again is an almost sure set, we find that ∩q∈Q+
{ω ∈ Ω | Xq(ω) = 0} is an

almost sure set. Therefore, {ω ∈ Ω | ∀ t ≥ 0 : Xt(ω) = 0} is an almost sure set, showing

that X is evanescent.

Lemma 1.1.8. Let X be progressive. Then X is measurable and adapted.

Proof. That X is measurable follows from Lemma 1.1.3. To show that X is adapted, recall

that when X is progressive, the restriction of X to [0, t] × Ω is Bt ⊗ Ft-measurable, and

therefore ω 7→ Xt(ω) is Ft-measurable.
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Next, we define stopping times in continuous time and consider their interplay with mea-

surability on R+ × Ω. A stopping time is a random variable T : Ω → [0,∞] such that

(T ≤ t) ∈ Ft for any t ≥ 0. We say that T is finite if T maps into R+. We say that T is

bounded if T maps into a bounded subset of R+. If X is a stochastic process and T is a

stopping time, we denote by XT the process XT
t = XT∧t and call XT the process stopped

at T . Furthermore, we define the stopping-time σ-algebra FT of events determined at T

by putting FT = {A ∈ F | A ∩ (T ≤ t) ∈ Ft for all t ≥ 0}. It is immediate that FT is

a σ-algebra, and if T is constant, the stopping time σ-algebra is the same as the filtration

σ-algebra, in the sense that {A ∈ F | A ∩ (s ≤ t) ∈ Ft for all t ≥ 0} = Fs.

Lemma 1.1.9. The following statements hold about stopping times:

(1). Any constant in [0,∞] is a stopping time.

(2). A nonnegative variable T is a stopping time if and only if (T < t) ∈ Ft for t ≥ 0.

(3). If S and T are stopping times, so are S ∧ T , S ∨ T and S + T .

(4). If T is a stopping time and F ∈ FT , then TF = T1F +∞1F c also is a stopping time.

(5). If S ≤ T , then FS ⊆ FT .

Proof. Proof of (1). Let c be a constant in R+. Then (c ≤ t) is either ∅ or Ω, both of which

are in Ft for any t ≥ 0. Therefore, any constant c in R+ is a stopping time.

Proof of (2). Assume first that T is a stopping time. Then (T < t) = ∪∞n=1(T ≤ t− 1
n ) ∈ Ft,

proving the implication towards the right. Conversely, assume (T < t) ∈ Ft for all t ≥ 0. We

then obtain (T ≤ t) = ∩∞k=n(T < t+ 1
k ) for all n. This shows (T ≤ t) ∈ Ft+ 1

n
for all n ≥ 1.

Since (Ft) is decreasing and n is arbitrary, (T ≤ t) ∈ ∩∞n=1Ft+ 1
n

= ∩∞n=1∩s≥t+ 1
n
Fs = ∩s>tFs.

By right-continuity of the filtration, Ft = ∩s>tFs, so we conclude (T ≤ t) ∈ Ft, proving that

T is a stopping time.

Proof of (3). Assume that S and T are stopping times and let t ≥ 0. We then have

(S ∧ T ≤ t) = (S ≤ t) ∪ (T ≤ t) ∈ Ft, so S ∧ T is a stopping time. Likewise, we obtain

(S ∨ T ≤ t) = (S ≤ t) ∩ (T ≤ t) ∈ Ft, so S ∨ T is a stopping time as well. Finally, consider

the sum S + T . Let n ≥ 1 and fix ω. If S(ω) and T (ω) are finite, there are q, q′ ∈ Q+ such

that q ≤ S(ω) ≤ q + 1
n and q′ ≤ T (ω) ≤ q′ + 1

n . In particular, q + q′ ≤ S(ω) + T (ω) and

S(ω) + T (ω) ≤ q + q′ + 2
n . Next, if S(ω) + T (ω) ≤ t, it holds in particular that both S(ω)

and T (ω) are finite. Therefore, with Θt = {q, q′ ∈ Q+ | q + q′ ≤ t}, we find

(S + T ≤ t) = ∩∞n=1 ∪(q,q′)∈Θt (S ≤ q + 1
n ) ∩ (T ≤ q′ + 1

n ).



1.1 Measurability and stopping times 7

Now, the sequence of sets ∪(q,q′)∈Θt(S ≤ q+ 1
n )∩(T ≤ q′+ 1

n ) is decreasing in n, and therefore

we have for any k ≥ 1 that (S+T ≤ t) = ∩∞n=k ∪(q,q′)∈Θt (S ≤ q+ 1
n )∩ (T ≤ q′+ 1

n ) ∈ Ft+ 1
k

.

In particular, (S + T ≤ t) ∈ Fs for any s > t, and so, by right-continuity of the filtration,

(S + T ≤ t) ∈ ∩s>tFs = Ft, proving that S + T is a stopping time.

Proof of (4). Let T be a stopping time and let F ∈ FT . Then (TF ≤ t) = (T ≤ t)∩F ∈ Ft,
as was to be proven.

Proof of (5). Let A ∈ FS , so that A ∩ (S ≤ t) ∈ Ft for all t ≥ 0. Since S ≤ T , we have

(T ≤ t) ⊆ (S ≤ t) and so A ∩ (T ≤ t) = A ∩ (S ≤ t) ∩ (T ≤ t) ∈ Ft, yielding A ∈ FT .

For the next result, we recall that for any nonempty A ⊆ R, it holds that supA ≤ t if and

only if s ≤ t for all s ∈ A, and inf A < t if and only if there is s ∈ A such that s < t.

Lemma 1.1.10. Let (Tn) be a sequence of stopping times, then supn Tn and infn Tn are

stopping times as well.

Proof. Assume that Tn is a stopping time for each n. Fix t ≥ 0, we then then have that

(supn Tn ≤ t) = ∩∞n=1(Tn ≤ t) ∈ Ft, so supn Tn is a stopping time. Likewise, using the

second statement of Lemma 1.1.9, we find (infn Tn < t) = ∪∞n=1(Tn < t) ∈ Ft, so infn Tn is

a stopping time.

Lemma 1.1.11. Let T and S be stopping times. Assume that Z is FS measurable. It then

holds that both Z1(S<T ) and Z1(S≤T ) are FS∧T measurable.

Proof. We first show (S < T ) ∈ FS∧T . To prove the result, it suffices to show that the

set (S < T ) ∩ (S ∧ T ≤ t) is in Ft for all t ≥ 0. To this end, we begin by noting that

(S < T )∩ (S∧T ≤ t) = (S < T )∩ (S ≤ t). Consider some ω ∈ Ω such that S(ω) < T (ω) and

S(ω) ≤ t. If t < T (ω), S(ω) ≤ t < T (ω). If T (ω) ≤ t, there is some q ∈ Q ∩ [0, t] such that

S(ω) ≤ q < T (ω). We thus obtain (S < T ) ∩ (S ∧ T ≤ t) = ∪q∈Q∩[0,t]∪{t}(S ≤ q) ∩ (q < T ),

which is in Ft, showing (S < T ) ∈ FS∧T . We next show that Z1(S<T ) is FS∧T measurable.

Let B ∈ B with B not containing zero. As this type of sets generate B, it will suffice to show

that (Z1(S<T ) ∈ B) ∩ (S ∧ T ≤ t) ∈ Ft for all t ≥ 0. To obtain this, we rewrite

(Z1(S<T ) ∈ B) ∩ (S ∧ T ≤ t) = (Z ∈ B) ∩ (S < T ) ∩ (S ∧ T ≤ t)

= (Z ∈ B) ∩ (S < T ) ∩ (S ≤ t).

Since Z is FS measurable, (Z ∈ B) ∩ (S ≤ t) ∈ Ft. And by what we have already shown,

(S < T ) ∈ FS , so (S < T ) ∩ (S ≤ t) ∈ Ft. Thus, the above is in Ft, as desired.
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Finally, we show that Z1(S≤T ) is FS∧T measurable. Let B ∈ B with B not containing zero.

As above, it suffices to show that for any t ≥ 0, (Z1(S≤T ) ∈ B)∩ (S ∧T ≤ t) ∈ Ft. To obtain

this, we first write

(Z1(S≤T ) ∈ B) ∩ (S ∧ T ≤ t) = (Z ∈ B) ∩ (S ≤ T ) ∩ (S ∧ T ≤ t)

= (Z ∈ B) ∩ (S ≤ t) ∩ (S ≤ T ) ∩ (S ∧ T ≤ t).

Since Z ∈ FS , we find (Z ∈ B) ∩ (S ≤ t) ∈ Ft. And since we know (T < S) ∈ FT∧S ,

(S ≤ T ) = (T < S)c ∈ FS∧T , so (S ≤ T ) ∩ (S ∧ T ≤ t) ∈ Ft. This demonstrates

(Z1(S≤T ) ∈ B) ∩ (S ∧ T ≤ t) ∈ Ft, as desired.

Lemma 1.1.12. Let X be progressively measurable, and let T be a stopping time. Then

XT 1(T<∞) is FT measurable and XT is progressively measurable.

Proof. We first prove that the stopped process XT is progressively measurable. Fix t ≥ 0,

we need to show that XT
|[0,t]×Ω is Bt ⊗ Ft measurable, which means that we need to show

that the mapping from [0, t]×Ω to R given by (s, ω) 7→ XT (ω)∧s(ω) is Bt⊗Ft-B measurable.

To this end, note that whenever 0 ≤ s ≤ t,

{(u, ω) ∈ [0, t]× Ω | T (ω) ∧ u ≤ s} = ([0, t]× (T ≤ s)) ∪ ([0, s]× Ω) ∈ Bt ⊗Ft,

so the mapping from [0, t]× Ω to [0, t] given by (s, ω) 7→ T (ω) ∧ s is Bt ⊗ Ft-Bt measurable.

And as the mapping from [0, t] × Ω to Ω given by (s, ω) 7→ ω is Bt ⊗ Ft-Ft measurable, we

conclude that the mapping from [0, t] × Ω to [0, t] × Ω given by (s, ω) 7→ (T (ω) ∧ s, ω) is

Bt ⊗ Ft-Bt ⊗ Ft measurable, since it has measurable coordinates. As X is progressive, the

mapping from [0, t]×Ω to R given by (s, ω) 7→ Xs(ω) is Bt⊗Ft-B measurable. Therefore, the

composite mapping from [0, t]×Ω to R given by (s, ω) 7→ XT (ω)∧s(ω) is Bt⊗Ft-B measurable.

This shows that XT is progressively measurable.

In order to prove that XT is FT measurable, we note that for any B ∈ B, we have that

(XT 1(T<∞) ∈ B) ∩ (T ≤ t) = (XT
t ∈ B) ∩ (T ≤ t). Now, XT

t is Ft measurable since XT is

progressive and therefore adapted by Lemma 1.1.8, and (T ≤ t) ∈ Ft since T is a stopping

time. Thus, (XT 1(T<∞) ∈ B) ∩ (T ≤ t) ∈ Ft, and we conclude (XT 1(T<∞) ∈ B) ∈ FT .

The remaining results of the section give some results on stopping times related to càdlàg

adapted stochastic processes and their jumps.

Lemma 1.1.13. Let X be an adapted càdlàg process, and let U be an open set in R. Define

T = inf{t ≥ 0 | Xt ∈ U}. Then T is a stopping time.
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Proof. Note that if s ≥ 0 and (sn) is a sequence converging downwards to s, we have by right-

continuity that Xsn converges to Xs and so, since U is open, (Xs ∈ U) ⊆ ∪∞n=1(Xsn ∈ U).

Using the density properties of Q+ in relation to R+, we then find

(T < t) = ( ∃ s ∈ R+ : s < t and Xs ∈ U)

= ( ∃ s ∈ Q+ : s < t and Xs ∈ U) = ∪s∈Q+,s<t(Xs ∈ U),

and since X is adapted, we have (Xs ∈ U) ∈ Fs ⊆ Ft whenever s < t, proving that

(T < t) ∈ Ft. By Lemma 1.1.9, this implies that T is a stopping time.

Lemma 1.1.14. Let X be a càdlàg adapted process, and let U be an open set in R. Define

T = inf{t ≥ 0 | ∆Xt ∈ U}. Then T is a stopping time.

Proof. As X is càdlàg, ∆X is pathwisely zero everywhere except for on a countable set,

and so T is identically zero if U contains zero. In this case, it is immediate that T is a

stopping time. Thus, it suffices to prove the result in the case where U does not contain zero.

Therefore, assume that U is an open set not containing zero. By Lemma 1.1.9, it suffices to

show (T < t) ∈ Ft for t > 0. To this end, fix t > 0. As ∆X0 = 0 and U does not contain

zero, we have

(T < t) = ( ∃ s ∈ (0,∞) : s < t and Xs −Xs− ∈ U).

Let Fm = {x ∈ R | ∀ y ∈ U c : |x − y| ≥ 1/m}, Fm is an intersection of closed sets and

therefore itself closed. Clearly, (Fm)m≥1 is increasing, and since U is open, U = ∪∞m=1Fm.

Also, Fm ⊆ F ◦m+1, where F ◦m+1 denotes the interior of Fm+1. Let Θk be the subset of Q2

defined by Θk = {(p, q) ∈ Q2 | 0 < p < q < t, |p − q| ≤ 1
k}. We will prove the result by

showing that

(∃s ∈ (0,∞) : s < t and Xs −Xs− ∈ U)

= ∪∞m=1 ∪∞n=1 ∩∞k=n ∪(p,q)∈Θk (Xq −Xp ∈ Fm).

To obtain this, first consider the inclusion towards the right. Assume that there is 0 < s < t

such that Xs −Xs− ∈ U . Take m such that Xs −Xs− ∈ Fm. As Fm ⊆ F ◦m+1, we then have

Xs −Xs− ∈ F ◦m+1 as well. As F ◦m+1 is open and as X is càdlàg, it holds that there is ε > 0

such that whenever p, q ≥ 0 with p ∈ (s − ε, s) and q ∈ (s, s + ε), Xq − Xp ∈ F ◦m+1. Take

n ∈ N such that 1/2n < ε. We now claim that for k ≥ n, there is (p, q) ∈ Θk such that

Xq −Xp ∈ Fm+1. To prove this, let k ≥ n be given. By the density properties of Q+ in R+,

there are elements p, q ∈ Q with p, q ∈ (0, t) such that p ∈ (s− 1/2k, s) and q ∈ (s, s+ 1/2k).

In particular, then 0 < p < q < t and |p − q| ≤ |p − s| + |s − q| ≤ 1/k, so (p, q) ∈ Θk. As
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1/2k ≤ 1/2n < ε, we have p ∈ (s− ε, s) and q ∈ (s, s+ ε), and so Xq −Xp ∈ F ◦m+1 ⊆ Fm+1.

This proves the inclusion towards the right.

Now consider the inclusion towards the left. Assume that there is m ≥ 1 and n ≥ 1 such

that for all k ≥ n, there exists (p, q) ∈ Θk with Xq − Xp ∈ Fm. We may use this to

obtain sequences (pk)k≥n and (qk)k≥n with the properties that pk, qk ∈ Q, 0 < pk < qk < t,

|pk−qk| ≤ 1
k and Xqk−Xpk ∈ Fm. Putting pk = pn and qk = qn for k < n, we then find that

the sequences (pk)k≥1 and (qk)k≥1 satisfy pk, qk ∈ Q, 0 < pk < qk < t, limk |pk − qk| = 0 and

Xqk −Xpk ∈ Fm. As all sequences of real numbers contain a monotone subsequence, we may

by taking two consecutive subsequences and renaming our sequences obtain the existence of

two monotone sequences (pk) and (qk) in Q with 0 < pk < qk < t, limk |pk − qk| = 0 and

Xqk − Xpk ∈ Fm. As bounded monotone sequences are convergent, both (pk) are (qk) are

then convergent, and as limk |pk − qk| = 0, the limit s ≥ 0 is the same for both sequences.

We wish to argue that s > 0, that Xs− = limkXpk and that Xs = limkXqk . To this end,

recall that U does not contain zero, and so as Fm ⊆ U , Fm does not contain zero either.

Also note that as both (pk) and (qk) are monotone, the limits limkXpk and limkXqk exist

and are either equal to Xs or Xs−. As Xqk − Xpk ∈ Fm and Fm is closed and does not

contain zero, limkXqk − limkXpk = limkXqk − Xpk 6= 0. From this, we can immediately

conclude that s > 0, as if s = 0, we would obtain that both limkXqk and limkXpk were

equal to Xs, yielding limkXqk − limkXpk = 0, a contradiction. Also, we cannot have that

both limits are Xs or that both limits are Xs−, and so only two cases are possible, namely

that Xs = limkXqk and Xs− = limkXpk or that Xs = limkXpk and Xs− = limkXqk . We

wish to argue that the former holds. If Xs = Xs−, this is trivially the case. Assume that

Xs 6= Xs− and that Xs = limkXpk and Xs− = limkXqk . If qk ≥ s from a point onwards

or pk < s from a point onwards, we obtain Xs = Xs−, a contradiction. Therefore, qk < s

infinitely often and pk ≥ s infinitely often. By monotonicity, qk < s and pk ≥ s from a point

onwards, a contradiction with pk < qk. We conclude Xs = limkXqk and Xs− = limkXpk , as

desired.

In particular, Xs −Xs− = limkXqk −Xpk . As Xqk −Xpk ∈ Fm and Fm is closed, we obtain

Xs−Xs− ∈ Fm ⊆ U . Next, note that if s = t, we have pk, qk < s for all k, yielding that both

sequences must be increasing and Xs = limXqk = Xs−, a contradiction with the fact that

Xs −Xs− 6= 0 as Xs −Xs− ∈ U . Thus, 0 < s < t. This proves the existence of s ∈ (0,∞)

with s < t such that Xs −Xs− ∈ U , and so proves the inclusion towards the left.

We have now shown the announced equality. Now, as Xs is Ft measurable for all 0 ≤ s ≤ t,
it holds that the set ∪∞m=1∪∞n=1∩∞k=n∪(p,q)∈Θk (Xq−Xp ∈ Fm) is Ft measurable as well. We
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conclude that (T < t) ∈ Ft and so T is a stopping time.

In order to formulate and prove the next lemma, we introduce the notion of stochastic

intervals. Let S and T be two stopping times. We then define the subset ]]S, T ]] of R+×Ω by

putting ]]S, T ]] = {(t, ω) ∈ R+×Ω | S(ω) < t ≤ T (ω)}. We define [[S, T ]], ]]S, T [[ and [[S, T [[ in

analogous manner as subsets of R+×Ω. Note in particular that even if T is infinite, the sets

]]S, T ]] and [[S, T ]] do not contain infinity. We also use the notational shorthand [[T ]] = [[T, T ]]

and refer to [[T ]] as the graph of the stopping time T .

Lemma 1.1.15. Let X be a càdlàg adapted process. Define T k1 = inf{t ≥ 0 | |∆Xt| > 1
k}

for k ≥ 1, and recursively for n ≥ 2, T kn = inf{t > T kn−1 | |∆Xt| > 1
k}. Then T kn is a

stopping time for all k ≥ 1 and n ≥ 1, |∆XTkn
| > 1

k whenever T kn is finite and it holds that

{(t, ω) ∈ R+ × Ω | |∆Xt| 6= 0} = ∪∞k=1 ∪∞n=1 [[T kn ]].

Proof. First note that by Lemma A.2.3, since X has càdlàg paths, it holds that the set

{t ≥ 0 | |∆Xt| > 1
k} always has finite intersection with any bounded interval. From this, we

conclude that for all k ≥ 1 and n ≥ 1, |∆XTkn
| > 1

k whenever T kn is finite.

Next, fix k ≥ 1. We will prove by induction that T kn is a stopping time for all n ≥ 1. The

induction start follows from Lemma 1.1.14. Fix n ≥ 2 and assume that the results have been

proven for 1, . . . , n − 1. Define a process Y kn by putting Y kn =
∑n−1
i=1 ∆XTki

1[[Tki ,∞[[. As

{t ≥ 0 | |∆Xt| > 1
k} has finite intersection with any bounded interval, the set {T k1 , . . . , T kn−1}

contains all jump times of X with absolute value strictly larger than 1
k on [0, T kn ). Therefore,

the process X − Y kn has no jumps strictly larger than 1
k on [0, T kn ), and so it holds that

T kn = inf{t ≥ 0 | |∆(X−Y kn)t| > 1
k}. Thus, if we can show that X−Y kn is càdlàg adpated,

Lemma 1.1.14 will yield that T kn is a stopping time.

To this end, note that X is càdlàg adapted, it suffices to show that Y kn is càdlàg adapted.

The càdlàg property is immediate, we prove adaptedness. Fixing t ≥ 0 observe that we have

Y knt =
∑n−1
i=1 ∆XTki

1(Tki ≤t) =
∑n−1
i=1 ∆XTki

1(Tki <∞)1(Tki ≤t). By our induction assumptions,

the variables T k1 , . . . , T
k
n−1 are stopping times. Therefore, for i ≤ n− 1, Lemma 1.1.12 shows

that XTki
1(Tki <∞) is FTki measurable, and so Lemma 1.1.11 shows that XTki

1(Tki <∞)1(Tki ≤t) is

Ft measurable. Thus, Y knt is Ft measurable, proving that Y kn is adapted. Applying Lemma

1.1.14, we conclude that T kn is a stopping time, concluding the induction proof.

Finally, again from the fact that the set {t ≥ 0 | |∆Xt| > 1
k} always has finite intersection

with any bounded interval, we have {t ≥ 0 | |∆Xt| > 1
k} = {T kn |n ≥ 1, T kn < ∞}, and this

shows the identify for the jump set {(t, ω) ∈ R+ × Ω | |∆Xt| 6= 0}.
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Lemma 1.1.16. Let X be a càdlàg adapted process. If it holds for all bounded stopping

times T that ∆XT is almost surely zero, then X is almost surely continuous.

Proof. Assume that ∆XT is almost surely zero for all bounded stopping times. Let T be

any stopping time. On the set (T < ∞), T = T ∧ n for n large enough, depending on ω.

Therefore, ∆XT = ∆XT 1(T<∞) = limn ∆XT∧n1(T<∞), and so ∆XT is almost surely zero for

all stopping times T . By Lemma 1.1.15, there exists a countable family of stopping times (Tn)

such that {(t, ω) ∈ R+ × Ω | |∆Xt| 6= 0} = ∪∞n=1[[Tn]], yielding ∆X =
∑∞
n=1 ∆XTn1[[Tn]]. By

what we already have shown, this is almost surely zero, and so X is almost surely continuous.

This concludes the proof.

The following lemma shows that all continuous adapted processes are bounded in a local

sense. That this is not the case for càdlàg adapted processes is part of what makes the

theory of general martingales more difficult than the theory of continuous martingales.

Lemma 1.1.17. Let X be any continuous adapted process with initial value zero. Defining

Tn = inf{t ≥ 0 | |Xt| > n}, (Tn) is a sequence of stopping times increasing pointwise to

infinity, and the process XTn is bounded by n.

Proof. By Lemma 1.1.13, (Tn) is a sequence of stopping times. We prove that XTn is bounded

by n. If Tn is infinite, Xt ≤ n for all t ≥ 0, so on (Tn = ∞), XTn is bounded by n. If Tn

is finite, note that for all ε > 0, there is t ≥ 0 with Tn ≤ t < Tn + ε such that |Xt| > n.

Therefore, by continuity, |XTn | ≥ n. In particular, as X has initial value zero, Tn cannot take

the value zero. Therefore, there is t ≥ 0 with t < Tn. For all such t, |Xt| ≤ n. Therefore,

again by continuity, |XTn | ≤ n, and we conclude that in this case as well, XTn is bounded

by n. Note that we have also shown that |XTn | = n whenever Tn is finite.

It remains to show that Tn converges pointwise to infinity. To obtain this, note that as X

is continuous, X is bounded on compacts. If for some samle path we have that Tn ≤ a for

all n, we would have |XTn | = n for all n and so X would be unbounded on [0, a]. This is

a contradiction, since X has continuous sample paths and therefore is bounded on compact

sets. Therefore, (Tn) is unbounded for every sample path. As Tn is increasing, this shows

that Tn converges to infinity pointwise.
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1.2 Continuous-time martingales

In this section, we consider càdlàg martingales in continuous time. We say that a process M is

a continuous-time martingale if M is adapted and for any 0 ≤ s ≤ t, E(Mt|Fs) = Ms almost

surely. In the same manner, if M is adapted and for any 0 ≤ s ≤ t, we have E(Mt|Fs) ≤Ms

almost surely, we say that M is a supermartingale, and if M is adapted and for any 0 ≤ s ≤ t,
E(Mt|Fs) ≥ Ms almost surely, we say that M is a submartingale. We are interested in

transferring the results known from discrete-time martingales to the continuous-time setting,

mainly the criteria for almost sure convergence, L1 convergence and the optional sampling

theorem. The classical results from discrete-time martingale theory are reviewed in Appendix

A.4. We will only take interest in martingales whose sample paths are càdlàg. This is not

a significant restriction, as we have assumed that our filtered probability space satisfies the

usual conditions, so all martingales will have a càdlàg version, see for example Theorem

II.67.7 of Rogers & Williams (2000a).

We will for the most part only take interest in martingales M whose initial value is zero,

meaning that M0 = 0, in order to simplify the exposition. We denote the space of martingales

in continuous time with initial value zero byM. ByMu, we denote the elements ofM which

are uniformly integrable, and by Mb, we denote the elements of Mb which are bounded in

the sense that there exists c > 0 such that |Mt| ≤ c for all t ≥ 0. Clearly, M and Mb

are both vector spaces, and by Lemma A.3.4, Mu is a vector space as well. Subspaces of

continuous martingales are denoted by adding a c to the corresponding spaces, such that

cM denotes the subspace of elements of M with continuous paths, cMu is the space of

continuous processes in Mu and cMb is space of the continuous processes in Mb.

The main lemma for transferring the results of discrete-time martingale theory to continuous-

time martingale theory is the following.

Lemma 1.2.1. Let M be a continuous-time martingale, supermartingale or submartingale,

and let (tn) be an increasing sequence in R+. Then (Ftn)n≥1 is a discrete-time filtration,

and the process (Mtn)n≥1 is a discrete-time martingale, supermartingale or submartingale,

respectively, with respect to the filtration (Ftn)n≥1.

Proof. This follows immediately from the definition of continuous-time and discrete-time

martingales, supermartingales and submartingales.

Lemma 1.2.2 (Doob’s upcrossing lemma). Let Z be a càdlàg supermartingale bounded in

L1. Define U(Z, a, b) = sup{m | ∃ 0 ≤ s1 < t1 < · · · sm < tm : Zsk < a,Ztk > b, k ≤ m} for
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any a, b ∈ R with a < b. We refer to U(Z, a, b) as the number of upcrossings from a to b by

M . Then U(Z, a, b) is F measurable and it holds that

EU(Z, a, b) ≤ |a|+ suptE|Zt|
b− a

.

Proof. We will prove the result by reducing to the case of upcrossings relative to a countable

number of timepoints and applying Lemma 1.2.1 and the discrete-time upcrossing result of

Lemma A.4.1. For any D ⊆ R, we define

U(Z, a, b,D) = sup{m | ∃ 0 ≤ s1 < t1 < · · · sm < tm : si, ti ∈ D,Zsi < a,Zti > b, i ≤ m},

and we refer to U(Z, a, b,D) as the number of upcrossings from a to b at the timepoints in

D. Define D+ = {k2−n | k ≥ 0, n ≥ 1}, we refer to D+ as the dyadic nonnegative rationals.

It holds that D+ is dense in R+. Now, as Z is right-continuous, we find that for any finite

sequence 0 ≤ s1 < t1 < · · · sm < tm such that si, ti ∈ R+ with Zsi < a and Zti > b for

i ≤ m, there exists 0 ≤ p1 < q1 < · · · pm < qm such that pi, qi ∈ D+ with Zpi < a and

Zqi > b for i ≤ m. Therefore, U(Z, a, b) = U(Z, a, b,D+). In other words, it suffices to

consider upcrossings at dyadic nonnegative rational timepoints. In order to use this to prove

that U(Z, a, b) is F measurable, note that for any m ≥ 1, we have

( ∃ 0 ≤ s1 < t1 < · · · sm < tm : si, ti ∈ D+, Zsi < a,Zti > b, i ≤ m)

= ∪{(Zsi < a,Zti > b for all i ≤ m) | 0 ≤ s1 < t1 < · · · sm < tm : si, ti ∈ D+},

which is in F , as (Zsi < a,Zti > b for all i ≤ m) is F measurable, and all subsets of ∪∞n=1Dn+
are countable. Here, Dn+ denotes the n-fold product of D+. From these observations, we

conclude that the set ( ∃ 0 ≤ s1 < t1 < · · · sm < tm : si, ti ∈ D+, Zsi < a,Zti > b, i ≤ m) is

F measurable. Denote this set by Am, we then have U(Z, a, b)(ω) = sup{m ∈ N | ω ∈ Am},
so that in particular (U(Z, a, b) ≤ m) = ∩∞k=m+1A

c
k ∈ F and so U(Z, a, b) is F measurable.

It remains to prove the bound for the mean of U(Z, a, b). Putting tnk = k2−n and defining

Dn = {tnk | k ≥ 0}, we obtain D+ = ∪∞n=1Dn. We then have

sup{m | ∃ 0 ≤ s1 < t1 < · · · sm < tm : si, ti ∈ D+, Zsi < a,Zti > b, i ≤ m}

= sup∪∞n=1{m | ∃ 0 ≤ s1 < t1 < · · · sm < tm : si, ti ∈ Dn, Zsi < a,Zti > b, i ≤ m}

= sup
n

sup{m | ∃ 0 ≤ s1 < t1 < · · · sm < tm : si, ti ∈ Dn, Zsi < a,Zti > b, i ≤ m},

so U(Z, a, b,D+) = supn U(Z, a, b,Dn). Now fix n ∈ N. As (tnk )k≥0 is an increasing sequence,

Lemma 1.2.1 shows that (Ztnk )k≥0 is a discrete-time supermartingale with respect to the
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filtration (Ftnk )k≥0. As (Zt)t≥0 is bounded in L1, so is (Ztnk )k≥0. Therefore, Lemma A.4.1

yields

EU(Z, a, b,Dn) ≤
|a|+ supk E|Ztnk |

b− a
≤ |a|+ suptE|Zt|

b− a
.

As (Dn) is increasing, U(Z, a, b,Dn) is increasing, so the monotone convergence theorem and

our previous results yield

EU(Z, a, b) = EU(Z, a, b,D+) = E sup
n
U(Z, a, b,Dn)

= E lim
n
U(Z, a, b,Dn) = lim

n
EU(Z, a, b,Dn) ≤ |a|+ suptE|Zt|

b− a
.

This concludes the proof of the lemma.

Theorem 1.2.3 (Doob’s supermartingale convergence theorem). Let Z be a càdlàg super-

martingale. If Z is bounded in L1, then Z is almost surely convergent to an integrable limit.

If Z is uniformly integrable, then Z also converges in L1, and the limit Z∞ satisfies that

for all t ≥ 0, E(Z∞|Ft) ≤ Zt almost surely. If Z is a martingale, the inequality may be

exchanged with an equality.

Proof. Assume that Z is bounded in L1. Fix a, b ∈ Q with a < b. By Lemma 1.2.2, the

number of upcrossings from a to b made by Z has finite expectation, in particular it is almost

surely finite. As Q is countable, we conclude that it almost surely holds that the number of

upcrossings from a to b made by Z is finite for any a, b ∈ Q. Therefore, Lemma A.2.19 shows

that Z is almost surely convergent to a limit in [−∞,∞]. Using Fatou’s lemma, we obtain

E|Z∞| = E lim inft |Zt| ≤ lim inftE|Zt| ≤ supt≥0E|Zt|, which is finite, so we conclude that

the limit Z∞ is integrable.

Assume next that Z is uniformly integrable. In particular, Z is bounded in L1, so Zt converges

almost surely to some variable Z∞. Then Zt also converges in probability, so Lemma A.3.5

shows that Zt converges to Z∞ in L1. We then find that for any t ≥ 0 that, using Jensen’s

inequality, E|E(Z∞|Ft)−E(Zs|Ft)| ≤ E|Z∞−Zs|, so E(Zs|Ft) tends to E(Z∞|Ft) in L1 as

s tends to infinity, and we get E(Z∞|Ft) = lims→∞E(Zs|Ft) ≤ Zt. This proves the results

on supermartingales.

In order to obtain the results for the martingale case, next assume that Z is a càdlàg sub-

martingale bounded in L1. Then −Z is a continuous supermartingale bounded in L1. From

what we already have proved, −Z is almost surely convergent to a finite limit, yielding that

Z is almost surely convergent to a finite limit. If Z is uniformly integrable, so is −Z, and

so we obtain convergence in L1 as well for −Z and therefore also for Z. Also, we have
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E(−Z∞|Ft) ≤ −Zt, so E(Z∞|Ft) ≥ Zt. Finally, assume that Z is a càdlàg martingale. Then

Z is both a càdlàg supermartingale and a càdlàg submartingale, and the result follows.

Theorem 1.2.4 (Uniformly integrable martingale convergence theorem). Let M ∈M. The

following are equivalent:

(1). M is uniformly integrable.

(2). M is convergent almost surely and in L1.

(3). There is some integrable variable ξ such that Mt = E(ξ|Ft) almost surely for t ≥ 0.

In the affirmative, with M∞ denoting the limit of Mt almost surely and in L1, we have for

all t ≥ 0 that Mt = E(M∞|Ft) almost surely, and M∞ = E(ξ|F∞), where F∞ = σ(∪t≥0Ft).

Proof. We show that (1) implies (2), that (2) implies (3) and that (3) implies (1).

Proof that (1) implies (2). Assume that M is uniformly integrable. By Lemma A.3.3, M

is bounded in L1, and Theorem 1.2.3 shows that M converges almost surely and in L1.

Proof that (2) implies (3). Assume now that M is convergent almost surely and in L1.

Let M∞ be the limit. Fix F ∈ Fs for some s ≥ 0. As Mt converges to M∞ in L1, 1FMt

converges to 1FM∞ in L1 as well, and we then obtain

E1FM∞ = lim
t→∞

E1FMt = lim
t→∞

E1FE(Mt|Fs) = E1FMs,

proving that E(M∞|Fs) = Ms almost surely for any s ≥ 0.

Proof that (3) implies (1). Finally, assume that there is some integrable variable ξ such

that Mt = E(ξ|Ft). By Lemma A.3.6, M is uniformly integrable.

It remains to prove that in the affirmative, with M∞ denoting the limit, it holds that for all

t ≥ 0, Mt = E(M∞|Ft) almost surely, and M∞ = E(ξ|F∞). By what was already shown,

in the affirmative case, Mt = E(M∞|Ft). We thus have E(M∞|Ft) = E(ξ|Ft) almost surely

for all t ≥ 0. In particular, for any F ∈ ∪t≥0Ft, we have EM∞1F = EE(ξ|F∞)1F . Now let

H = {F ∈ F|EM∞1F = EE(ξ|F∞)1F }. We then have that H is a Dynkin class containing

∪t≥0Ft, and ∪t≥0Ft is a generating class for F∞, stable under intersections. Therefore,

Lemma A.1.1 shows that F∞ ⊆ H, so that EM∞1F = EE(ξ|F∞)1F for all F ∈ F∞. Since
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M∞ is F∞ measurable as the almost sure limit of F∞ measurable variables, this implies

M∞ = E(ξ|F∞) almost surely, proving the result.

Lemma 1.2.5. If Z is a càdlàg martingale, supermartingale or submartingale, and c ≥ 0,

then the stopped process Zc is also a càdlàg martingale, supermartingale or submartingale,

respectively. Zc is always convergent almost surely and in L1 to Zc. In the martingale case,

Zc is a uniformly integrable martingale.

Proof. Fix c ≥ 0. It holds that Zc is adapted and càdlàg. Let 0 ≤ s ≤ t and consider the

supermartingale case. If c ≤ s, we also have c ≤ t and the adaptedness of Z allows us to

conclude that

E(Zct |Fs) = E(Zt∧c|Fs) = E(Zc|Fs) = Zc = Zcs ,

and if instead c ≥ s, the supermartingale property yields

E(Zct |Fs) = E(Zt∧c|Fs∧c) ≤ Zs∧c = Zcs .

This shows that Zc is a supermartingale. From this, it follows that the submartingale and

martingale properties are preserved by stopping at c as well. Also, as Zc is constant from a

deterministic point onwards, Zc converges almost surely and in L1 to Zc. If Z is a martingale,

Theorem 1.2.4 shows that Zc is uniformly integrable.

Theorem 1.2.6 (Optional sampling theorem). Let Z be a càdlàg supermartingale, and let

S and T be two stopping times with S ≤ T . If Z is uniformly integrable, then Z is almost

surely convergent, ZS and ZT are integrable, and E(ZT |FS) ≤ ZS. If Z is nonnegative, then

Z is almost surely convergent as well and E(ZT |FS) ≤ ZS. If instead S and T are bounded,

E(ZT |FS) ≤ ZS holds as well, where ZS and ZT are integrable. Finally, if Z is a martingale

in the uniformly integrable case or the case of bounded stopping times, the inequality may be

exchanged with an equality.

Proof. Assume that Z is a càdlàg supermartingale which is convergent almost surely and in

L1, and let S ≤ T be two stopping times. We will prove E(ZT |FS) ≤ ZS in this case and

obtain the other cases from this. First, define a mapping Sn by putting Sn = ∞ whenever

S =∞, and Sn = k2−n when (k − 1)2−n ≤ S < k2−n. We then find

(Sn ≤ t) = ∪∞k=0(Sn = k2−n) ∩ (k2−n ≤ t)

= ∪∞k=0((k − 1)2−n ≤ S < k2−n) ∩ (k2−n ≤ t),

which is in Ft, as ((k−1)2−n ≤ S < k2−n) is in Ft when k2−n ≤ t. Therefore, Sn is a stopping

time. Furthermore, we have S ≤ Sn with Sn converging downwards to S, in the sense that
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Sn is decreasing and converges to S. We define (Tn) analogously, such that (Tn) is a sequence

of stopping times converging downwards to T , and (Tn = k2−n) = ((k−1)2−n ≤ T < k2−n).

We then obtain that (Tn = k2−n) = ((k−1)2−n ≤ T < k2−n) ⊆ (S < k2−n) = (Sn ≤ k2−n),

from which we conclude Sn ≤ Tn.

We would like to apply the discrete-time optional sampling theorem to the stopping times

Sn and Tn. To this end, first note that with tnk = k2−n, we obtain that by by Lemma 1.2.1,

(Ztnk )k≥0 is a discrete-time supermartingale with respect to the filtration (Ftnk )k≥0. As Z

is convergent almost surely and in L1, so is (Ztnk )k≥0, and then Lemma A.3.5 shows that

(Ztnk )k≥0 is uniformly integrable. Therefore, (Ztnk )k≥0 satisfies the requirements in Theorem

A.4.5. Furthermore, it holds that Ztnk converges to Z∞. Putting Kn = Sn2n, Kn takes its

values in N ∪ {∞} and (Kn ≤ k) = (Sn ≤ k2−n) ∈ Ftnk , so Kn is a discrete-time stopping

time with respect to (Ftnk )k≥0. As regards the discrete-time stopping time σ-algebra, we have

FtnKn = {F ∈ F | F ∩ (Kn ≤ k) ∈ Ftnk for all k ≥ 0}

= {F ∈ F | F ∩ (Sn ≤ tnk ) ∈ Ftnk for all k ≥ 0}

= {F ∈ F | F ∩ (Sn ≤ t) ∈ Ft for all t ≥ 0} = FSn ,

where FtnKn denotes the stopping time σ-algebra of the discrete filtration (Ftnk )k≥0. Putting

Ln = Tn2n, we find analogous results for the sequence (Ln). Also, since Sn ≤ Tn, we

obtain Kn ≤ Ln. Therefore, we may now apply Theorem A.4.5 with the uniformly integrable

discrete-time supermartingale (Ztnk )k≥0 to conclude that ZSn and ZTn are integrable and that

E(ZTn |FSn) = E(ZtnLn |FtnKn ) ≤ ZtnKn = ZSn .

Next, we show that ZTn converges almost surely and in L1 to ZT . This will in particular show

that ZT is integrable. As before, (Ztn+1
k

)k≥0 is a discrete-time supermartingale satisfying the

requirements in Theorem A.4.5. Also, (2Ln ≤ k) = (2Tn2n ≤ k) = (Tn ≤ k2−(n+1)),

which is in Ftn+1
k

, so 2Ln is a discrete-time stopping time with respect to (Ftn+1
k

)k≥0, and

it holds that Ln+1 = Tn+12n+1 ≤ Tn2n+1 = 2Ln. Therefore, applying Theorem A.4.5 to

the stopping times 2Ln and Ln+1, E(ZTn |FTn+1
) = E(Ztn+1

2Ln

|Ftn+1
Ln+1

) ≤ Ztn+1
Ln+1

= ZTn+1
.

Iterating this relationship, we find that for n ≥ k, ZTn ≥ E(ZTk |FTn). Thus, (ZTn) is

a backwards submartingale with respect to (FTn)n≥0. Therefore, (−ZTn) is a backwards

supermartingale. Furthermore, as ZTn ≥ E(ZTk |FTn) for n ≥ k, we have EZTn ≥ EZT1 ,

so E(−ZTn) ≤ E(−ZT1
). This shows that, supn≥1E(−ZTn) is finite, and so we may apply

Theorem A.4.6 to conclude that (−ZTn), and therefore (ZTn), converges almost surely and in

L1. By right-continuity, we know that ZTn also converges almost surely to ZT . By uniqueness

of limits, the convergence is in L1 as well, which in particular implies that ZT is integrable.

Analogously, ZSn converges to ZS almost surely and in L1.
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Now fix F ∈ FS . As S ≤ Sn, we have FS ⊆ FSn . Using the convergence of ZTn to ZT and

ZSn to ZS in L1, we find that 1FZTn converges to 1FZT and 1FZSn converges to 1FZS in

L1, so that E1FZT = limnE1FZTn = limnE1FE(ZTn |FSn) ≤ limnE1FZSn = E1FZS , and

therefore, we conclude E(ZT |FS) ≤ ZS , as desired.

This proves that the optional sampling result holds in the case where Z is a supermartingale

which is convergent almost surely and in L1 and S ≤ T are two stopping times. We will now

obtain the remaining cases from this case.

If Z is a uniformly integrable supermartingale, it is in particular convergent almost surely

and in L1, so we find that the result holds in this case as well. Next, consider the case where

we merely assume that Z is a supermartingale and that S ≤ T are bounded stopping times.

Letting c ≥ 0 be a bound for S and T , Lemma 1.2.5 shows that Zc is a supermartingale, and

it is clearly convergent almost surely and in L1. Therefore, as ZT = ZcT , we find that ZT is

integrable and that E(ZT |FS) = E(ZcT |FS) ≤ ZcS = ZS , proving the result in this case.

Finally, consider the case where Z is nonnegative and S ≤ T are any two stopping times.

We then find that E|Zt| = EZt ≤ EZ0, so Z is bounded in L1. Therefore, Theorem 1.2.3

shows that Z is almost surely convergent and so ZT is well-defined. From what we already

have shown, ZT∧n is integrable and E(ZT∧n|FS∧n) ≤ ZS∧n. For any F ∈ FS , we find

F ∩ (S ≤ n) ∈ FS∧n for any n by Lemma 1.1.11. Therefore, we obtain

E1FZT∧n = E1F 1(S≤n)ZT∧n + E1F 1(S>n)ZT∧n

≤ E1F 1(S≤n)ZS∧n + E1F 1(S>n)ZS∧n = E1FZS∧n,

and so, by Lemma A.1.19, E(ZT∧n|FS) ≤ ZS∧n. Applying Fatou’s lemma for conditional

expectations, we obtain

E(ZT |FS) = E(lim inf
n

ZT∧n|FS) ≤ lim inf
n

E(ZT∧n|FS) ≤ lim inf
n

ZS∧n = ZS ,

as was to be shown. We have now proved all of the supermartingale statements in the

theorem. The martingale results follow immediately from the fact that a martingale is both

a supermartingale and a submartingale.

Lemma 1.2.7. Let T be a stopping time. If Z is a càdlàg supermartingale, then ZT is a

càdlàg supermartingale as well. In particular, if M ∈ M, then MT ∈ M as well, and if

M ∈Mu, then MT ∈Mu as well.

Proof. Let a càdlàg supermartingale Z be given, and let T be some stopping time. Fix two

timepoints 0 ≤ s ≤ t, we need to prove E(ZTt |Fs) ≤ ZTs almost surely, and to this end, it
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suffices to show that E1FZ
T
t ≤ E1FZ

T
s for any F ∈ Fs. Let F ∈ Fs be given. By Lemma

1.1.11, F ∩ (s ≤ T ) is Fs∧T measurable, and so Theorem 1.2.6 applied with the two bounded

stopping times T ∧ s and T ∧ t yields

E1FZ
T
t = E1F∩(s≤T )ZT∧t + E1F∩(s>T )ZT∧t

≤ E1F∩(s≤T )ZT∧s + E1F∩(s>T )ZT∧t

= E1F∩(s≤T )ZT∧s + E1F∩(s>T )ZT∧s

= E1FZ
T
s .

Thus, E(ZTt |Fs) ≤ ZTs and so ZT is a supermartingale. From this it follows in particular

that if M ∈ M, it holds that MT ∈ M as well. And if M ∈ Mu, we find that MT ∈ M
from what was already shown. Then, by Theorem 1.2.4, MT

t = E(M∞|FT∧t), so by Lemma

A.3.6, MT is uniformly integrable, and so MT ∈Mu.

Next, we prove two extraordinarily useful results, first a criterion for determining when a

process is a martingale or a uniformly integrable martingale, and secondly a result showing

that a particular class of martingales are evanescent.

Lemma 1.2.8 (Komatsu’s lemma). Let M be a càdlàg adapted process with initial value

zero. It holds that M ∈ M if and only if MT is integrable with EMT = 0 for any bounded

stopping time T . If the limit limt→∞Mt exists almost surely, it holds that M ∈ Mu if and

only if MT is integrable with EMT = 0 for any stopping time T .

Proof. We first consider the case where we assume that the limit limt→∞Mt exists almost

surely. By Theorem 1.2.6, we have that if M ∈Mu, MT is integrable and EMT = 0 for any

for any stopping time T . Conversely, assume that MT is integrable and EMT = 0 for any

for any stopping time T . We will prove that Mt = E(M∞|Ft) for any t ≥ 0. To this end,

let F ∈ Ft and note that by Lemma 1.1.9, tF is a stopping time, where tF = t1F +∞1F c ,

taking only the values t and infinity. We obtain EMtF = E1FMt + E1F cM∞, and we also

have EM∞ = E1FM∞ + E1F cM∞. By our assumptions, both of these are zero, and so

E1FMt = E1FM∞. As Mt is Ft measurable by assumption, this proves Mt = E(M∞|Ft).
From this, we see that M is in M, and by Theorem 1.2.4, M is in Mu.

Consider next the case where we merely assume that M is a càdlàg adapted process with

initial value zero. If M ∈M, Theorem 1.2.6 shows that MT is integrable with EMT = 0 for

any bounded stopping time. Assume instead that MT is integrable and EMT = 0 for any

bounded stopping time T . From what we already have shown, we then find that M t is in

Mu for any t ≥ 0 and therefore, M ∈M.
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For the next result, we say that a process X is of finite variation if it has sample paths which

are functions of finite variation, see Appendix A.2 for a review of the properties of functions

of finite variation. If the process X has finite variation, we denote the variation over [0, t]

by (VX)t, such that (VX)t = sup
∑n
k=1 |Xtk − Xtk−1

|, where the supremum is taken over

partitions 0 = t0 < · · · < tn = t of [0, t].

Lemma 1.2.9. Let X be càdlàg adapted with finite variation. Then the variation process

VX is càdlàg adapted as well.

Proof. By Lemma A.2.8, VX is càdlàg. As for proving that VX is adapted, note that from

Lemma A.2.15, we have (VX)t = sup
∑n
k=1 |Xqk −Xqk−1

|, where the supremum is taken over

partitions of [0, t] with elements in in Q+ ∪ {t}. As ∪∞n=1(Q+ ∪ {t})n is countable, there are

only countably many such partitions, and so we find that (VX)t is Ft measurable, since Xq

is Ft measurable whenever q ≤ t. Therefore, VX is adapted.

Lemma 1.2.10. Let X be càdlàg adapted with finite variation. Then (VX)T = VXT .

Proof. Fix ω ∈ Ω. With the supremum being over all partitions of [0, T (ω) ∧ t], we have

(VX)Tt (ω) = (VX)T (ω)∧t(ω) = sup

n∑
k=1

|Xtk(ω)−Xtk−1
(ω)|

= sup

n∑
k=1

|XT
tk

(ω)−XT
tk−1

(ω)| = (VXT )t∧T (ω)(ω) ≤ (VXT )t(ω).

Conversely, with the supremum being over all partitions of [0, t], we also have

(VXT )t(ω) = sup

n∑
k=1

|XT
tk

(ω)−XT
tk−1

(ω)|

= sup

n∑
k=1

|Xtk∧T (ω)(ω)−Xtk−1∧T (ω)(ω)| ≤ (VX)t∧T (ω)(ω).

Combining our conclusions, the result follows.

Lemma 1.2.11. Assume that M ∈ M is almost surely continuous and has paths of finite

variation. Then M is evanescent.

Proof. Let M ∈M be almost surely continuous and have paths of finite variation. Let F be

the null set where M is not continuous and put N = 1F cM . As the usual conditions hold,
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F ∈ F0 ⊆ F . Therefore, N ∈M as well, N has paths of finite variation and N is continuous.

And if N is evanescent, M is evanescent as well. We conclude that it suffices to prove the

theorem in the case where M ∈ cM and M has paths of finite variation.

We first consider the case where M ∈ cMb and the variation process VM is bounded, (VM )t

being the variation of M over [0, t]. Fix t ≥ 0 and let tnk = kt2−n. Now note that by the

martingale property, EMtnk−1
(Mtnk

−Mtnk−1
) = EMtnk−1

E(Mtnk
−Mtnk−1

|Ftnk−1
) = 0, and by

rearrangement, M2
tnk
−M2

tnk−1
= 2Mtnk−1

(Mtnk
−Mtnk−1

)+(Mtnk
−Mtnk−1

)2. Therefore, we obtain

EM2
t = E

2n∑
k=1

(M2
tnk
−M2

tnk−1
) = 2E

2n∑
k=1

Mtnk−1
(Mtnk

−Mtnk−1
) + E

2n∑
k=1

(Mtnk
−Mtnk−1

)2

= E

2n∑
k=1

(Mtnk
−Mtnk−1

)2 ≤ E(VM )t max
k≤2n

|Mtnk
−Mtnk−1

|.

Now, as M is continuous, (VM )t maxk≤n |Mtnk
−Mtnk−1

| tends pointwisely to zero as n tends to

infinity. The boundedness of M and VM then allows us to apply the dominated convergence

theorem and obtain

EM2
t ≤ lim

n→∞
E(VM )t max

k≤2n
|Mtk −Mtk−1

| ≤ E lim
n→∞

(VM )t max
k≤2n

|Mtk −Mtk−1
| = 0,

so that Mt is almost surely zero by Lemma A.1.20, and so by Lemma 1.1.7, M is evanescent.

In the case of a general M ∈ cM, define Tn = inf{t ≥ 0 | |(VM )t| > n}. By Lemma

1.1.17, (Tn) is a sequence of stopping times increasing almost surely to infinity, and (VM )Tn

is bounded by n. By Lemma A.2.10, |MTn
t | ≤ |(VM )Tnt | ≤ n for all t ≥ 0. As (VM )Tn = VMTn

by Lemma 1.2.10, MTn is a bounded martingale with bounded variation, so our previous

results show that MTn is evanescent. Letting n tend to infinity, Tn tends to infinity, and so

we almost surely obtain Mt = limnM
Tn
t = 0, allowing us to conclude by Lemma 1.1.7 that

M is evanescent.

We end the section by introducing two types of processes which will serve as instructive

examples for most of the theory to follow. Often, properties of these two types of processes

may be elegantly derived by the application of martingale methods. First, we introduce the

concept of an Ft Brownian motion.

Definition 1.2.12. A p-dimensional Ft Brownian motion is a continuous process W adapted

to Ft such that for any t, the distribution of s 7→ Wt+s −Wt is a p-dimensional Brownian

motion independent of Ft.

Essentially, the difference between a plain p-dimensional Brownian motion and a p-dimensional
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Ft Brownian motion is that the p-dimensional Ft Brownian motion possesses a certain reg-

ular relationship with the filtration. The independence in Definition 1.2.12 means the fol-

lowing. Fix t ≥ 0 and let X be the process defined by Xs = Wt+s − Wt. The process

X is then a random variable with values in C(R+,Rp), the space of continuous functions

from R+ to Rp, endowed with the σ-algebra C(R+,Rp) induced by the coordinate map-

pings. The independence of X and Ft means that for any A ∈ C(R+,Rp) and any B ∈ Ft,
P ((X ∈ A) ∩B) = P (X ∈ A)P (B).

The following basic result shows that the martingales associated with ordinary Brownian

motions reoccur when considering Ft Brownian motions.

Theorem 1.2.13. Let W be a p-dimensional Ft Brownian motion. For i ≤ p, W i and

(W i
t )

2 − t are martingales, where W i denotes the i’th coordinate of W . For i, j ≤ p with

i 6= j, W i
tW

j
t is a martingale.

Proof. Let i ≤ p and let 0 ≤ s ≤ t. W i is then an Ft Brownian motion, so W i
t −W i

s is

normally distributed with mean zero and variance t − s and independent of Ft. Therefore,

we obtain E(W i
t |Fs) = E(W i

t −W i
s |Fs) +W i

s = E(W i
t −W i

s) +W i
s = W i

s , proving that W i

is a martingale. Furthermore, we find

E((W i
t )

2 − t|Fs) = E((W i
t −W i

s)
2 − (W i

s)
2 + 2W i

sW
i
t |Fs)− t

= E((W i
t −W i

s)
2|Fs)− (W i

s)
2 + 2W i

sE(W i
t |Fs)− t = (W i

s)
2 − s,

so (W i
t )

2− t is a martingale. Next, let i, j ≤ p with i 6= j. We then obtain that for 0 ≤ s ≤ t,
using independence and the martingale property,

E(W i
tW

j
t |Fs) = E(W i

tW
j
t −W i

sW
j
s |Fs) +W i

sW
j
s

= E(W i
tW

j
t −W i

tW
j
s +W i

tW
j
s −W i

sW
j
s |Fs) +W i

sW
j
s

= E(W i
t (W

j
t −W j

s )−W j
s (W i

t −W i
s)|Fs) +W i

sW
j
s

= E(W i
t (W

j
t −W j

s )|Fs) +W i
sW

j
s

= E((W i
t −W i

s)(W
j
t −W j

s )|Fs) + E(W i
s(W

j
t −W j

s )|Fs) +W i
sW

j
s

= W i
sW

j
s ,

where we have used that the variables E(W j
s (W i

t −W i
s)|Fs), E((W i

t −W i
s)(W

j
t −W j

s )|Fs) and

E(W i
s(W

j
t −W j

s )|Fs) are all equal to zero, because s 7→Wt+s−Wt is independent of Fs and

has the distribution of a p-dimensional Brownian motion. Thus, W iW j is a martingale.

Furthermore, when W is a p-dimensional Ft Brownian motion, W i has the distribution of a

Brownian motion, so all ordinary distributional results for Brownian motion transfer verbatim
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to (Ft) Brownian motion, for example that the following results hold almost surely:

lim sup
t→∞

W i
t√

2t log log t
= 1, lim inf

t→∞

W i
t√

2t log log t
= −1, lim

t→∞

W i
t

t
= 0.

Next, we introduce (Ft) Poisson processes in a manner similar to that of (Ft) Brownian

motions.

Definition 1.2.14. An Ft Poisson process is an increasing càdlàg process N adapted to Ft
such that Nt =

∑
0<s≤t ∆Ns, where ∆N only takes the values zero and one, and such that

for any t, the distribution of s 7→ Nt+s −Nt is a Poisson process independent of Ft.

Similarly to Definition 1.2.12, the difference between an Ft Poisson process and a Poisson

process is that an an Ft Poisson process has regularity propeties ensuring that the process

interacts properly with the filtration of the probability space.

Theorem 1.2.15. Let N be an Ft Poisson process. Then Nt − t is a martingale.

Proof. Let 0 ≤ s ≤ t. Using independence, we obtain

E(Nt − t|Fs) = E(Nt −Ns|Fs) +Ns − t = E(Nt −Ns) +Ns − t = Ns − s,

which proves the result.

Also, note the following. Letting N be an Ft Poisson process, we may define T0 = 0 and for

n ≥ 1, Tn = inf{t ≥ 0 | Nt = n}. As N is càdlàg, is the sum of its jumps and only has jumps

of size one, it holds that the sequence (Tn) is strictly increasing and covers the jumps of N . As

we also have Tn = inf{t ≥ 0 | Nt > n− 1/2}, Lemma 1.1.13 shows that each Tn is a stopping

time. And as N has the distribution of a Poisson process, the sequence (Tn − Tn−1)n≥1 is is

and independent and identically distributed sequence of standard exponentially distributed

variables, and we have Nt =
∑∞
n=1 1(t≤Tn).

1.3 Square-integrable martingales

In this section, we consider the properties of square-integrable martingales, and we apply

these properties to prove the existence of the quadratic variation process for bounded mar-

tingales. We say that a martingale M is square-integrable if supt≥0EM
2
t is finite. The space
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of càdlàg square-integrable martingales with initial value zero is denoted by M2. It holds

that M2 is a vector space. By cM2, we denote the space of continuous elements of M2.

For the following theorem, we introduce some further notation. For any process X, we put

X∗t = sups≤t |Xs| and X∗∞ = supt≥0 |Xt|. We write X∗2t = (X∗t )2, and likewise X∗2∞ = (X∗∞)2.

Theorem 1.3.1. Let M ∈ M2. Then, there exists a square-integrable variable M∞ such

that Mt = E(M∞|Ft) for all t ≥ 0. Furthermore, Mt converges to M∞ almost surely and in

L2, and EM∗2∞ ≤ 4EM2
∞.

Proof. As M is bounded in L2, M is in particular uniformly integrable by Lemma A.3.4,

so by Theorem 1.2.4, Mt converges almost surely and in L1 to some variable M∞, which is

integrable and satisfies that Mt = E(M∞|Ft) almost surely for t ≥ 0. It remains to prove

that M∞ is square-integrable, that we have convergence in L2 and that EM∗2∞ ≤ 4EM2
∞

holds.

Put tnk = k2−n for n, k ≥ 0. Then (Mtnk
)k≥0 is a discrete-time martingale for n ≥ 0 with

supk≥0EM
2
tnk

finite. By Lemma A.4.4, Mtnk
converges almost surely and in L2 to some

square-integrable limit as k tends to infinity. By uniqueness of limits, the limit is M∞, so we

conclude that M∞ is square-integrable. Lemma A.4.4 also yields E supk≥0M
2
tnk
≤ 4EM2

∞.

We then obtain by the monotone convergence theorem and the right-continuity of M that

EM∗2∞ = E lim
n→∞

sup
k≥0

M2
tnk

= lim
n→∞

E sup
k≥0

M2
tnk
≤ 4EM2

∞.

This proves the inequality EM∗2∞ ≤ 4EM2
∞. It remains to show that Mt converges to M∞ in

L2. To this end, note that as we have (Mt −M∞)2 ≤ (2M∗∞)2 = 4M∗2∞ , which is integrable,

the dominated convergence theorem yields limtE(Mt −M∞)2 = E limt(Mt −M∞)2 = 0, so

Mt also converges in L2 to M∞, as desired.

Lemma 1.3.2. Assume that M ∈M2. Then MT ∈M2 as well.

Proof. By Lemma 1.2.7, MT is a martingale. Furthermore, we have

sup
t≥0

E(MT )2
t ≤ E sup

t≥0
(MT

t )2 ≤ E sup
t≥0

M2
t = EM∗2∞ ,

and this is finite by Theorem 1.3.1, proving that MT ∈M2.

Theorem 1.3.3. Assume that (Mn) is a sequence in M2 such that (Mn
∞) is convergent in

L2 to a limit M∞. Then there is some M ∈ M2 such that for all t ≥ 0, Mt = E(M∞|Ft).
Furthermore, E supt≥0(Mn

t −Mt)
2 tends to zero.
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Proof. The difficulty in the proof lies in demonstrating that the martingale M obtained by

putting Mt = E(M∞|Ft) has a càdlàg version. First note that Mn −Mm ∈ M2 for all n

and m, so for any δ > 0 we may apply Chebychev’s inequality and Theorem 1.3.1 to obtain,

using (x+ y)2 ≤ 4x2 + 4y2,

P ((Mn −Mm)∗∞ ≥ δ) ≤ δ−2E(Mn −Mm)∗2∞

≤ 4δ−2E(Mn
∞ −Mm

∞)2

≤ 16δ−2(E(Mn
∞ −M∞)2 + E(M∞ −Mm

∞)2)

≤ 32δ−2 sup
k≥m∧n

E(Mk
∞ −M∞)2.

Now let (ni) be a strictly increasing sequence of naturals such that for each i, it holds that

32(2−i)−2 sup
k≥ni

E(Mk
∞ −M∞)2 ≤ 2−i,

this is possible as supk≥nE(Mk
∞ −M∞)2 tends to zero as n tends to infinity. In particular,

P ((Mni+1 −Mni)∗∞ > 2−i) ≤ 2−i for all i ≥ 1. Then
∑∞
i=1 P ((Mni+1 −Mni)∗∞ > 2−i)

is finite, so therefore, by the Borel-Cantelli Lemma, the event that (Mni+1 −Mni)∗∞ > 2−i

infinitely often has probability zero. Therefore, (Mni+1−Mni)∗∞ ≤ 2−i from a point onwards

almost surely. In particular, it almost surely holds that for any two numbers k ≤ m large

enough, depending on ω,

(Mnm −Mnk)∗∞ ≤
m∑

i=k+1

(Mni −Mni−1)∗∞ ≤
∞∑

i=k+1

2−i = 2−k.

Thus, it holds almost surely that Mni is Cauchy in the uniform norm on R+, and therefore

by Lemma A.2.6 almost surely uniformly convergent to some càdlàg limit. Define M to be

the uniform limit when it exists and zero otherwise, M is then a process with càdlàg paths.

With F being the null set where we have uniform convergence, our assumption that the usual

conditions hold allows us to conclude that F ∈ Ft for all t ≥ 0. As uniform convergence

implies pointwise convergence, we have Mt = 1F limi→∞Mni
t , so M is also adapted. We now

claim that M ∈M2. To see this, note that by Jensen’s inequality, we have

E(Mn
t − E(M∞|Ft))2 = E(E(Mn

∞|Ft)− E(M∞|Ft))2 = EE(Mn
∞ −M∞|Ft)2

≤ EE((Mn
∞ −M∞)2|Ft) = E(Mn

∞ −M∞)2,

which tends to zero, so for any t ≥ 0, Mn
t tends to E(M∞|Ft) in L2. As Mnk

t tends to

Mt almost surely, we conclude that Mt = E(M∞|Ft) almost surely by uniqueness of limits.

This shows that M is a martingale, and as EM2
t ≤ EE(M2

∞|Ft) = EM2
∞, which is finite,

we conclude that M is bounded in L2. As M clearly has initial value zero, we then obtain

M ∈ M2. Finally, lim supnE supt≥0(Mn
t −Mt)

2 ≤ 4 limnE(Mn
∞ −M∞)2 = 0 by Theorem

1.3.1, yielding the desired convergence of Mn to M .



1.3 Square-integrable martingales 27

We now introduce a seminorm ‖ · ‖2 on the space M2 by putting ‖M‖2 = (EM2
∞)

1
2 , this

is possible as we have ensured in Theorem 1.3.1 that for any M ∈ M2, Mt = E(M∞|Ft)
for some almost surely unique square-integrable M∞, so that the limit determines the entire

martingale. Note that ‖ · ‖2 is generally not a norm, only a seminorm, in the sense that

‖M‖2 = 0 does not imply that M is zero, only that M is evanescent.

Theorem 1.3.4. The space M2 is complete under the seminorm ‖ · ‖, in the sense that any

Cauchy sequence in M2 has a limit.

Proof. Assume that (Mn) is a Cauchy sequence inM2. By our definition of the seminorm on

M2, we have (E(Mn
∞−Mm

∞)2)
1
2 = ‖Mn−Mm‖2, and so (Mn

∞) is a Cauchy sequence in L2.

As L2 is complete, there exists M∞ such that Mn
∞ converges in L2 to M∞. By Theorem 1.3.3,

there exists M ∈ M2 such that for any t ≥ 0, Mt = E(M∞|Ft) almost surely. Therefore,

Mn tends to M in M2.

Theorem 1.3.5 (Riesz’ representation theorem forM2). Let M ∈M2. Then, the mapping

ϕ : M2 → R defined by ϕ(N) = EM∞N∞ is linear and continuous. Conversely, if it

holds that ϕ : M2 → R is linear and continuous, there exists M ∈ M2, unique up to

indistinguishability, such that ϕ(N) = EM∞N∞ for all N ∈M2.

Proof. First consider M ∈ M2 and define ϕ :M2 → R by putting ϕ(N) = EM∞N∞. The

mapping ϕ is then clearly linear, and |ϕ(N −N ′)| = |EM∞(N∞ −N ′∞)| ≤ ‖M‖2‖N −N ′‖2
for all N,N ′ ∈ M2 by the Cauchy-Schwartz inequality, showing that ϕ is Lipschitz with

Lipschitz constant ‖M‖2, therefore continuous.

Conversely, assume given any ϕ : M2 → R which is linear and continuous, we need to

find M ∈ M2 such that ϕ(N) = EM∞N∞ for all N ∈ M2. If ϕ is identically zero, this

is trivially satisfied with M being the zero martingale. Therefore, assume that ϕ is not

identically zero. In this case, there is M ′ ∈ M2 such that ϕ(M ′) 6= 0. Define the set

C ⊆ M2 by C = {L ∈ M2 | ϕ(L) = ‖M ′‖2}. As ϕ is continuous, C is closed. And as ϕ is

linear, C is convex.

We claim that there is M ′′ ∈ C such that such that ‖M ′′‖2 = infL∈C ‖L‖2. To prove this, it

suffices to put α = infL∈C ‖L‖22 and identify M ′′ ∈ C such that ‖M ′′‖22 = α. Take a sequence

(Ln) in C such that ‖Ln‖2 converges to α. Since 1
2 (Lm + Ln) ∈ C by convexity, we have

‖Lm − Ln‖22 = 2‖Lm‖22 + 2‖Ln‖22 − ‖Lm + Ln‖22
= 2‖Lm‖22 + 2‖Ln‖22 − 4‖ 1

2 (Lm + Ln)‖22 ≤ 2‖Lm‖22 + 2‖Ln‖22 − 4α.
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As m and n tend to infinity, ‖Lm‖22 and ‖Ln‖22 tend to α, so ‖Lm − Ln‖22 tends to zero.

Therefore, (Ln) is Cauchy. By Theorem 1.3.4, (Ln) is convergent towards some M ′′. As C

is closed, M ′′ ∈ C, and we furthermore find ‖M ′′‖22 = limn ‖Ln‖22 = α, as desired.

We next claim that for any N ∈ M2 with ϕ(N) = 0, EM ′′∞N∞ = 0. This is clearly

true if N is evanescent, assume therefore that N is not evanescent, so that ‖N‖2 6= 0. By

linearity, ϕ(M ′′ − tN) = ϕ(M ′′) for any t ∈ R, so that M ′′ − tN ∈ C. We then find

‖M ′′‖22 = infL∈C ‖L‖22 ≤ inft∈R ‖M ′′ − tN‖22 ≤ ‖M ′′‖22, so that ‖M ′′‖22 is the minimum

of the mapping t 7→ ‖M ′′ − tN‖22, attained at zero. However, we also have the relation

‖M ′′−tN‖22 = t2‖N‖22−2tEM ′′∞N∞+‖M‖22, so t 7→ ‖M ′′∞−tN∞‖22 is a quadratic polynomial,

and as ‖N‖2 6= 0, it attains its unique minimum at ‖N‖−2
2 EM ′′∞N∞. As we also know that

the minimum is attained at zero, we conclude EM ′′∞N∞ = 0.

We have now proven the existence of a process M ′′ in M2 which is nonzero and satisfies

EM ′′∞N∞ = 0 whenever ϕ(N) = 0. We then note for any N ∈ M2 that, using the linearity

of ϕ, ϕ(ϕ(M ′′)N − ϕ(N)M ′′) = ϕ(M ′′)ϕ(N) − ϕ(N)ϕ(M ′′) = 0, yielding the relationship

0 = EM ′′∞(ϕ(M ′′)N∞ − ϕ(N)M ′′∞) = ϕ(M ′′)EM ′′∞N∞ − ϕ(N)‖M ′′‖22, so that we finally

obtain the relation

ϕ(N) = ‖M ′′‖−2
2 ϕ(M ′′)EM ′′∞N∞ = E

(
ϕ(M ′′)M ′′∞
‖M ′′‖22

N∞

)
,

which proves the desired result using the element (ϕ(M ′′)M ′′)‖M ′′‖−2
2 of M2. It remains

to prove uniqueness. Assume therefore that M,M ′ ∈ M2 such that EM∞N∞ = EM ′∞N∞

for all N ∈ M2. Then E(M∞ − M ′∞)N∞ = 0 for all N ∈ M2, in particular we have

E(M∞−M ′∞)2 = 0 so that M∞ = M ′∞ almost surely and so M and M ′ are indistinguishable.

This completes the proof.

Finally, we apply our results onM2 to prove the existence of the quadratic variation process

for bounded martingales. We say that a process X is increasing if its sample paths are

increasing. In this case, the limit of Xt exists almost surely as a variable with values in

[0,∞] and is denoted by X∞. We say that an increasing process is integrable if its limit X∞

is integrable. In this case, X∞ is in particular almost surely finite. We denote by Ai the

set of stochastic processes with initial value zero which are càdlàg, adapted, increasing, and

integrable.

Theorem 1.3.6. Let M ∈ Mb. There exists a process [M ] in Ai, unique up to indistin-

guishability, such that M2 − [M ] ∈ M2 and such that ∆[M ] = (∆M)2 almost surely. We

call [M ] the quadratic variation process of M .
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Proof. We first consider uniqueness. Assume that A and B are two processes in Ai such

that M2 −A and M2 −B are in M2 and ∆A = ∆B = (∆M)2 almost surely. In particular,

A − B is in M2, is almost surely continuous and has paths of finite variation, so Lemma

1.2.11 shows that A−B is evanescent, such that A and B are indistinguishable. This proves

uniqueness.

Next, we consider the existence of the process. Let tnk = k2−n for n, k ≥ 0, we then find

M2
t =

∞∑
k=1

M2
t∧tnk
−M2

t∧tnk−1
= 2

∞∑
k=1

Mt∧tnk−1
(Mt∧tnk −Mt∧tnk−1

) +

∞∑
k=1

(Mt∧tnk −Mt∧tnk−1
)2,

where the terms in the sum are zero from a point onwards, namely for such k that tnk−1 ≥ t.
Define Nn

t = 2
∑∞
k=1Mt∧tnk−1

(Mt∧tnk −Mt∧tnk−1
). Our plan for the proof is to show that Nn

is in M2 and that (Nn
∞)n≥1 is bounded in L2. This will allow us to apply Lemma A.3.7 in

order to obtain some N ∈ M2 which is the limit of appropriate convex combinations of the

(Nn). We then show that by putting [M ] = M2 −N , we obtain, up to indistinguishability,

a process with the desired qualities.

We first show that Nn ∈ M by applying Lemma 1.2.8. Clearly, Nn is càdlàg and adapted

with initial value zero, and so it suffices to prove that Nn
T is integrable and that ENn

T = 0

for all bounded stopping times T . To this end, note that as M is bounded, there is c > 0

such that |Mt| ≤ c for all t ≥ 0. Therefore, |2Mt∧tnk−1
(Mt∧tnk −Mt∧tnk−1

)| ≤ 4c2 for any k. As

T is also bounded, Nn
T is integrable, as it is the sum of finitely many terms bounded by 4c2,

and the martingale property of MT yields

ENn
T = E

∞∑
k=1

MT∧tnk−1
(MT∧tnk −MT∧tnk−1

)

=

∞∑
k=1

EMT
tnk−1

(MT
tnk
−MT

tnk−1
) =

∞∑
k=1

EMT
tnk−1

E(MT
tnk
−MT

tnk−1
|Ftnk−1

) = 0,

where the interchange of summation and expectation is allowed, as the only nonzero terms

in the sum are for those k such that tnk−1 ≤ T , and there are only finitely many such terms.

Thus, by Lemma 1.2.8, Nn ∈M.

Next, we show that (Nn
∞)n≥1 is bounded in L2. Fix k ≥ 1, we first consider a bound for the

second moment of Nn
tnk

. To obtain this, note that for i < j,

EMtni−1
(Mtni

−Mtni−1
)Mtnj−1

(Mtnj
−Mtnj−1

)

= E(Mtni−1
(Mtni

−Mtni−1
)E(Mtnj−1

(Mtnj
−Mtnj−1

)|Ftni ))

= E(Mtni−1
(Mtni

−Mtni−1
)Mtnj−1

E(Mtnj
−Mtnj−1

|Ftni )),
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which is zero, as E((Mtnj
−Mtnj−1

)|Ftni ) = 0, and by the same type of argument, we obtain

E(Mtni
−Mtni−1

)(Mtnj
−Mtnj−1

) = 0. Therefore, we obtain

E(Nn
tnk

)2 = E

(
k∑
i=1

Mtni−1
(Mtni

−Mtni−1
)

)2

=

k∑
i=1

E
(
Mtni−1

(Mtni
−Mtni−1

)
)2

≤ c2
k∑
i=1

E(Mtni
−Mtni−1

)2 = c2E

(
k∑
i=1

Mtni
−Mtni−1

)2

= c2EM2
tnk
.

Now, finally note that for any 0 ≤ s ≤ t, E(Nn
s )2 = E(E(Nn

t |Fs)2) ≤ E(Nn
t )2 by Jensen’s

inequality, so t 7→ E(Nn
t )2 is increasing, and as we also have EM2

tk
≤ EM2

∞ for all k ≥ 1,

we get supt≥0E(Nn
t )2 = supk≥1E(Nn

tnk
)2 ≤ supk≥1 c

2EM2
tnk
≤ 4c2EM2

∞, and the latter is

finite. Thus, Nn ∈M2, and in particular, E(Nn
∞)2 = limtE(Nn

t )2 ≤ 4c2EM2
∞, so (Nn

∞)n≥1

is bounded in L2.

Now, by Lemma A.3.7, there exists a sequence of naturals (Kn) with Kn ≥ n and for

each n a finite sequence of reals λnn, . . . , λ
n
Kn

in the unit interval summing to one, such that∑Kn
i=n λ

n
i N

i
∞ is convergent in L2 to some variable N∞. By Theorem 1.3.3, it then holds

that there is N ∈ M2 such that E supt≥0(Nt −
∑Kn
i=n λ

n
i N

i
t )

2 tends to zero. Picking a

subsequence and relabeling, we may in addition to the properties already noted assume that

supt≥0 |Nt−
∑Kn
i=n λ

n
i N

i
t | also converges almost surely to zero. Define A = M2−N , we claim

that there is a modification of A satisfying the criteria of the theorem.

To prove this, first note that as M2 and N are càdlàg and adapted, so is A. We want

to show that A is almost surely increasing, that the almost sure limit A∞ is integrable

and that ∆A = (∆M)2 almost surely. We first consider the jumps of A. To prove that

∆A = (∆M)2 almost surely, it suffices by Lemma 1.1.16 to show that ∆AT = (∆MT )2

almost surely for any bounded stopping time T . Let T be any bounded stopping time. Since

supt≥0 |Nt −
∑Kn
i=n λ

n
i N

i
t | converges almost surely to zero, we find

At = M2
t −Nt = lim

n→∞

Kn∑
i=n

λni (M2
t −N i

t ) = lim
n→∞

Kn∑
i=n

λni

∞∑
k=1

(M
tik
t −M

tik−1

t )2,

with the limits being almost sure, uniformly over t ≥ 0. In particular, we obtain

∆AT = lim
n→∞

Kn∑
i=n

λni

∞∑
k=1

(M
tik
T −M

tik−1

T )2 − (M
tik
T− −M

tik−1

T− )2,



1.3 Square-integrable martingales 31

again, the limit being almost sure. Fix i ≥ 1 and k ≥ 0. Note that

(M
tik
t −M

tik−1

t )2 − (M
tik
t− −M

tik−1

t− )2 = 0 when t ≤ tik−1 or t > tik

(M
tik
t −M

tik−1

t )2 = (Mt −Mtik−1
)2 when tik−1 < t ≤ tik

(M
tik
t− −M

tik−1

t− )2 = (Mt− −Mtik−1
)2 when tik−1 < t ≤ tik.

From these observations, we conclude that with s(t, i) denoting the unique tik−1 such that

tik−1 < t ≤ tik, we have ∆AT = limn→∞
∑Kn
i=n λ

n
i ((MT −Ms(T,i))

2−(MT−−Ms(T,i))
2). Here,

it holds that

(MT −Ms(T,i))
2 − (MT− −Ms(T,i))

2

= M2
T − 2MTMs(T,i) +M2

s(T,i) − (M2
T− − 2MT−Ms(T,i) +M2

s(T,i))

= M2
T −M2

T− − 2∆MTMs(T,i) = (MT −MT−)(MT +MT−)− 2∆MTMs(T,i)

= (∆MT )2 + 2∆MT (MT− −Ms(T,i)),

yielding ∆AT = (∆MT )2 + 2∆MT limn→∞
∑Kn
i=n λ

n
i (MT− −Ms(T,i)). Now, we always have

s(T, i) < T and |s(T, i) − T | ≤ 2−i. Therefore, given ε > 0, there is n ≥ 1 such that for all

i ≥ n, |MT−−Ms(T,i)| ≤ ε. As the (λni )n≤i≤Kn are convex weights, we obtain for n this large

that |
∑Kn
i=n λ

n
i (MT−−Ms(T,i))| ≤ ε. This allows us to conclude that

∑Kn
i=n λ

n
i (MT−−Ms(T,i))

converges almost surely to zero. Combining this with our previous conclusions, we obtain

∆AT = (∆MT )2 almost surely. Since this holds for any arbitrary stopping time, we now

obtain ∆A = (∆M)2 up to indistinguishability.

Next, we show that A is almost surely increasing. Put D+ = {k2−n|k ≥ 0, n ≥ 1}, D+ is

dense in R+. Let p, q ∈ D+ with p ≤ q, we will show that Ap ≤ Aq almost surely. There

exists j ≥ 1 and naturals np ≤ nq such that p = np2
−j and q = nq2

−j . By what we already

have shown, we then find, with the limit being almost sure, that

Ap = lim
n→∞

Kn∑
i=n

λni

∞∑
k=1

(M
tik
p −M

tik−1
p )2.

Now note that for i ≥ j, we have p∧ tik = np2
−j ∧k2−i = np2

i−j2−i∧k2−i = (np2
i−j ∧k)2−i

and analogously for q ∧ tik, so we obtain that almost surely,

lim
n→∞

Kn∑
i=n

λni

∞∑
k=1

(M
tik
p −M

tik−1
p )2 = lim

n→∞

Kn∑
i=n

λni

np2i−j∑
k=1

(Mtik
−Mtik−1

)2

≤ lim
n→∞

Kn∑
i=n

λni

nq2
i−j∑

k=1

(Mtik
−Mtik−1

)2

= lim
n→∞

Kn∑
i=n

λmi

∞∑
k=1

(M
tik
q −M

tik−1
q )2,
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allowing us to make the same calculations in reverse and conclude that Ap ≤ Aq almost

surely. As D+ is countable, we conclude that A is inceasing on D+ almost surely, and by

continuity, we conclude that A is increasing almost surely. Furthermore, as A∞ = M2
∞−N∞

and both M2
∞ and N∞ are integrable, we conclude that A∞ is integrable.

We have now shown that A is almost surely increasing, that ∆A = (∆M)2 almost surely

and that M2 − A is in M2. Now let F be the null set where A is not increasing and put

[M ] = A1F c . As we have assumed that all null sets are in Ft for t ≥ 0, [M ] is adapted as

A is adapted. Furthermore, [M ] is càdlàg, increasing and [M ]∞ exists and is integrable, so

[M ] ∈ Ai. Also, ∆[M ] = (∆M)2 almost surely. As M2 − [M ] = N + A1F , where A1F is

evanescent and càdlàg and therefore in M2, the theorem is proven.

Let M ∈ Mb. As the process [M ] constructed in Theorem 1.3.6 satisfies ∆[M ] = (∆M)2

almost surely, we obtain 0 ≤
∑

0<t(∆Mt)
2 ≤ [M ]∞ almost surely. As [M ]∞ is integrable,

it is almost surely finite. Therefore, a nontrivial corollary of Theorem 1.3.6 is that almost

surely,
∑

0<t(∆Mt)
2 is finite. In Chapter 3, we will show that this result in fact extends to

all M ∈M2.

1.4 Finite variation processes and integration

In this section, we prove a few results on the properties of processes with finite variation. We

begin by introducing some additional notation. In the previous section, we defined Ai as the

space of increasing and integrable càdlàg adapted stochastic processes with initial value zero.

We now define A as the space of increasing càdlàg adapted stochastic processes with initial

value zero, and we define V as the space of càdlàg adapted stochastic processes with initial

value zero and paths of finite variation. Note that for a process in V, the variation process

is in A. We say a process in V is integrable if the variation process is in Ai, and denote this

subspace of V by Vi. We then have the inclusions Ai ⊆ A, Vi ⊆ V, Ai ⊆ Vi and A ⊆ V.

We begin by proving a lemma which shows that elements of V can be decomposed in a

measurable way, meaning that we may write elements of V as differences of elements of A.

Lemma 1.4.1. Let A ∈ V. There exists processes A+, A− ∈ A such that A = A+−A−. An

explicit such decomposition is given by putting A+ = 1
2 (VA +A) and A− = 1

2 (VA −A).

Proof. With A+ and A− defined as in the statement of the lemma, it is immediate that
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A = A+−A−. Furthermore, by Lemma 1.2.9, the processes A+ and A− are both càdlàg and

adapted, and by Theorem A.2.9, A+ and A− are both increasing. This proves the result.

Next, recall from Section A.2 that there is a bijective correspondence between mappings

of finite variation and pairs of nonnegative, singular measures, so that mappings of finite

variation may be used as integrators. For mappings with bounded variation, the two singular

measures may be subtracted to obtain a signed measure, so that for such mappings, we obtain

a correspondence with signed measures instead of paris of nonnegative, singular measures. We

next seek to show that under certain measurability requirements for the integrand, we may

construct the integral of a stochastic process with respect to elements of V in a measurable

manner. This result will be important in Chapter 3. Recall from Section A.1 that a P -

integrable (Ω,F) kernel on a countably generated measurable space (E, E) is a family (νω)ω∈Ω

of signed measures on (E, E) such that ω 7→ νω(A) is F measurable for all A ∈ E and such

that
∫

Ω
|νω|(E) dP (ω) is finite. Note also that as (R+,B+) is generated by the open intervals

with rational endpoints, (R+,B+) is countably generated.

Lemma 1.4.2. Let A ∈ Vi and assume that (VA)∞(ω) is finite for all ω. For each ω,

let νA(ω) be the signed measure on (R+,B+) induced by A(ω). The family (νA(ω))ω∈Ω is

a P -integrable (Ω,F) kernel on (R+,B+), and the restricted family (νA(ω)|[0,t])ω∈Ω is a P -

integrable (Ω,Ft) kernel on ([0, t],Bt).

Proof. We first show the result on the family of restricted measures. Fix t ≥ 0. The result is

trivial for t equal to zero, so we may assume that t is positive. Let νtA(ω) be the restriction

of νA(ω) to ([0, t],Bt). We first show that for any B ∈ Bt, the mapping ω 7→ νtA(ω)(B) is

Ft measurable. The family of B ∈ Bt for which this holds is a Dynkin class, and it will

therefore suffice to show the claim for intervals of the type (a, b] for 0 ≤ a ≤ b ≤ t. Let

0 ≤ a ≤ b ≤ t be given. Then νtA(ω)((a, b]) = Ab(ω) − Aa(ω), and by the adaptedness of

A, this is Ft measurable. Finally, also note that
∫

Ω
|νtA(ω)|([0, t]) dP (ω) = E(VA)t, which is

finite by our assumptions. We conclude that (νA(ω)|[0,t])ω∈Ω is a P -integrable (Ω,Ft) kernel

on ([0, t],Bt).

Now consider the unrestricted case. Let B ∈ B+. Then νA(ω)(B) = limt ν
t
A(ω)(B) and

|νA(ω)|(B) = limt |νtA(ω)|(B). By what we already have shown, we find that ω 7→ νA(ω)(B)

is F measurable for all B ∈ B+. As
∫

Ω
|νA(ω)|(R+) dP (ω) = E(VA)∞, we conclude that

(νA(ω))ω∈Ω is a P -integrable (Ω,F) kernel on (R+,B+).

Theorem 1.4.3. Let A ∈ V and assume that H is progressive and that almost surely, H is

integrable with respect to A. There is a process H ·A ∈ V, unique up to indistinguishability,
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such that almost surely, (H ·A)t is the Lebesgue integral of H with respect to A over [0, t] for

all t ≥ 0. If H is nonnegative and A ∈ A, then H ·A ∈ A.

Proof. First note that as the requirements on H · A define the process pathwisely almost

surely, it is immediate that H · A is unique up to indistinguishability. As for existence, we

prove the result in three steps, first considering bounded A in A, then general A in A and

finally the case where we merely assume A ∈ V.

Step 1. The case A ∈ A, A bounded. First assume that A ∈ A and that A is bounded.

Let F be the null set such that when ω ∈ F , H(ω) is not integrable with respect to A(ω).

By our assumptions on the filtration, F ∈ Ft for all t ≥ 0, in particular we obtain that

{(s, ω) ∈ [0, t] × Ω | 1F (ω) = 1} = [0, t] × F ∈ Bt ⊗ Ft, and so the process (t, ω) 7→ 1F (ω)

is progressive. Therefore, the process (t, ω) 7→ 1F c(ω) is progressive as well. Thus, defining

K = H1F c , K is progressive, and K(ω) is integrable with respect to A(ω) for all ω. We may

then define a process Y by putting Yt(ω) =
∫ t

0
Ks(ω) dA(ω)s. We claim that Y satisfies the

properties required of the process H ·A in the statement of the lemma. Clearly, Yt is almost

surely the Lebesgue integral of H with respect to A over [0, t] for all t ≥ 0, it remains to

prove Y ∈ V. As Y is a pathwise Lebesgue integral with respect to a nonnegative measure,

Y has finite variation. We would like to prove that Y is càdlàg. As Y is zero on F , it suffices

to show that Y is càdlàg on F c. Let ω ∈ F c and let t ≥ 0. For h ≥ 0, we obtain by Lemma

A.2.12 that

|Yt+h(ω)− Yt(ω)| =

∣∣∣∣∣
∫ t+h

t

Hs(ω) dA(ω)s

∣∣∣∣∣ ≤
∫ t+h

t

|Hs(ω)||dA(ω)|s.

We may then apply the dominated convergence theorem with the dominating function given

by s 7→ |Hs(ω)|1(t,t+ε](s) for some ε > 0 to obtain

lim sup
h→0

|Yt+h(ω)− Yt(ω)| ≤ lim
h→0

∫ t+h

t

|Hs(ω)|| dA(ω)|s = 0,

showing that Y (ω) is right-continuous at t. As Y has paths of finite variation, it is immediate

that Y has left limits. This proves that Y is càdlàg. Furthermore, by construction, Y has

initial value zero. Therefore, it only remains to prove that Y is adapted, meaning that Yt is

Ft measurable for all t ≥ 0.

This is clearly the case for t equal to zero, therefore, assume that t > 0. Let νtA(ω) be the

restriction to Bt of the nonnegative measure induced by A(ω) according to Theorem A.2.9.

By Lemma 1.4.2, (νA(ω)|[0,t])ω∈Ω is a P -integrable (Ω,Ft) kernel on ([0, t],Bt). Now, as K

is progressive, the restriction of K to [0, t]× Ω is Bt ⊗Ft measurable. Theorem A.1.17 then
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yields that the integral
∫ t

0
Ks(ω) dA(ω)s is Ft measurable, proving that Yt is adapted. We

conclude that Y ∈ V.

Step 2. The case A ∈ A. We now consider the case where A ∈ A. Define a sequence

(Tn) of positive stopping times by putting Tn = inf{t ≥ 0 | |At| > n}. As A has càdlàg

paths and has initial value zero, the sequence (Tn) is positive and increases to infinity. For

0 ≤ t < Tn, it holds that |At| ≤ n. Define ATn− by putting ATn−t = At when 0 ≤ t < Tn and

ATn−t = ATn− otherwise. ATn− is then a bounded element of A. By what was already shown,

there exists a process H · ATn− in V such that almost surely, (H · ATn−)t is the integral of

H with respect to ATn− over [0, t] for all t ≥ 0. Let F be the null set such that on F c, Tn

converges to infinity, H is integrable with respect to A and (H · ATn−)t is the integral of H

with respect to ATn− over [0, t] for all t ≥ 0 and all n. As before, we put K = H1F c and

conclude that K is progressive, and defining Yt =
∫ t

0
Ks dAs, we find that Yt is almost surely

the Lebesgue integral of H with respect to A over [0, t] for all t ≥ 0. Furthermore, whenever

ω ∈ F c, we have

Yt =

∫ t

0

Hs dAs = lim
n→∞

∫ t

0

1[0,Tn)(s)Hs dAs = lim
n→∞

∫ t

0

Hs dATn−s = lim
n→∞

(H ·ATn−)t,

where the second equality follows from the dominated convergence theorem, as H is assumed

to be integrable with respect to A on F c. In particular, Yt is the almost sure limit of a

sequence of Ft measurable variables. Therefore, Yt is itself Ft measurable. Also, it follows

that Y is càdlàg with paths of finite variation and has initial value zero. We conclude that

Y ∈ V and so Y satisfies the requirements of the process H ·A in the theorem.

Step 3. The case A ∈ V. Finally, assume that A ∈ V. Recalling Theorem A.2.9, we know

that by putting A+
t = 1

2 ((VA)t +At) and A−t = 1
2 ((VA)t +At), H is almost surely integrable

with respect to A+ and A−. By Lemma 1.4.1, A+ and A− are in A and A = A+ −A−.

By what was already shown, there are processes H · A+ and H · A− in V such that almost

surely, these processes at time t are the Lebesgue integrals of H with respect to A+ and A−

over [0, t] for all t ≥ 0. The process H ·A = H ·A+ −H ·A− then satisfies the requirements

of the theorem.

Theorem 1.4.3 shows that given a progressively measurable process H and A ∈ V such that

H is almost surely integrable with respect to A, which as in Section A.2 means that H is

integrable with respect to the nonnegative singular measures induced by the increasing and

decreasing parts of A on [0, t] for any t ≥ 0, we may define the integral pathwisely in such a

manner as to obtain a process H ·A ∈ V, where it holds for almost all ω that for any t ≥ 0,
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(H ·A)t(ω) =
∫ t

0
Hs(ω) dA(ω)s. The stochastic integral of H with respect to A thus becomes

another stochastic process.

1.5 Exercises

Exercise 1.5.1. Let (Ω,F , P ) be a probability triple and let (Gn)n≥0 be a discrete-time

filtration on (Ω,F , P ). For n ∈ N0 and n ≤ t < n + 1, define Ft = Gn. Show that the

filtration (Ft)t≥0 is right-continuous.

Exercise 1.5.2. Let X be an adapted stochastic process. Assume that for all ε > 0, X is

progressive with respect to the filtration (Ft+ε)t≥0. Show that X is progressive with respect

to (Ft)t≥0.

Exercise 1.5.3. Let X be continuous and adapted, and let F be a closed set. Define a

mapping T by putting T = inf{t ≥ 0 | Xt ∈ F}. Show that T is a stopping time.

Exercise 1.5.4. Let X be càdlàg and adapted, and let F be a closed set. Define a mapping

T by putting T = inf{t ≥ 0 | Xt ∈ F or Xt− ∈ F}. Show that T is a stopping time.

Exercise 1.5.5. Let X be a continuous and adapted stochastic process, and let a ∈ R. Put

T = inf{t ≥ 0 | Xt = a}. Prove that T is a stopping time and that XT = a whenever T <∞.

Exercise 1.5.6. Let S and T be two stopping times. Show that FS∨T = σ(FS ,FT ).

Exercise 1.5.7. Let (Tn) be a decreasing sequence of stopping times with limit T . Show that

T is a stopping time and that FT = ∩∞n=1FTn .

Exercise 1.5.8. Let W be a one-dimensional Ft Brownian motion. Put Mt = W 2
t − t. Show

that M is not uniformly integrable.

Exercise 1.5.9. Let M be a càdlàg adapted process with initial value zero and assume that

Mt is almost surely convergent. Show that M ∈ Mu if and only if MT is integrable with

EMT = 0 for all stopping times T which take at most two values in [0,∞].

Exercise 1.5.10. Let W be a one-dimensional Ft Brownian motion and let α ∈ R. Show

that the process Mα defined by Mα
t = exp(αWt− 1

2α
2t) is a martingale. Let a ∈ R and define

T = inf{t ≥ 0 |Wt = a}. Show that for any β ≥ 0, E exp(−βT ) = exp(−|a|
√

2β).

Exercise 1.5.11. Let W be a one-dimensional Ft Brownian motion. Show by direct calcu-

lation that the processes W 3
t − 3tWt and W 4

t − 6tW 2
t + 3t2 are in cM.
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Exercise 1.5.12. Let W be a one-dimensional Ft Brownian motion and define T by putting

T = inf{t ≥ 0 | Wt ≥ a+ bt}. Show that T is a stopping time and that for a > 0 and b > 0,

it holds that P (T <∞) = exp(−2ab).

Exercise 1.5.13. Let W be a one-dimensional Ft Brownian motion. Let a > 0 and define

T = inf{t ≥ 0 |W 2
t ≥ a(1− t)}. Show that T is a stopping time. Find ET and ET 2.

Exercise 1.5.14. Let N be an (Ft) Poisson process. Define Mt = N2
t − 2tNt + t2− t. Show

that M is a martingale.

Exercise 1.5.15. Let N be an Ft Poisson process and let α ∈ R. Show that the process Mα

defined by Mα
t = exp(αNt − (eα − 1)t) is a martingale.
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Chapter 2

Predictability and stopping

times

In this chapter, we introduce the predictable σ-algebra and the related concept of predictable

stopping times, and we also introduce two further subclasses of stopping times, namely

accessible and totally inaccessible stopping times. Using the results of this chapter, we will

in Chapter 3 see that martingales have a special interplay with predictable stopping times

and the predictable σ-algebra, and this interplay is the reason for the importance of the

predictable σ-algebra and predictable stopping times.

The main result of this chapter is a characterisation of measurability with respect to the

predictable σ-algebra for càdlàg adapted processes in terms of the behaviour at jump times.

This result will be used repeatedly in Chapter 3.

The structure of the chapter is as follows. In Section 2.1, we introduce the predictable σ-

algebra Σp and predictable stopping times. We identify generators for Σp, and prove the

elementary stability properties of predictable stopping times. The main result is Theorem

2.1.12, which gives a precise characterisation of predictable stopping times in terms of their

graphs.

Next, in Section 2.2, we introduce the σ-algebra FT− of events strictly prior to T and consider

its elementary properties. Using this σ-algebra, we are able to prove some miscellaneous
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results on predictable stochastic processes, results which will be used to demonstrate the

main results of the following section. In the final section, Section 2.3, we show that all

stopping times may be decomposed into two parts, named the accessible and the totally

inaccessible parts. We argue that the jumps times of any càdlàg process may be covered

by a countable family of such stopping times. Finally, in Theorem 2.3.9, we characterize

predictability of adapted càdlàg processes in terms of their behaviour at jump times.

2.1 The predictable σ-algebra

In this section, we introduce and investigate the predictable σ-algebra on R+ × Ω, as well

as predictable stopping times, which are stopping times interacting with the predictable

σ-algebra in a particular manner. We begin by defining the predictable σ-algebra and iden-

tifying a few generators for the σ-algebra. Recall that a mapping f : R+ → R is said to be

càglàd if it is left-continuous on (0,∞) with right limits on R+. Also, a process is said to be

càglàd if its sample paths are càglàd.

Definition 2.1.1. The predictable σ-algebra Σp is the σ-algebra on R+×Ω generated by the

adapted càglàd processes.

By T , we denote the family of all stopping times. In the following lemmas, we work towards

identifying some generators for Σp.

Lemma 2.1.2. Let X be left-continuous. Define a process Xn by putting

Xn
t = 1{0}(t)X0(ω) +

∞∑
k=0

Xk2−n(ω)1(k2−n,(k+1)2−n](t).

Then Xn converges pointwise to X.

Proof. Fix ω ∈ Ω. It is immediate that Xn
0 (ω) converges to X0(ω), so it suffices to show

that Xn
t (ω) converges to Xt(ω) for t > 0. Fix such a t > 0. Take ε > 0 and pick δ ≤ t

such that |Xt(ω)−Xs(ω)| ≤ ε when s ∈ [t− δ, t]. Take n so large that 2−n ≤ δ. There is k

satisfying k2−n < t ≤ (k+1)2−n such that Xn
t (ω) = Xk2−n(ω). In particular, we obtain that

k2−n ∈ [t− 2−n, t] ⊆ [t− δ, t], so |Xt(ω)−Xn
t (ω)| ≤ ε. This shows that Xn

t (ω) converges to

Xt(ω) and thus proves the lemma.
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Lemma 2.1.3. Σp is also generated by the set families {{0}×F | F ∈ F0}∪{]]T,∞[[|T ∈ T }
and {{0} × F | F ∈ F0} ∪ {]]S, T ]]|S, T ∈ T }.

Proof. Let S and T be stopping times. Noting that ]]T,∞[[= ∪∞n=1]]T, T + n]] , where T + n

is a stopping time by Lemma 1.1.9, and ]]S, T ]] =]]S,∞[[ \ ]]T,∞[[, we obtain that the two

families generate the same σ-algebra. It will therefore suffice to show that Σp is generated

by, say, {{0} × F | F ∈ F0} ∪ {]]S, T ]]|S, T ∈ T }. Let H be the σ-algebra generated by this

set family, we wish to show Σp = H.

We first argue that H ⊆ Σp, and to this end, we show that Σp contains a generator for H.

To this end, first consider F ∈ F0. Define Xt(ω) = 1F (ω)1{0}(t). Then X is càglàd and

adapted, so X is Σp measurable. Therefore, {0} × F ∈ Σp. Next, consider two stopping

times S and T , and put X = 1]]S,T ]]. Then X is càglàd, and as Xt = 1(S<t≤T ), Lemma 1.1.9

shows that X is adapted. Therefore, X is Σp measurable, implying that ]]S, T ]] ∈ Σp. Thus,

Σp contains a generator for H, so H ⊆ Σp.

It remains to prove the other inclusion. To do so, it will suffice to prove that any càglàd

adapted process is H-measurable. To this end, we first consider some simple càglàd adapted

processes. First off, note that 1F (ω)1{0}(t) isH measurable when F ∈ F0. Since any bounded

F0-measurable variable can be approximated by simple functions, it follows that Z(ω)1{0}(t)

is H measurable for any bounded F0 measurable Z. Since any F0 measurable variable can be

approximated by bounded F0 measurable variables, we finally conclude that any Z(ω)1{0}(t)

is H measurable for any Z which is F0 measurable. Next, consider a process of the type

1H(ω)1(s,u](t), where H ∈ Fs. Using the notation of Lemma 1.1.9, consider the stopping

times S = sH and T = uH , meaning that S is equal to s on H and infinity otherwise. We

then have

{(t, ω) ∈ R+ × Ω | 1H(ω)1(s,u](t) = 1} = {(t, ω) ∈ R+ × Ω | s < t ≤ u, ω ∈ H}

= {(t, ω) ∈ R+ × Ω | S(ω) < t ≤ T (ω)}

= ]]S, T ]],

so 1H(ω)1(s,t](t) is H-measurable. By approximation arguments as for the previous class of

processes, Z1(s,u] is H-measurable whenever Z ∈ Fs. Finally, let X be any càglàd adapted

process. Define Xn
t = 1{0}(t)X0(ω) + 1(0,∞)(t)

∑∞
k=0Xk2−n(ω)1(k2−n,(k+1)2−n](t). Since X

is adapted, the above is an infinite sum of processes which all are H measurable according

to what already has been shown. By Lemma 2.1.2, Xn converges pointwise to X. Thus, as

Xn is H measurable, X is H measurable. Ergo, Σp ⊆ H, as desired.
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The above result, modulo considerations about the timepoint zero, shows that Σp is generated

by ]]T,∞[[ for T ∈ T . By analogy, B+ is generated by the family of sets (t,∞) for t ≥ 0, but

also by [t,∞) for t ≥ 0. It is therefore natural to ask whether [[T,∞[[ also would generate

Σp. The immediate idea for the proof of such a claim would be to make the approximation

]]T,∞[[= ∩∞n=1[[T − 1
n ,∞[[. However, T − 1

n may not be a stopping time, and therefore this

avenue of proof fails. Motivated by these remarks, we now introduce the notion of predictable

stopping times.

Definition 2.1.4. Let T be a stopping time. We say that T is predictable if there is an

sequence of stopping times (Tn) increasing pointwise to T such that whenever T (ω) > 0 it

holds that Tn(ω) < T (ω) for all n. We say that (Tn) is an announcing sequence for T . The

set of predictable stopping times is denoted by Tp.

The following lemma yields a few stability properties of predictable stopping times.

Lemma 2.1.5. If T is a predictable stopping time and and F ∈ F0, then TF is a predictable

stopping time. If S and T are predictable stopping times, so are S ∧ T , S ∨ T and S + T .

Finally, for any constant c ∈ [0,∞] and F ∈ F0, cF is a predictable stopping time.

Proof. We already know from Lemma 1.1.9 that all the variables mentioned are stopping

times, so it will suffice to prove predictability.

Consider first the case where T is a predictable stopping time and F ∈ F0. We want to show

that TF is a predictable stopping time. Let (Tn) be an announcing sequence for T , and put

Sn = n ∧ (Tn)F . We claim that (Sn) is an announcing sequence for TF . To show this, first

note that as F ∈ F0 ⊆ FTn , we find that (Tn)F and thus Sn are stopping times by Lemma

1.1.9. It is immediate that (Sn) is increasing. On F , we have Sn = n ∧ Tn and TF = T , and

on F c, we have Sn = n and TF = ∞. Therefore, Sn increases to TF , and if TF > 0, then

Sn < TF . This proves the result. As an immediate corollary, we also obtain that cF is a

predictable stopping time for any c ∈ [0,∞] and F ∈ F0.

Next, let S and T be two predictable stopping times, and let (Sn) and (Tn) be announcing

sequences for S and T , respectively.

Considering S ∧ T , we will argue that (Sn ∧ Tn) is an announcing sequence for S ∧ T . It

is immediate that Sn ∧ Tn increases to S ∧ T , so it suffices to argue that Sn ∧ Tn < S ∧ T
whenever S ∧ T > 0. However, when S ∧ T > 0, we have that both S and T are positive.

Therefore, both Sn and Tn are strictly less than S and T , respectively, and so Sn∧Tn < S∧T ,

as desired. Thus, (Sn ∧ Tn) is an announcing sequence for S ∧ T and so S ∧ T is predictable.
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Regarding S ∨ T , we claim that (Sn ∨ Tn) is an announcing sequence for S ∨ T . As in the

previous case, Sn∨Tn increases to S∨T , so it suffices to argue that Sn∨Tn < S∨T whenever

S ∨ T > 0. In this case, S ∨ T > 0 implies that either S > 0 or T > 0. If S > 0 and T ≥ S,

we obtain S ∨ T = T , T > 0 and thus Sn < S ≤ T and Tn < T , yielding Sn ∨ Tn < S ∨ T .

If S > 0 and T < S, we obtain S ∨ T = S and so Sn < S and Tn ≤ T < S, yielding

Sn ∨ Tn < S ∨ T in this case as well. The cases T > 0, S ≥ T and T > 0, S < T may be

handled similarly, in total demonstrating that whenever S ∨T > 0, we have Sn∨Tn < S ∨T .

Consequently, (Sn ∨ Tn) is an announcing sequence for S ∨ T , so S ∨ T is predictable.

Finally, we consider S+T . Here, we wish to show that (Sn +Tn) is an announcing sequence

for S + T . It is immediate that Sn + Tn increases to S + T . If S + T is positive, at least one

of S and T is positive. If S is positive, Sn < S and thus Sn + Tn < S + T . Similarly, we

obtain Sn + Tn < S + T when T is positive. We conclude that (Sn + Tn) is an announcing

sequence for S + T and thus S + T is predictable.

Lemma 2.1.6. Σp is generated by {[[T,∞[[|T ∈ Tp} and by {[[S, T [[|S, T ∈ Tp}.

Proof. Since the constant infinity is a predictable stopping time by by Lemma 2.1.5, we

immediately obtain σ({[[T,∞[[|T ∈ Tp}) ⊆ σ({[[S, T [[|S, T ∈ Tp}). The other inclusion follows

from the relation [[S, T [[= [[S,∞[[ \ [[T,∞[[, where S, T ∈ Tp. Therefore, the two families

generate the same σ-algebra, and it will suffice to prove that this σ-algebra is in fact Σp.

We will prove that Σp is generated by {[[T,∞[[|T ∈ Tp}. Let H be the σ-algebra generated

by {[[T,∞[[|T ∈ Tp}. We need to show Σp = H. Assume first that T is predictable and let

(Tn) be an announcing sequence. Then [[T,∞[[= {0} × (T = 0) ∪ ∩∞n=1 ]]Tn,∞]]. Since the

first part of the union is in {{0} × F | F ∈ F0}, we can use Theorem 2.1.3 to conclude that

the above is in Σp. Therefore, H ⊆ Σp. To prove the other inclusion, we recall from Theorem

2.1.3 that Σp is generated by {{0} × F | F ∈ F0} and {]]T,∞[[|T ∈ T }. First note that for

any F ∈ F0, we have

{0} × F = {(t, ω) ∈ R+ × Ω | ω ∈ F} \ {(t, ω) ∈ R+ × Ω | t > 0, ω ∈ F}

= {(t, ω) ∈ R+ × Ω | ω ∈ F} \ ∪∞n=1{(t, ω) ∈ R+ × Ω | t ≥ 1
n , ω ∈ F}

= [[0F ,∞[[ \ ∪∞n=1 [[( 1
n )F ,∞[[.

Now, by Lemma 2.1.5, 0F and ( 1
n )F are both predictable stopping times. Therefore, the

above is in H. This proves {{0} × F | F ∈ F0} ⊆ H. Next, letting T be any stopping time,

we have ]]T,∞[[= ∪∞n=1[[T + 1
n ,∞[[. The stopping time T + 1

n is predictable with announcing

sequence T + max{ 1
n −

1
k , 0} for k ≥ 1, and therefore also the above is in H. This proves

{]]T,∞[[|T ∈ T } ⊆ H and therefore finally Σp ⊆ H.
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Lemma 2.1.6 shows that predictable stopping times have a natural interplay with the pre-

dictable σ-algebra. Also, while the generators obtained in Lemma 2.1.3 contained the un-

wieldy {{0} × F | F ∈ F0} term, the generators of Lemma 2.1.6 are easier to work with.

In the remainder of the section, we will prove some results on predictable stopping times. We

will show some further stability properties of the class of predictable stopping times, and at

the end of the section, in Theorem 2.1.12, we will show that a stopping time T is predictable

if and only if its graph [[T ]] is a predictable set in the sense of being an element of Σp.

Lemma 2.1.7. Let T be a stopping time and let Tn be a sequence of stopping times such that

almost surely, Tn increases to T , and almost surely, when T > 0, Tn < T for all n. Then T

is predictable.

Proof. The nontrivial part of the lemma is that the properties of the sequence Tn only

hold almost surely. Let F be the almost sure set such that for ω ∈ F , Tn(ω) increases

to T , and if T (ω) > 0, Tn(ω) < T (ω). Define Sn = (Tn)F ∧ (max{T − 1
n , 0})F c . We

claim that (Sn) is an announcing sequence for T . To this end, first note that as F c is a

null set and we have assumed the usual conditions, both F and F c are in F0. Therefore,

(Tn)F is a stopping time by Lemma 1.1.9, and (max{T − 1
n , 0})F c is a stopping time as it

is almost surely zero. Thus, (Sn) is a sequence of stopping times. It is immediate that (Sn)

is increasing. Also, for ω ∈ F , we have that limn→∞ Sn(ω) = limn→∞ Tn(ω) = T (ω), and

if ω ∈ F c, limn→∞ Sn(ω) = limn→∞max{T − 1
n , 0} = T (ω). Thus, Sn increases to T . Now

assume T (ω) > 0. If ω ∈ F , we have Sn(ω) = Tn(ω) < T (ω), and if ω ∈ F c, we have

Sn(ω) = max{T (ω) − 1
n , 0} < T (ω). Thus, Sn < T whenever T > 0. We have now shown

that (Sn) is an announcing sequence for T , so T is a predictable stopping time.

Lemma 2.1.8. Let S and T be two nonnegative variables and assume that S and T are equal

almost surely. If T is a stopping time, so is S. If T is predictable, so is S.

Proof. We have

(S ≤ t) = (S ≤ t, S = T ) ∪ (S ≤ t, S 6= T ) = ((T ≤ t) ∩ (S = T )) ∪ (S ≤ t, S 6= T ).

Now, Ft contains all P null sets, and therefore also all P almost sure sets. In particular,

(S = T ) ∈ Ft and (S ≤ t, S 6= T ) ∈ Ft. Since T is a stopping time, (T ≤ t) ∈ Ft and so S is

a stopping time. And if T is predictable, Lemma 2.1.7 shows that S also is predictable.

Lemma 2.1.9. Let (Tn) be a sequence of predictable stopping times. Then supn Tn is a

predictable stopping time. If Tn is decreasing such that pointwisely, Tn is constant from some

point onwards, then infn Tn is a predictable stopping time.
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Proof. As we know from Lemma 1.1.10 that supn Tn and infn Tn both are stopping times, we

merely need to show predictability. Consider the case of the supremum. Put T = supn Tn.

As T = supn maxk≤n Tk and maxk≤n Tk is a predictable stopping time by Lemma 2.1.5, it

suffices to prove that supn Tn is a predictable stopping time under the extra condition that

Tn increases. Let (T kn ) be an announcing sequence for Tn. Define Sn = maxi≤n maxk≤n T
k
i .

We claim that Sn announces T . It is immediate that Sn is an increasing sequence of stopping

times, and as

limSn = sup
n

max
i≤n

max
k≤n

T ki = sup
n

sup
k
T kn = sup

n
Tn = T,

Sn in fact increases to T . It remains to show that if T > 0, then Sn < T for all n. To this

end, first note that for any i and k, it holds that if T ki > 0, then Ti > 0 and thus T ki < Ti ≤ T .

Thus, whenever T ki > 0, then T ki < T . Now assume that T > 0 and consider some n ≥ 1. If

Sn = 0, we immediately have Sn < T . If Sn > 0, we have Sn = T ki for some i, k ≤ n, and

thus Sn < T by what was already shown. Thus, (Sn) announces T .

Next, assume that Tn decreases such that Tn pointwisely is constant from some point onwards

and put T = infn Tn, we want to show that T is predictable. For each n, let (T kn ) be an

announcing sequence for Tn. Define a metric d on [0,∞] by d(x, y) = |e−x − e−y|, with the

convention that e−x = 0 when x is infinite. We then have limn d(Tn, T ) = 0 pointwisely, and

for each n, limk d(T kn , Tn) = 0 pointwisely. In particular, 1(d(Tkn ,Tn)>ε) converges pointwisely

to zero. Applying the dominated convergence theorem, we then get for all n and ε > 0 that

lim
k
P (d(T kn , Tn) > ε) = lim

k
E1(d(Tkn ,Tn)>ε) = E lim

k
1(d(Tkn ,Tn)>ε) = 0.

Now choose pn such that P (d(T pnn , Tn) > 1
n ) ≤ 2−n, and define Sn = infk≥n T

pk
k . We claim

that Sn almost surely announces T .

Since Sn is the infimum of a sequence of stopping times, it is clear that Sn is a stopping

time as well. As the set over which the infimum is taken decreases with n, Sn increases

with n, in particular the limit always exists. To show that Sn in fact increases to T almost

surely, first note that by construction,
∑∞
n=1 P (d(T pnn , Tn) > 1

n ) is finite, and therefore

P (∩∞n=1 ∪∞k=n (d(T pkk , Tk) > 1
k )) = 0 by the Borel-Cantelli lemma. In particular, it holds for

any ε > 0 that

P (∩∞n=1 ∪∞k=n (d(T pkk , Tk) > ε)) ≤ P (∩∞n=1 ∪∞k=n (d(T pkk , Tk) > 1
k )) = 0.

As Tn is equal to T from some point onwards pointwise, we then obtain for any ε > 0 that

P (d(lim
n
Sn, T ) > ε) = P (lim

n
d(Sn, T ) > ε) ≤ P (∩∞n=1 ∪∞k=n (d(Sk, T ) > ε))

≤ P (∩∞n=1 ∪∞k=n (d(T pkk , Tk) > ε)) = 0.
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As ε was arbitrary, we conclude P (d(limSn, T ) > 0) = 0 and thus T is the almost sure limit

of Sn. It remains that show that Sn < T whenever T > 0. To this end, assume that T (ω) > 0

and let n ≥ 1, we want to show Sn(ω) < T (ω). Let N(ω) be the first natural such that for any

k ≥ N(ω), Tk(ω) = T (ω). As the infimum is smaller than each of the elements the infimum

is taken over, we have Sn(ω) = infk≥n T
pk
k (ω) ≤ T

pn∨N(ω)

n∨N(ω) (ω). As Tn∨N(ω)(ω) ≥ T (ω) > 0,

this implies Sn(ω) ≤ T pn∨N(ω)

n∨N(ω) (ω) < Tn∨N(ω)(ω) = T (ω), as desired. Lemma 2.1.7 now yields

that T is predictable.

Lemma 2.1.10. Let S and T be stopping times. If S is predictable, S(S≤T ) is a predictable

stopping time. If S and T are both predictable, S(S<T ) is a predictable stopping time.

Proof. First assume merely that S is a predictable stopping time, we wish to show that

S(S≤T ) is a predictable stopping time. As (S ≤ T ) ∈ FS∧T ⊆ FS by Lemma 1.1.11, Lemma

1.1.9, shows that S(S≤T ) is a stopping time. We need to prove that it is predictable. To

this end, let (Sn) be an announcing sequence for S and define Un = n ∧ (Sn)(Sn≤T ). We

claim that (Un) is an announcing sequence for S(S≤T ). To show this, first note that as Sn

is increasing, the sequence of sets (Sn ≤ T ) is decreasing, so (Sn)(Sn≤T ) is increasing and

therefore, Un is increasing. Furthermore,

sup
n
Un = sup

n
n ∧ (Sn)(Sn≤T ) = sup

n
(Sn)(Sn≤T ) = sup

n
Sn1(Sn≤T ) +∞1(Sn≤T )c

= (sup
n
Sn)1∩∞n=1(Sn≤T ) +∞1∪∞n=1(Sn≤T )c = S1(S≤T ) +∞1(S≤T )c = S(S≤T ),

so Un increases to S(S≤T ). We need to prove that if S(S≤T ) > 0, then Un < S(S≤T ). To this

end, note that on (S ≤ T ), if S > 0, we have Sn < S and so Un ≤ (Sn)(S≤T ) < S(S≤T ). On

(S ≤ T )c, it holds that Un is finite while S(S≤T ) is infinite, so Un < S(S≤T ) as well. This

shows that S(S≤T ) is predictable when S is predictable.

Now assume that S and T are both predictable, we wish to show that S(S<T ) is a predictable

stopping time. Again by Lemma 1.1.11 and Lemma 1.1.9, we know that S(S<T ) is a stopping

time, so we merely need to show that it is predictable. To this end, let (Tn) be an announcing

sequence for T and define Un = S(T>0,S≤Tn). We claim that (Un) is a sequence of predictable

stopping times decreasing to S(S<T ) which pointwisely is constant from a point onwards, if

we can prove this, Lemma 2.1.9 will show that S(S<T ) is predictable.

We first show that Un is predictable. To this end, define Vn = S(S≤Tn) and note that

Un = (Vn)(T>0). As Vn is predictable from what we already have shown, Lemma 2.1.5 yields

that Un is predictable as well. We next show that (Un) decreases to S(S<T ) and pointwisely

is constant from a point onwards. To see this, first note that as Tn is increasing, the sequence
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of sets (T > 0, S ≤ Tn) is increasing as well. Therefore, (Un) is decreasing, and

inf
n
Un = inf

n
S1(T>0,S≤Tn) +∞1(S≤Tn)c

= S1∪∞n=1(T>0,S≤Tn) +∞1∩∞n=1(T>0,S≤Tn)c = S∪∞n=1(T>0,S≤Tn).

Now, on the set ∪∞n=1(T > 0, S ≤ Tn), it holds that Tn < T and so S < T . Conversely, if

S < T , we have in particular T > 0 and there is n such that S ≤ Tn. Thus, we conclude

∪∞n=1(T > 0, S ≤ Tn) = (S < T ), and so infn Un = S(S<T ). Finally, as Un only takes the

values S and ∞ and the sequence of sets (T > 0, S ≤ Tn) is increasing, Un is constant from

a point onwards. Lemma 2.1.9 now shows that S(S<T ) is predictable.

We now begin to work towards the final result of this section, namely the equivalence between

being a predictable stopping time and having [[T ]] predictable. To prove this result, we

introduce the concept of the debut of a set. Let A be a subset of R+ ×Ω. The debut DA of

A is the mapping from Ω to [0,∞] defined by DA(ω) = inf{t ≥ 0 | (t, ω) ∈ A}.

Also, let Ip denote the family of finite unions of sets of the form [[S, T [[, where S and T

are predictable stopping times with S ≤ T . By Lemma A.1.7, Ip is an algebra generating

the predictable σ-algebra. We let (Ip)δ denote the sets which may be obtained as countable

intersections of elements of Ip. By Lemma A.1.8, it holds for any bounded nonnegative

measure µ on the predictable σ-algebra that all elements of the predictable σ-algebra can be

approximated in µ-measure from the inside by elements of (Ip)δ.

Lemma 2.1.11. Consider some A ∈ (Ip)δ. Then the debut DA is a predictable stopping

time, and for ω ∈ (DA <∞), it holds that (DA(ω), ω) ∈ A.

Proof. Let A ∈ Ip be given. Assume that A = ∩∞n=1An, where (An) is a family of sets in Ip.
Specifically, assume that An = ∪mnk=1[[Snk, Tnk[[, where Snk and Tnk are predictable stopping

times with Snk ≤ Tnk.

We first argue that for ω ∈ (DA < ∞), it holds that (DA(ω), ω) ∈ A. To this end, assume

that ω ∈ (DA < ∞). Define A(ω) = {t ≥ 0 | (t, ω) ∈ A}. There is a sequence (αn(ω)) such

that αn(ω) ∈ A(ω) and αn(ω) converges downwards to DA(ω). As αn(ω) ∈ A(ω), we have

Snk(ω) ≤ αn(ω) < Tnk(ω) for all n ≥ 1 and k ≤ mn. Therefore, Snk(ω) ≤ DA(ω) < Tnk(ω)

for all n ≥ 1 and all k ≤ mn as well, proving that DA(ω) ∈ A(ω) and thus (DA(ω), ω) ∈ A,

as desired.

Next, we prove that DA is a predictable stopping time. To this end, define H by putting

H = {S ∈ Tp|S ≤ DA almost surely}. We always have that H contains the constant zero,



48 Predictability and stopping times

and so H is a nonempty family of variables. Therefore, by Theorem A.1.18, there exists an

essential upper envelope T of H, meaning a random variable T such that S ≤ T for all S ∈ H
and if U is another random variable with this property, then T ≤ U almost surely. Also by

Theorem A.1.18, there is a sequence of variables (Sn) in H such that T = supn Sn almost

surely. By Lemma 2.1.9 and Lemma 2.1.8, T is a predictable stopping time. As the usual

conditions hold, we may modify T on a set of measure zero to ensure that T is a predictable

stopping time, that T is an essential upper envelope of H and that T (ω) ≤ DA(ω) for all

ω. We claim that T and DA are equal almost surely, if we can prove this, Lemma 2.1.8 will

allow us to conclude the proof.

Note that by construction, T ≤ DA. Thus, it will suffice to prove DA ≤ T almost surely.

To show this, we first show that A is equal to a set whose debut is more easily seen to be

less than T . Defining Bn = ∪mnk=1[[Snk ∨ T, Tnk ∨ T [[, we may apply Lemma 2.1.5 to see that

Bn ∈ Ip. Furthermore, by considering the cases Tnk(ω) ≤ T (ω), Snk(ω) ≤ T (ω) < Tnk(ω)

and T (ω) < Snk(ω) separately, we also obtain Bn = ∪mnk=1[[Snk, Tnk[[∩[[T,∞[[= An ∩ [[T,∞[[,

proving that ∩∞n=1Bn = (∩∞n=1An) ∩ [[T,∞[[= A ∩ [[T,∞[[. Now, as T (ω) ≤ DA(ω) for all ω,

we obtain A ⊆ [[T,∞[[, and so A ⊆ Bn, proving ∩∞n=1Bn = A. Furthermore, we find that the

debut DBn is given by DBn = min{(Snk ∨ T )(Snk∨T<Tnk∨T )|k ≤ mn}, which is a predictable

stopping time by Lemma 2.1.5 and Lemma 2.1.10.

As A ⊆ Bn, it holds that DBn ≤ DA. As we also know that DBn is a predictable stopping

time, we conclude that DBn ∈ H, and therefore DBn ≤ T almost surely. On the other hand,

as Snk ∨ T ≥ T for all k ≤ mn, we also find that DBn ≥ T . Therefore, DBn is almost surely

equal to T . Now fix ω ∈ Ω such that T (ω) is finite and DBn(ω) = T (ω) for all n, this is almost

surely the case on (T < ∞). As (DBn(ω), ω) ∈ Bn for all n, we find that (T (ω), ω) ∈ Bn
for all n, and so (T (ω), ω) ∈ A. In particular, DA ≤ T . Thus, we conclude that DA ≤ T

almost surely. As we have by construction that T ≤ DA almost surely as well, we conclude

that T = DA almost surely. Therefore, Lemma 2.1.8 shows that DA is a predictable stopping

time, as desired.

Theorem 2.1.12. Let T be a stopping time. The following are equivalent:

(1). T is predictable.

(2). [[T ]] is a predictable set.

(3). 1[[T,∞[[ is a predictable process.
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Proof. First note that as 1[[T,∞[[ = 1[[T ]]+1]]T,∞[[, where the process 1]]T,∞[[ is predictable for all

stopping times because it is left-continuous and adapted, the equivalence between (2) and (3)

follows immediately. And if T is predictable, Lemma 2.1.6 shows that [[T,∞[[ is predictable,

so 1[[T,∞[[ is a predictable process. In order to complete the proof of the theorem, it therefore

suffices to show that if [[T ]] is a predictable set, then T is predictable.

To this end, assume that [[T ]] is predictable. Let A ∈ Σp. Noting that T is F-B+ measur-

able, we find that ω 7→ (T (ω), ω) is F-B+ ⊗ F measurable. As (t, ω) 7→ 1A(t, ω) is Σp-B+

measurable, it is in particular B+ ⊗ F-B+ measurable. Therefore, the composite mapping

ω 7→ 1A(T (ω), ω) is F-B+ measurable. From these observations, we conclude that by putting

µ(A) =
∫

1A(T (ω), ω)1(T<∞)(ω) dP (ω) for any A ∈ Σp, we obtain a well-defined mapping

from Σp to [0,∞]. It is immediate that µ is a nonnegative measure concentrated on [[T ]] and

bounded by P (T <∞).

We now find that by Lemma A.1.8, there exists a sequence (An) in (Ip)δ with An ⊆ [[T ]] such

that µ([[T ]])− 1
n ≤ µ(An) ≤ µ([[T ]]). Let Sn be the debut of An, we know from Lemma 2.1.11

that Sn is a predictable stopping time. Furthermore, we know that whenever Sn(ω) is finite,

(Sn(ω), ω) ∈ An. Now define Tn = min{S1, . . . , Sn} and let U = infn Tn. We claim that U is

a predictable stopping time which is almost surely equal to T .

We first use Lemma 2.1.9 to show that U is a predictable stopping time. To this end, first

note that Tn is decreasing. Also, note that if Sk is finite, we have (Sk(ω), ω) ∈ Ak ⊆ [[T ]], so

Sk(ω) = T (ω). Therefore, Sk(ω) is equal to either T (ω) or ∞. As a consequence, Tn is also

equal to either T (ω) or ∞. As Tn is decreasing, it follows that Tn is constant from a point

onwards. As Sn is a predictable stopping time, so is Tn by Lemma 2.1.5, and Lemma 2.1.9

then shows that U is a predictable stopping time.

It remains to show that T and U are almost surely equal. To this end, note that

P (T 6= U) = P (T 6= U,U =∞) + P (T 6= U,U <∞)

= P (T 6= U, Sn =∞ for all n) + P (T 6= U, Sn <∞ for some n)

= P (T <∞, Sn =∞ for all n) + P (T 6= U, Sn <∞ for some n).

We claim that each of the two terms above are zero. We first consider the second term.

Recall that Tn(ω) is constant from a point onwards and is equal to either T (ω) or ∞. If

Sn(ω) < ∞ for some n, then Tn(ω) is finite and thus equal to T (ω), yielding U(ω) = T (ω).

This proves that P (T 6= U, Sn <∞ for some n) = 0.

It remains to show P (T <∞, Sn =∞ for all n) = 0. To this end, fix some k ≥ 1.
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Note that when Sk(ω) =∞, it holds that {t ≥ 0 | (t, ω) ∈ Ak} is empty. Now, if T (ω) <∞
and (T (ω), ω) ∈ Ak, {t ≥ 0 | (t, ω) ∈ Ak} would not be empty. Thus, we conclude that

either T (ω) = 0 or T (ω) < ∞ and (T (ω), ω) /∈ Ak. Thus, as µ is concentrated on [[T ]] and

Ak ⊆ [[T ]], we obtain

P (T <∞, Sk =∞) =

∫
1(T (ω)<∞,Sk=∞) dP (ω) ≤

∫
1((T (ω),ω)∈Ack)1(T (ω)<∞) dP (ω)

= µ(Ack) = µ([[T ]] ∩Ack) = µ([[T ]])− µ(Ak) ≤ 1
k .

As it holds that P (T < ∞, Sn = ∞ for all n) ≤ P (T < ∞, Sk = ∞) for all k ≥ 1, this

implies P (T < ∞, Sn = ∞ for all n) = 0. We conclude that T and U are almost surely

equal. Applying Lemma 2.1.8, we then find that T is predictable.

An immediate useful application of Theorem 2.1.12 is the following.

Lemma 2.1.13. Let T be a stopping time. Assume that there is a predictable set A such

that T is the debut of A, and assume that whenever T (ω) is finite, then (T (ω), ω) ∈ A. Then

T is predictable.

Proof. Note that when T (ω) <∞, it holds that (t, ω) /∈ A for 0 ≤ t < T (ω). Combining this

with our assumption that (T (ω), ω) ∈ A whenever T (ω) <∞, we obtain

[[T ]] = {(t, ω) ∈ R+ × Ω | t = T (ω) <∞}

= {(t, ω) ∈ R+ × Ω | (t, ω) ∈ A, t ≤ T (ω) <∞}

= A ∩ [[0, T ]].

Since [[0, T ]] =]]T,∞[[c, the set [[0, T ]] is predictable by is predictable by Lemma 2.1.3. And

by our assumptions, A is predictable as well. We conclude that [[T ]] is a predictable set, and

so Theorem 2.1.12 shows that T is predictable.

2.2 Stochastic processes and predictability

In this section, we investigate the connection between stochastic processes, the predictable

σ-algebra and predictable stopping times. These results will pave the way for the results in

Section 2.3, where we characterize predictable càdlàg processes in terms of their behaviour

at particular stopping times. We begin by introducing a new σ-algebra related to a given

stopping time.
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Definition 2.2.1. Let T be a stopping time. We define the strictly pre-T σ-algebra FT− by

putting FT− = σ(F0 ∪ {F ∩ (T > t)|t ≥ 0, F ∈ Ft}).

We think of FT− as the σ-algebra of events strictly prior to T .

Lemma 2.2.2. Let S and T be stopping times.

(1). T is FT−-measurable.

(2). FT− ⊆ FT .

(3). If S ≤ T , then FS− ⊆ FT−.

(4). If S ≤ T and S < T whenever T > 0, then FS ⊆ FT−.

(5). If T is predictable with announcing sequence (Tn), then FT− = σ(∪∞n=1FTn).

Proof. Proof of (1). Since (T > t) ∈ FT− for t ≥ 0 by definition, it follows immediately

that T is measurable with respect to FT−.

Proof of (2). Letting F ∈ F0, we have F ∩ (T ≤ t) ∈ Ft as (T ≤ t) ∈ Ft, so F0 ⊆ FT .

Next, let s ≥ 0 and F ∈ Fs, we then obtain F ∩ (T > s) ∩ (T ≤ t) = ∅ ∈ Ft when t ≤ s

and F ∩ (T > s) ∩ (T ≤ t) ∈ Ft when t > s. Thus, F ∩ (T > s) ∈ FT and we have shown

FT− ⊆ FT .

Proof of (3). Assume that we have S ≤ T , let t ≥ 0 and let F ∈ Ft. We then obtain

F ∩ (S > t) = F ∩ (S > t) ∩ (T > t), which is in FT− since F ∩ (S > t) ∈ Ft. This shows

FS− ⊆ FT−.

Proof of (4). Assume S ≤ T and S < T when T > 0. Let A ∈ FS , so that A∩ (S ≤ t) ∈ Ft
for all t ≥ 0. We find

A = (A ∩ (T = 0)) ∪ (A ∩ (T > 0))

= (A ∩ (S = 0) ∩ (T = 0)) ∪ (A ∩ (S < T ))

= (A ∩ (S = 0) ∩ (T = 0)) ∪ ∪q∈Q+A ∩ (S < q) ∩ (q < T ).

Here, A∩(S = 0)∩(T = 0) ∈ F0 ⊆ FT−. Since A∩(S < q) ∈ Fq, A∩(S < q)∩(q < T ) ∈ FT−.

We conclude A ∈ FT−.
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Proof of (5). Let T be predictable with announcing sequence (Tn). From the previous

step, we know FTn ⊆ FT−, so clearly σ(∪∞n=1FTn) ⊆ FT−. On the other hand, letting t ≥ 0

and F ∈ Ft, we have F ∩ (T > t) = ∪∞n=1F ∩ (Tn > t) ∈ σ(∪∞n=1FTn−) ⊆ σ(∪∞n=1FTn), so

FT− ⊆ σ(∪∞n=1FTn), as was to be proved.

Lemma 2.2.3. If T is a predictable stopping time and F ∈ FT−, then TF is a predictable

stopping time.

Proof. Define H = {F ∈ FT−|TF is predictable }. We will show that H is a σ-algebra

containing a generator for FT−. In order to obtain that H is a σ-algebra, first note that

clearly, Ω ∈ H. Assume F ∈ H, then

[[TF c ]] = [[T ]] ∩ (R+ × F c) = [[T ]] ∩ (R+ × F )c

= [[T ]] ∩ ([[T ]] ∩ R+ × F )c = [[T ]] ∩ [[TF ]]c.

As both T and TF are predictable by assumption, Theorem 2.1.12 shows that [[T ]] and [[TF ]]c

are predictable. Therefore, [[TF c ]] is predictable and thus TF c is a predictable stopping time,

again by Theorem 2.1.12. Next, let (Fn) be a sequence in H and define F = ∪∞n=1Fn. We

then have [[TF ]] = [[T ]] ∩ R+ × F = [[T ]] ∩ ∪∞n=1R+ × Fn = ∪∞n=1[[TFn ]], and by the same

arguments as before, this shows that [[TF ]] is a predictable stopping time. We conclude

that H is a σ-algebra. Next, we show that H contains a generator for FT−. By definition,

FT− is generated by F0 and the sets F ∩ (T > s) where s ≥ 0 and F ∈ Fs. If F ∈ F0,

[[TF ]] = [[T ]]∩R+×F = [[T ]]∩ [[0F ,∞[[, which is predictable since 0F is a predictable stopping

time by Lemma 2.1.5, so F0 ⊆ H. Let s ≥ 0 and F ∈ Fs, then

[[TF∩(T>s)]] = {(t, ω) ∈ R+ × Ω|t = T (ω), ω ∈ F ∩ (T > s)}

= {(t, ω) ∈ R+ × Ω|t = T (ω), t > s, ω ∈ F} = [[T ]]∩]]sF ,∞[[.

Since both [[T ]] and ]]sF ,∞[[ are predictable, [[TF∩(T>s)]] is predictable and so TF∩(T>s) is

predictable. Thus, F ∩ (T > s) ∈ H. We may now conclude FT− ⊆ H, proving the

lemma.

The following useful lemma corresponds to a version of Lemma 1.1.11, using FT− instead of

FT .

Lemma 2.2.4. Let S and T be stopping times.

(1). If Z is FS measurable, Z1(S<T ) is FT− measurable.
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(2). If Z is FS− measurable and S is predictable, Z1(S≤T ) is F(S∧T )− measurable.

(3). If Z is FS− measurable and S and T are predictable, Z1(S<T ) is F(S∧T )− measurable.

In particular, if S and T are stopping times, (S < T ) is in FT−. If S is predictable,

(S ≤ T ) ∈ F(S∧T )−, and (S < T ), (S ≤ T ) and (S = T ) are in FT−. If S and T both are

predictable, (S < T ), (S ≤ T ) and (S = T ) are in F(S∧T )−.

Proof. Proof of (1). In this case, we merely assume that S and T are stopping times.

Let Z be FS measurable. Let B be a Borel set not containing zero. We then obtain that

(Z1(S<T ) ∈ B) = (Z ∈ B) ∩ (S < T ) = ∪q∈Q+
(Z ∈ B) ∩ (S ≤ q) ∩ (q < T ), which is in FT−,

since (Z ∈ B) ∈ FS such that (Z ∈ B) ∩ (S ≤ q) ∈ Fq. This shows that Z1(S<T ) is FT−
measurable.

Proof of (2). Now assume that S and T are stopping times, where S is predictable. Also

assume that Z is FS− measurable. We want to show that Z1(S≤T ) is F(S∧T )− measurable.

As Z1(S≤T ) = Z1(S≤S∧T ), it suffices to show that Z1(S≤T ) is FT− measurable. To this end,

as in the proof of the first claim, it suffices to show that F ∩ (S ≤ T ) ∈ FT− for F ∈ FS−.

To prove this, define H = {F ∈ FS− | F ∩ (S ≤ T ) ∈ FT−}. It will suffice to argue that

H is a Dynkin class containing a generator for FS− which is stable under intersections. We

begin by proving that H contains such a generator. As S is predictable, it holds by Lemma

2.2.2 that ∪∞n=1FSn is a generator for FS−, where (Sn) denotes an announcing sequence for

S. We will prove that ∪∞n=1FSn is in H.

To this end, fix m ≥ 1 and let F ∈ FSm . We will prove that F ∩ (S ≤ T ) ∈ FT−. Note that

F ∩ (S ≤ T ) = (F ∩ (S ≤ T ) ∩ (S > 0)) ∪ (F ∩ (S = 0)). Here, F ∩ (S = 0) ∈ F0 ⊆ FT−, so

it suffices to show F ∩ (S ≤ T )∩ (S > 0) ∈ FT−. As Sn is strictly less than S on (S > 0), we

find F ∩ (S ≤ T ) ∩ (S > 0) = ∩∞k=mF ∩ (S > 0) ∩ (Sk < T ). As (Sn) is increasing, F ∈ FSk
whenever k ≥ m. As (S > 0) ∈ F0, F ∩ (S > 0) ∈ FSk as well, and so, by what was already

proven, F ∩(S > 0)∩(Sk < T ) ∈ FT−. From this, we conclude F ∩(S ≤ T )∩(S > 0) ∈ FT−.

From this, we obtain FSm ⊆ H. As a consequence, ∪∞n=1FSn ⊆ H.

It remains to show that H is a Dynkin class. As ∪∞n=1FSn ⊆ H, we find Ω ∈ H. It is

immediate that H is stable under countable unions. Next, assume that F,G ∈ H with

F ⊆ G, we want to argue that G \ F ∈ H. We have

(G \ F ) ∩ (S ≤ T ) = G ∩ (S ≤ T ) ∩ (F ∩ (S ≤ T ))c.
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Here, G ∩ (S ≤ T ) and F ∩ (S ≤ T ) are in FT− by asumption, so (G \ F ) ∩ (S ≤ T ) is in

FT− as well, yielding G \ F ∈ H. We conclude that H is a Dynkin class, so Lemma A.1.1

now allows us to conclude that F ∩ (S ≤ T ) ∈ FT− for all F ∈ FS−, as desired.

Proof of (3). Finally, we consider the case where both S and T are predictable. We are

to show that Z1(S<T ) is F(S∧T )− measurable. As in the previous cases, it suffices to show

that for F ∈ FS−, it holds that F ∩ (S < T ) is in F(S∧T )−. To this end, first note that

F ∩ (S < T ) = F ∩ (S ≤ T ) ∩ (S < T ). From our previous results, we find that as S is

predictable, F ∩(S ≤ T ) ∈ F(S∧T )−, and as T is predictable, (S < T ) = (S ≥ T )c ∈ F(S∧T )−.

The result follows.

Proof of remaining claims. From (1), it follows that (S < T ) ∈ FT− when S and T are

stopping times. Now assume in additaion that S is predictable. From (2) it follows that

(S ≤ T ) ∈ F(S∧T )−. And from Lemma 2.2.2, it follows that (S ≤ T ) ∈ FT−. Therefore,

(S = T ) ∈ FT− as well. Finally, if S and T both are predictable, it follows from (2) and (3)

that (S < T ) and (S ≤ T ) are in F(S∧T )−, and so (S = T ) is in F(S∧T )− as well.

Using the previous results, we may now obtain some fundamental results on the interplay

between predictable processes and the strictly pre-T σ-algebra FT−.

Lemma 2.2.5. If T is a stopping time and Z is FT measurable, then Z1]]T,∞[[ is predictable.

If T is a predictable stopping time and Z is FT− measurable, then Z1[[T,∞[[ is predictable.

Proof. Assume first that T is a stopping time. For any F ∈ FT , TF is a stopping time as well,

so since 1F 1]]T,∞]] = 1]]TF ,∞[[, we find that 1F 1]]T,∞[[ is predictable as ]]TF ,∞[[ is predictable

by Theorem 2.1.3. By stability of measurability under elementary operations and pointwise

limits, it follows that Z1]]T,∞[[ is predictable whenever Z is FT measurable.

Now assume that T is a predictable stopping time. For any F ∈ FT−, we obtain by Lemma

2.2.3 that TF is a predictable stopping time. As 1F 1[[T,∞[[ = 1[[TF ,∞[[ and the latter is

predictable by Theorem 2.1.12, we conclude that for any F ∈ FT−, 1F 1[[T,∞[[ is predictable.

Again by stability of measurability under elementary operations and pointwise limits, we

obtain that Z1]]T,∞[[ is predictable whenever Z is FT− measurable.

Lemma 2.2.6. Let T be a stopping time. If X is a predictable process, then XT 1(T<∞) is

FT−-measurable.

Proof. First consider the case where X = 1[[S,∞[[ for some predictable stopping time S. In
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this case, XT 1(T<∞) = 1(S≤T<∞). By Lemma 2.2.4, (S ≤ T ) is FT− measurable, and by

Lemma 2.2.2, (T < ∞) is FT− measurable. Therefore, we conclude that XT 1(T<∞) is FT−
measurable in this case.

Now let H be the class of B ∈ Σp such that with X = 1B , XT 1(T<∞) is FT− measurable

for all stopping times T . We have just shown that H contains [[S,∞[[ for all stopping times

S, and by Lemma 2.1.6, this family is a generating class for Σp, stable under intersections.

Therefore, if we can show that H is a Dynkin class, it follows that H = Σp. It is immediate

that R+ × Ω ∈ H. That H is stable under set subtraction and increasing unions then follow

from the stability properties of measurability under elementary operations. We conclude that

H is a Dynkin class and so by Lemma A.1.1, it holds that whenever X = 1B and B ∈ Σp,

XT 1(T<∞) is FT− measurable. By approximation with simple Σp measurable functions, we

now obtain the result of the lemma.

Lemma 2.2.7. Let X be a càdlàg adapted process, and let T be predictable. Then XT−1(T<∞)

is FT− measurable.

Proof. Defining Y = X−, it holds that XT−1(T<∞) = YT 1(T<∞). As Y is càglàd and

adapted, it is predictable. Therefore, the result follows from Lemma 2.2.6.

Lemma 2.2.8. Let X be a predictable process, and let T be a stopping time. Then the

stopped process XT is predictable as well.

Proof. Note that XT = X1[[0,T ]] +XT 1(T<∞)1]]T,∞[[. The first term is predictable, since X is

predictable and [[0, T ]] =]]T,∞[[c is predictable according to Lemma 2.1.3. The second term

is predictable since XT 1(T<∞) is FT−-measurable by Lemma 2.2.6, and so XT 1(T<∞)1]]T,∞[[

is predictable by Lemma 2.2.5.

2.3 Accessible and totally inaccessible stopping times

Using the results of Section 2.2, we now introduce accessible and totally inaccessible stopping

times and use these to characterize càdlàg predictable processes in terms of their behaviour

at jump times.

Definition 2.3.1. We say that a stopping time T is totally inaccessible if it holds for any

predictable stopping time S that P (T = S < ∞) = 0. We say that a stopping time T is
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accessible if there exists a sequence of predictable stopping times (Tn) with the property that

[[T ]] ⊆ ∪∞n=1[[Tn]].

The following result shows that any stopping time can be decomposed into an accessible

and a totally inaccessible part. Recall that for two sets F,G ⊆ Ω, we define the symmetric

difference F∆G by putting F∆G = (F \G) ∪ (G \ F ).

Theorem 2.3.2. Let T be any stopping time. There exists a set F ∈ FT− such that we have

T = TF ∧ TF c , where TF is accessible and TF c is totally inaccessible. The set F is almost

surely unique in the sense that if G is another such set, then P ((T <∞) ∩ F∆G) = 0.

Proof. We define H = {∪∞n=1(T = Sn < ∞)|(Sn) is a sequence in Tp}. By Lemma 2.2.4, we

know that if T is a stopping time and S is a predictable stopping time, then (T = S) ∈ FT−.

As we have (T <∞) ∈ FT− by Lemma 2.2.2, we conclude that ∪∞n=1(T = Sn <∞) ∈ FT− for

any sequence for any sequence (Sn) ⊆ Tp, and so H ⊆ FT−. Define α = sup{P (F )|F ∈ H}.
It then holds that for each n, there is Fn ∈ H such that P (Fn) ≥ α − 1

n . Put F = ∪∞n=1Fn,

then F ∈ H and F ∈ FT−. As F ∈ H, we have in particular that F = ∪∞n=1(T = Sn < ∞)

for some sequence (Sn) in Tp. Also, as P (F ) ≥ P (Fn) ≥ α − 1
n for all n, we conclude that

P (F ) = sup{P (G) | G ∈ H}. We claim that TF is accessible and TF c is totally inaccessible.

To prove that TF is accessible, we simply note that

[[TF ]] = {(t, ω) ∈ R+ × Ω|t = T (ω), ω ∈ F}

= {(t, ω) ∈ R+ × Ω|t = T (ω), ∃ n ∈ N : T (ω) = Sn(ω) <∞} ⊆ ∪∞n=1[[Sn]],

so TF is accessible. To prove that TF c is totally inaccessible, let S be some predictable

stopping time. Note that F ∪ (T = S <∞) ∈ H and we have

P (F ∪ (T = S <∞)) = P (F ) + P (F c ∩ (T = S <∞))

= P (F ) + P (TF c = S <∞).

As we have P (F ) = sup{P (G) | G ∈ H} by construction and F ∪ (T = S < ∞) ∈ H,

we obtain P (F ∪ (T = S < ∞)) ≤ P (F ). And as F ⊆ F ∪ (T = S < ∞), also have

P (F ) ≤ P (F ∪ (T = S < ∞)). Thus, P (F ∩ (T = S < ∞)) = P (F ), and the above then

yields P (TF c = S < ∞) = 0, proving that TF c is totally inaccessible. This shows existence

of the decomposition.

It remains to prove uniqueness. Assume that we have two decompositions into accessible

and totally inaccessible parts, T = TF ∧ TF c and T = TG ∧ TGc . We wish to show that
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P ((T <∞)∩(F∆G)) = 0. By symmetry it will suffice to prove, say, P ((T <∞)∩F∩Gc) = 0.

Assume that P ((T <∞)∩F ∩Gc) > 0. With [[TF ]] ⊆ ∪∞n=1[[Sn]] where Sn is predictable, we

then obtain

0 < P ((T <∞) ∩ F ∩Gc)

≤ P (( ∃ n : T = Sn <∞) ∩ F ∩Gc)

≤ P ( ∃ n : TGc = Sn <∞),

so there is some n such that P (TGc = Sn < ∞) > 0, a contradiction with our assumption.

We conclude P ((T <∞) ∩ F ∩Gc) = 0.

Next, we work towards a result allowing us to decompose a sequence of stopping times into

disjoint parts. The following extension of Lemma 2.1.8 will be useful in this regard.

Lemma 2.3.3. Let S and T be two nonnegative variables and assume that S and T are equal

almost surely. If T is a stopping time, so is S. If T is predictable, so is S. If T is accessible,

so is S. If T is totally inaccessible, so is S.

Proof. By Lemma 2.1.8, S is a stopping time if T is a stopping time, and S is predictable

if T is predictable. Assume that T is accessible, and let (Tn) be a sequence of predictable

stopping times such that [[T ]] ⊆ ∪∞n=1[[Tn]]. Define U = S(T 6=S). Since T and S are equal

almost surely, S(T 6=S) is almost surely equal to infinity, therefore predictable by Lemma 2.1.8,

and [[S]] ⊆ [[T ]] ∪ [[U ]] ⊆ [[U ]] ∪ ∪∞n=1[[Tn]], showing that S is accessible. Assume finally that T

is totally inaccessible, and let R be any predictable stopping time. As T and S are almost

surely equal, P (S = R <∞) = P (T = R <∞) = 0, so S is totally inaccessible.

Lemma 2.3.4. Let (Tn) be a sequence of stopping times. There exists a sequence of stopping

times (Sn) with disjoint graphs such that ∪∞n=1[[Tn]] = ∪∞n=1[[Sn]]. If the (Tn) are predictable,

the (Sn) can be taken to be predictable as well.

Proof. Assuming that (Tn) is any sequence of stopping times, we define S1 = T1 and recur-

sively Fn = ∩n−1
k=1(Tk 6= Tn) and Sn = (Tn)Fn . Then Fn ∈ FTn by Lemma 1.1.11, so Sn is

a stopping time. If k < n with Sk(ω) < ∞ and Sn(ω) < ∞, we have Sk(ω) = Tk(ω) and

ω ∈ ∩n−1
i=1 (Tk 6= Tn), so Sk(ω) 6= Sn(ω). Thus, the graphs [[Sk]] and [[Sn]] are disjoint. It

remains to prove ∪∞n=1[[Tn]] = ∪∞n=1[[Sn]]. It is immediate that [[Sn]] ⊆ [[Tn]], so the inclusion

towards the left holds. Assume conversely that (t, ω) ∈ ∪∞n=1[[Tn]]. Then, there exists a

smallest n ≥ 1 with (t, ω) = (Tn(ω), ω). In this case, Tn(ω) 6= Tk(ω) for k < n, so ω ∈ Fn
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and thus Tn(ω) = Sn(ω), yielding (t, ω) ∈ [[Sn]]. This proves the inequality towards the right,

and so ∪∞n=1[[Tn]] = ∪∞n=1[[Sn]] holds.

Turning to the predictable case, assume that each Tn is predictable. By Lemma 2.2.4,

(Tk 6= Tn) ∈ F(Tk∧Tn)− ⊆ FTn−, so Fn ∈ FTn− and by Lemma 2.2.3, Sn is predictable.

Definition 2.3.5. A regular sequence of stopping times is a sequence (Tn) of stopping times

such that the graphs of the stopping times are disjoint and each Tn is either predictable or

totally inaccessible.

Lemma 2.3.6. Let (Tn) be any sequence of stopping times. There exists a regular sequence

of stopping times (Rn) such that ∪∞n=1[[Tn]] ⊆ ∪∞n=1[[Rn]].

Proof. By Lemma 2.3.4, we may assume that the (Tn) have disjoint graphs. By Theorem

2.3.2, there exists Fn ∈ FTn− such that with Sn = (Tn)Fn and Un = (Tn)Fn , Sn is accessible

and Un is totally inaccessible, and Tn = Sn ∧ Un. We then have [[Un]] ⊆ [[Tn]], so the

(Un) have disjoint graphs as well. Next, as Sn is accessible, there exists for each n ≥ 1 a

sequence (Skn)k≥1 of predictable stopping times such that [[Sn]] ⊆ ∪∞k=1[[Skn]]. Lemma 2.3.4

then yields a sequence of predictable stopping times (Vn) with disjoint graphs such that

∪∞n=1 ∪∞k=1 [[Skn]] = ∪∞n=1[[Vn]]. We then have ∪∞n=1[[Tn]] ⊆ (∪∞n=1[[Vn]]) ∪ (∪∞n=1[[Un]]), where

each of the stopping times are either predictable or totally inaccessible, and it holds that

(Vn) has disjoint graphs and (Un) has disjoint graphs.

Next, note that P (Sn = Uk < ∞) = 0 for any n and k, since Sn is predictable and Uk is

totally inaccessible. In particular, the set Fn = ∪∞k=1(Sn = Uk) is a null set. Therefore, by

Lemma 2.1.8, (Sn)F cn is predictable, and we find [[(Sn)F cn ]] = [[Sn]] \ ∪∞k=1[[Uk]]. Therefore, we

obtain

∪∞n=1[[Tn]] ⊆ (∪∞n=1[[Sn]]) ∪ (∪∞n=1[[Un]])

= (∪∞n=1([[Sn]] \ ∪∞k=1[[Uk]])) ∪ (∪∞n=1[[Un]])

=
(
∪∞n=1[[(Sn)F cn ]]

)
∪ (∪∞n=1[[Un]]) .

By construction, all the stopping times are disjoint, and each is either predictable or totally

inaccessible. This proves the result.

Lemma 2.3.6 allows us to prove Theorem 2.3.8, which states that the jumps of càdlàg adapted

processes can be covered by a countable sequence of positive stopping times which are either

predictable or totally inaccessible and which never take the same values, and if the process is
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predictable, all the stopping times can be taken to be predictable. This result will in several

important cases allow us to restrict our analysis of jump time behaviour to jumps occurring

at predictable or totally inaccessible jumps. To prove the theorem, we need the following

lemma.

Lemma 2.3.7. Let X be a process which is càdlàg and predictable. Let U be an open set in

R such that U ∩ [−ε, ε] = ∅ for some ε > 0. Define T = inf{t ≥ 0 | ∆Xt ∈ U}. Then T is a

predictable stopping time.

Proof. From Lemma 1.1.14, we know that T is a stopping time. We need to prove that it is

predictable. With A = {(t, ω) ∈ R+ × Ω | ∆Xt(ω) ∈ U}, it holds that T is the debut of A.

Note that as X by Lemma A.2.3 pathwisely only has finitely many jumps greater than ε on

bounded intervals, our assumption on U ensures that ∆XT ∈ U whenever T is finite. Also,

A is predictable as ∆X is predictable. Lemma 2.1.13 then shows that T is predictable.

Theorem 2.3.8. Let X be a càdlàg adapted process. There is a regular sequence of positive

stopping times (Tn) such that {(t, ω) ∈ R+×Ω | |∆Xt| 6= 0} ⊆ ∪∞n=1[[Tn]]. If X is predictable,

then each Tn can be taken to be predictable.

Proof. By Lemma 1.1.15, defining T k1 = inf{t ≥ 0 | |∆Xt| > 1
k} for k ≥ 1, and recursively

for n ≥ 2, T kn = inf{t > T kn−1 | |∆Xt| > 1
k}, T

k
n is a stopping time for all k ≥ 1 and n ≥ 1,

|∆XTkn
| > 1

k whenever T kn is finite and {(t, ω) ∈ R+ × Ω | |∆Xt| 6= 0} = ∪∞k=1 ∪∞n=1 [[T kn ]].

Then, applying Lemma 2.3.6, we obtain the existence of a regular sequence of stopping times

(Rn) such that {(t, ω) ∈ R+ × Ω | |∆Xt| 6= 0} ⊆ ∪∞n=1[[Rn]]. Putting Tn = (Rn)(Rn>0), we

find by Lemma 2.1.5 that (Tn) is a regular sequence of positive stopping times, and as no

process jumps at time zero, we get {(t, ω) ∈ R+ × Ω | |∆Xt| 6= 0} ⊆ ∪∞n=1[[Tn]], as desired.

Now consider the case where X is predictable. Note that with Y kn =
∑n−1
i=1 ∆XTki

1[[Tki ,∞[[,

we also have T kn = inf{t ≥ 0 | |∆(X −Y kn)t| > 1
k}, where X −Y kn is càdlàg and predictable

by Lemma 2.2.6 and Lemma 2.2.5. Therefore, by Lemma 2.3.7, Tnk is predictable. Applying

Lemma 2.3.4, we obtain a sequence of predictable stopping times (Sn) with disjoint graphs

such that {(t, ω) ∈ R+×Ω | |∆Xt| 6= 0} = ∪∞n=1[[Sn]]. Putting Tn = (Sn)(Sn>0), Lemma 2.1.5

allows us to conclude that (Tn) is a sequence of positive predictable stopping times, and as

in the previous case, {(t, ω) ∈ R+ × Ω | |∆Xt| 6= 0} ⊆ ∪∞n=1[[Tn]] since no process jumps at

time zero.

Note that in the following theorem, we make use of our convention that ∆X∞ = 0 for all
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càdlàg processes, yielding ∆XT = ∆XT 1(T<∞) for all stopping times T . This convention

allows us to formulate our result without the use of unwieldy indicator functions.

Theorem 2.3.9. Let X be an adapted càdlàg process. Then X is predictable if and only if

it holds that for every totally inacessible stopping time T , ∆XT = 0 almost surely, and for

every predictable stopping time T , ∆XT is FT− measurable.

Proof. First assume that X is predictable. By Theorem 2.3.8, there exists a sequence of

predictable times (Tn) such that {(t, ω) ∈ R+ × Ω | |∆Xt| 6= 0} ⊆ ∪∞n=1[[Tn]]. Let T be a

totally inaccessible stopping time. As Tn is predictable, we obtain P (T = Tn < ∞) = 0

for n ≥ 1, and so we find P (∆XT 6= 0) ≤
∑∞
n=1 P (T = Tn < ∞) = 0. Thus, for every

totally inacessible stopping time T , ∆XT = 0 almost surely. Next, consider a predictable

stopping time T . By Lemma 2.2.6, XT 1(T<∞) is FT− measurable, and by Lemma 2.2.7,

XT−1(T<∞) is FT− measurable. Therefore, ∆XT 1(T<∞) and thus ∆XT is FT− measurable.

We conclude that for every predictable stopping time T , ∆XT is FT− measurable. This

proves the implication towards the right of the theorem.

Conversely, assume that X satisfies the two requirements in the statement of the theorem.

By Theorem 2.3.8, there exists sequences (Sn) and (Tn) of stopping times with disjoint

graphs such that {(t, ω) ∈ R+ × Ω | |∆Xt| 6= 0} ⊆ (∪∞n=1[[Sn]]) ∪ (∪∞n=1[[Tn]]), where Sn is

predictable and Tn is totally inaccessible. By assumption, ∆XTn is almost surely zero. Put

Un = (Tn)(∆XTn 6=0), it then holds that ∆XTn1[[Tn]] = ∆XUn1[[Un]], and Un is predictable since

it is almost surely infinite. We obtain

X = X− + ∆X = X− +

∞∑
n=1

∆XSn1[[Sn]] +

∞∑
n=1

∆XTn1[[Tn]]

= X− +

∞∑
n=1

∆XSn1[[Sn]] +

∞∑
n=1

∆XUn1[[Un]].

Here, X− is predictable because it is càglàd and adapted, and the second and third terms

are predictable by Lemma 2.2.5. Consequently, X is predictable.

Theorem 2.3.9 is the main result of this section. Its usefulness is that it will allow us to check

predictability of an adapted càdlàg process merely by analyzing its behaviour at stopping

times. Two simple yet important consequence are given as the following.

Lemma 2.3.10. Let X and Y be adapted càdlàg processes. Assume that X is predictable

and that Y is a modification of X. Then Y is predictable as well.
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Proof. For any stopping time T , it holds that ∆XT = ∆YT almost surely. Therefore, Y

satisfies the criteria of Theorem 2.3.9, and is therefore predictable.

Lemma 2.3.11. Let (Xn) be a sequence of predictable càdlàg processes. Let Y be an adapted

càdlàg process, and assume that for all stopping times T , ∆Xn
T converges almost surely to

∆YT . Then Y is predictable as well.

Proof. Fix any predictable stopping time T . By our assumptions, ∆Xn
T converges almost

surely to ∆YT . As Xn is predictable, Theorem 2.3.9 shows that ∆Xn
T is FT− measurable.

Therefore, ∆YT is FT− measurable as well. Next, fix any totally inaccessible stopping time T .

By Theorem 2.3.9, ∆Xn
T is almost surely zero. Therefore, ∆YT is almost surely zero as well.

We conclude that Y satisfies the criteria of Theorem 2.3.9. Therefore, Y is predictable.

2.4 Exercises

Exercise 2.4.1. Let Σo denote the optional σ-algebra, meaning the σ-algebra on R+ × Ω

generated by the adapted càdlàg processes. Show that Σp ⊆ Σo ⊆ Σπ.

Exercise 2.4.2. Let X be a continuous adapted process with initial value zero, let a ∈ R
with a 6= 0 and let T = inf{t ≥ 0 | Xt = a}. Argue that T is a predictable stopping time, and

find an announcing sequence for T .

Exercise 2.4.3. Let S and T be two predictable stopping times. Show that the equality

F(S∧T )− = FS− ∧ FT− holds.

Exercise 2.4.4. Let T be some variable. Assume that there exists a sequence (Tn) of stopping

times such that Tn < T whenever T > 0 for all n ≥ 1 and such that supn Tn = T . Show that

T is a predictable stopping time.

Exercise 2.4.5. Assume that S is a stopping time. Let T be a stopping time such that

T ≥ S and T > S whenever S is finite. Assume that FT = FS. Show that T is a predictable

stopping time.

Exercise 2.4.6. Show that FT− = σ({XT | X is predictable }) whenever T is a finite pre-

dictable stopping time.

Exercise 2.4.7. Show that FT− = σ({XT− | X is càdlàg adapted }) for any finite stopping

time T .
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Exercise 2.4.8. Let T be a stopping time taking only countably many values. Show that T

is accessible.

Exercise 2.4.9. Let T be an accessible stopping time. Show that T is predictable if and only

if (T = S) ∈ FS− for all predictable stopping times S.

Exercise 2.4.10. Let M be a càdlàg adapted process with initial value zero and assume that

Mt is almost surely convergent. Show that M ∈ Mu if and only if MT is integrable with

EMT = 0 for all accessible stopping times T .

Exercise 2.4.11. Let T be a totally inaccessible stopping time. Show that there exists a

sequence (Tn) of accessible stopping times such that Tn converges to T from above.



Chapter 3

Local martingales

In this chapter, we introduce local martingales, which essentially are processes which are

martingales when stopped at appropriate stopping times. Local martingales function as a

natural generalization of martingales which later will be seen to behave particularly pleasantly

as integrators. During the course of this chapter, the results of the previous two chapters will

be applied together to gain a coherent understanding of the space of local martingales. This

understanding will allow us in Chapter 4 to define the stochastic integral of a predictable

process with respect to a local martingale in a simple and elegant manner.

The chapter is structured as follows. In Section 3.1, we formally introduce local martingales,

and we prove some basic stability properties. Already at this point, we will be able to use

the results on predictability from Chapter 2 to prove nontrivial results.

In Section 3.2, we consider the problem of characterizing the structure of local martingales

with paths of finite variation. This understanding will be important in Section 3.3, where we

show that any local martingale can be decomposed into a locally bounded component and a

component of finite variation. Combining this result with our previous results from Chapter

1, we are able to construct the quadratic variation and quadratic covariation processes, which

are fundamental tools for working with local martingales.

Finally, in Section 3.4, we use the quadratic covariation process to introduce the space of

purely discontinuous local martingales, which is a sort of orthogonal complement to the space

of local martingales with continuous paths. We prove that any local martingales can be
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decomposed uniquely as the sum of a continuous and purely discontinuous local martingale.

This will be useful for our later construction of the stochastic integral with respect to a local

martingale.

3.1 The space of local martingales

In this section, we introduce the basic results on local martingales, a convenient extension

of the concept of martingales. We say that an increasing sequence of stopping times tending

almost surely to infinity is a localising sequence. We then say that a process M is a local

martingale if M is adapted and there is a localising sequence (Tn) such that MTn is a

martingale for all n, and in this case, we say that (Tn) is a localising sequence for M . The

space of càdlàg local martingales with initial value zero is denoted by M`. The space of

continuous elements of M` is denoted by cM`.

Lemma 3.1.1. It holds that Mb ⊆M2 ⊆Mu ⊆M ⊆M`.

Proof. It is immediate that Mb ⊆ M2. By Lemma A.3.4, M2 ⊆ Mu, and by construction

we have Mu ⊆ M. If M ∈ M, MT ∈ M for any stopping time by Lemma 1.2.7, and so

M⊆M`.

Lemma 3.1.2. Let (Sn) and (Tn) be localising sequences. Then (Sn ∧ Tn) is a localising

sequence as well. If M,N ∈ M`, with localising sequences (Sn) and (Tn), then (Sn ∧ Tn) is

a localising sequence for both M and N .

Proof. As Sn∧Tn is a stopping time by Lemma 1.1.9 and Sn∧Tn clearly tends almost surely

to infinity, (Sn ∧ Tn) is a localising sequence. Now assume that M,N ∈ M` with localising

sequences (Tn) and (Sn), respectively. Then MTn∧Sn = (MTn)Sn is a martingale by Lemma

1.2.7, and so (Tn ∧ Sn) is a localising sequence for M . Analogously, (Tn ∧ Sn) is also a

localising sequence for N .

Lemma 3.1.3. M` is a vector space. If T is any stopping time and M ∈M`, then MT ∈M`

as well. If F ∈ F0 and M ∈M`, then 1FM is inM` as well, where 1FM denotes the process

(1FM)t = 1FMt.

Proof. Let M,N ∈ M` and let α, β ∈ R. Using Lemma 3.1.2, let (Tn) be a localising

sequence for both M and N . Then (αM + βN)Tn = αMTn + βNTn is a martingale, so
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αM + βN ∈ M` and M` is a vector space. As regards the stopped process, let M ∈ M`

and let T be any stopping time. Let (Tn) be a localising sequence for M . As MTn ∈M, we

obtain that (MT )Tn = (MTn)T ∈M, proving that (Tn) is also a localising sequence for MT ,

so that MT ∈M`. Finally, let M ∈M` and F ∈ F0. Let (Tn) be a localising sequence such

that MTn ∈ M. For any bounded stopping time T , E1FM
Tn
T = E1F (EMTn

T |F0) = 0 by

Theorem 1.2.6, so by Lemma 1.2.8, 1FM
Tn is a martingale. As (1FM)Tn = 1FM

Tn , 1FM

is in M`.

Lemma 3.1.4. Let M and N be two càdlàg adapted processes with initial value zero. If M

and N are indistinguishable and M ∈M`, then N ∈M` as well.

Proof. Let (Tn) be a localising sequence for M . Then MTn is a martingale. As NTn is

indistinguishable from MTn , we obtain that NTn is a martingale as well. As N is càdlàg and

has initial value zero, we conclude that N ∈M`.

The following lemma shows that each local martingale is not only locally a martingale, but is

locally a uniformly integrable martingale. Also, Lemma 3.1.6 shows that a continuous local

martingale also is locally a continuous bounded martingale, and Lemma 3.1.7 shows that a

process which locally is a local martingale in fact is a local martingale. Lemma 3.1.7 includes

a result for the case where the localisation is of the form MTn1(Tn>0) instead of MTn , this

will be useful in the course of Chapter 4.

Lemma 3.1.5. Let M ∈M`. Then there exists a localising sequence (Tn) such that for each

n, MTn ∈Mu.

Proof. Let Tn be a sequence such that MTn is a martingale for n ≥ 1. Then MTn∧n is in

Mu by Theorem 1.2.4, since it is a martingale convergent almost surely and in L1 to MTn∧n.

This proves the result.

Lemma 3.1.6. Let M ∈ cM`. There exists a localising sequence (Tn) such that MTn is in

cMb for all n. In particular, MTn ∈ cM2 and MTn ∈ cMu.

Proof. Let Tn = inf{t ≥ 0||Mt| > n}. By Lemma 1.1.17, (Tn) is a localising sequence, and

MTn is bounded. And by Lemma 1.2.7, MTn is a continuous martingale. Thus, MTn is

a bounded continuous martingale. Clearly, MTn is then bounded in L2, so we also obtain

MTn ∈ cM2 and MTn ∈ cMu.
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Lemma 3.1.7. Let M be a càdlàg adapted process with initial value zero. If there is a

localising sequence (Tn) such that MTn is in M` for all n ≥ 1, then M ∈ M`. If there is a

localising sequence (Tn) such that MTn1(Tn>0) is in M` for all n ≥ 1, then M ∈M`.

Proof. First consider the case where MTn is in M` for all n ≥ 1. Let (Tnk ) be a localising

sequence such that (MTn)T
n
k is in M. Fix n ≥ 1, then Tnk tends to infinity almost surely as

k tends to infinity. Therefore, it also holds that limk P (|Tnk | ≤ M) = 0 for all M > 0. For

each n ≥ 1, choose kn such that P (|Tnkn | ≤ n) ≤ 1/2n. Then
∑∞
n=1 P (|Tnkn | ≤ n) is finite, so

the Borel-Cantelli lemma yields that ∩∞n=1 ∪∞i=n (|T iki | ≤ i) has probability zero. Therefore,

Tnkn converges almost surely to infinity. Now put Sn = max1≤i≤n{Ti ∧ T iki}. Then Sn is a

localising sequence, and MSn ∈M for each n ≥ 1. Thus, M ∈M`.

Next, assume that MTn1(Tn>0) is in M` for all n ≥ 1. Define Sn = (Tn)(Tn>0) ∧ 0(Tn=0).

As (Tn > 0) ∈ F0, (Sn) is a sequence of stopping times. As (Tn) almost surely increases to

infinity, the set family (Tn > 0)n≥1 is increasing and the set family (Tn = 0)n≥1 is decreasing,

and it almost surely holds that Tn > 0 eventually. Therefore, (Sn) also increases almost surely

to infinity. Thus, (Sn) is a localising sequence. And as M has initial value zero, we obtain

MSn
t = MTn

t 1(Tn>0) +M0
t 1(Tn=0) = MTn

t 1(Tn>0).

Therefore, the results already proven yields that M ∈M`, as desired.

Recall that we in Lemma 1.2.11 proved that a martingale with paths of finite variation which

is also continuous in fact is evanescent. We will now use our understanding of predictability

to prove a considerable extension of this result, namely that any martingale with paths of

finite variation which is also predictable in fact is continuous and therefore evanescent.

Lemma 3.1.8. Let M ∈ Mu and let T be a predictable stopping time. Then ∆MT is

integrable, and E(∆MT |FT−) = 0.

Proof. We first show that ∆MT is integrable. Let Tn be an announcing sequence for T . We

then find MT− = limnMTn , where the convergence is almost sure. As MTn = E(M∞|FTn)

by Theorem 1.2.4, (MTn)n≥1 is uniformly integrable, and therefore we have convergence in

L1 as well. As a consequence, we obtain in particular that MT− is integrable, and as MT is

integrable by the optional sampling theorem, we conclude that ∆MT is integrable. In order

to obtain the second result of the lemma, recall from Lemma 2.2.2 that FT− = σ(∪∞n=1FTn).

As E(MT |FTn) = MTn , we find that MTn converges almost surely and in L1 to E(MT |FT−).
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As we also have convergence to MT−, we conclude E(MT |FT−) = MT− by uniqueness of

limits. As MT− is FT− measurable, this shows E(∆MT |FT−) = 0, as desired.

Theorem 3.1.9. Let M ∈M`. If M is predictable, M is almost surely continuous. If M is

predictable or almost surely continuous with paths of finite variation, M is evanescent.

Proof. We first show that if M ∈ M` is predictable, then it is almost surely continuous.

To do so, first assume that M ∈ Mu and that M is predictable. Let T be any predictable

stopping time. Applying Theorem 2.3.9 and Lemma 3.1.8, ∆MT is integrable and it holds

that ∆MT = E(∆MT |FT−) = 0 almost surely. By Theorem 2.3.8, there exists a sequence of

predicable stopping times (Tn) covering the jumps of M . By what we already have shown,

∆MTn is almost surely zero for each n ≥ 1. Therefore, M is almost surely continuous. Next,

consider the case where M ∈ M`. By Lemma 3.1.5, there is a localising sequence (Tn) such

that MTn ∈ Mu. By Lemma 2.2.8, MTn is predictable as well. Therefore, MTn is almost

surely continuous. Letting n tend to infinity, we conclude that M is almost surely continuous.

This shows that any M ∈M` which is predictable is almost surely continuous.

It remains to prove that if M is predictable or almost surely continuous with paths of finite

variation, M is evanescent. We first show that if M ∈ M` has paths of finite variation and

is continuous, then M is evanescent. Consider such an M . Using Lemma 3.1.6, let (Tn)

be a localising sequence for M such that MTn ∈ cM. Then MTn also has paths of finite

variation, so by Lemma 1.2.11, MTn is evanescent. As Tn tends to infinity, we conclude that

M is evanescent as well. In the case where M only is almost surely continuous, let F be the

null set where M is not continuous. Putting N = 1F cM , N ∈ M` by Lemma 3.1.4, N has

paths of finite variation and N is continuous. Therefore, by what was already shown, N is

evanescent. As M is a modification of N , M is evanescent as well. Finally, assume that M

is predictable with paths of finite variation. From what we already have shown, M is almost

surely continuous, and so M is evanescent. This concludes the proof.

3.2 Finite variation processes and compensators

In Chapter 1, we introduced the following spaces: V is the space of adapted càdlàg processes

with initial value zero and paths of finite variation, A is the subspace of increasing elements of

V, Ai is the subspace of integrable elements of A and Vi is the subspace of integrable elements

of V, meaning elements such that the variation process is integrable. We now introduce two
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further spaces of this type. Let A ∈ V. We say that A is locally integrable if there exists a

localizing sequence (Tn) such that ATn ∈ Vi for each n ≥ 1. We denote the space of locally

integrable elements of V by Vi`. We denote the subspace of increasing elements of Vi` by Ai`.
It then also holds that Ai` is the space of elements of A such that there exists a localizing

sequence (Tn) with the property that ATn ∈ Ai for each n ≥ 1.

In this section, we will show that for any process A ∈ Vi`, there exists a predictable process

Π∗pA ∈ Vi`, unique up to evanescence, such that A−Π∗pA is in M`. We refer to the mapping

Π∗p : Vi` → Vi` defined up to evanescence as the compensating projection, and we refer to

Π∗pA as the compensator of A. The compensator will allow us to give a characterization of

elements of M` with paths of finite variation.

The proof of the existence of the compensator is somewhat technical. We begin by establish-

ing some lemmas. First we prove the existence of the compensator for a particularly simple

type of elements of Vi`, namely processes of the form ξ1[[T,∞[[, where T is a positive stopping

time and ξ is nonnegative, bounded and FT measurable. Afterwards, we apply monotone

convergence arguments and localisation arguments to obtain the general existence result.

Lemma 3.2.1. Let T be a positive stopping time and let ξ be nonnegative, bounded and FT
measurable. Define A = ξ1[[T,∞[[. The process A is then an element of Ai, and there exists a

predictable process Π∗pA in Ai such that A−Π∗pA is a uniformly integrable martingale.

Proof. It is immediate that A ∈ Ai. To prove the existence of the compensator, our strategy

will be to consider discrete-time compensators for finer and finer dyadic partitions of R+.

Let tnk = k2−n for k, n ≥ 0. We define

Ant = Atnk for tnk ≤ t < tnk+1 and

Bnt =

k+1∑
i=1

E(Atni −Atni−1
|Ftni−1

) for tnk < t ≤ tnk+1,

and Bn0 = 0. Note that since T is positive, both An and Bn have initial value zero. Also

note that An is càdlàg adapted and Bn is càglàd adapted. Put Mn = An − Bn. Note that

Mn is adapted, but not necessarily càdlàg or càglàd. Also note that, with the convention

that a sum over an empty index set is zero, it holds that

Antnk = Atnk and Bntnk =

k∑
i=1

E(Atni −Atni−1
|Ftni−1

).

Therefore, (Btnk )k≥0 is the compensator of the discrete-time increasing process (Atnk )k≥0,

so (Mn
tnk

)k≥0 is a discrete-time martingale with initial value zero. Let c > 0 be a bound
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for ξ. By Lemma A.4.7, Bntnk is square-integrable and it holds that E(Bntnk )2 ≤ 2c2. Thus,

E(Mn
tnk

)2 ≤ 4E(Antnk )2 + 4E(Bntnk )2 ≤ 12c2. We conclude that (Mn
tnk

)k≥0 is bounded in L2, and

so by Lemma A.4.4 convergent almost surely and in L2 to a square-integrable limit Mn
∞, and

the sequence (Mn
∞)n≥0 is bounded in L2 as well.

By Lemma A.3.7, there exists a sequence of naturals (Kn) with Kn ≥ n and for each n a finite

sequence of reals λnn, . . . , λ
n
Kn

in the unit interval summing to one such that
∑Kn
i=n λ

n
iM

i
∞ is

convergent in L2 to some variable M∞. By Theorem 1.3.3, it then holds that there is

M ∈ M2 such that E supt≥0(Mt −
∑Kn
i=n λ

n
iM

i
t )

2 tends to zero, M is then a càdlàg version

of the process t 7→ E(M∞|Ft). By picking a subsequence and relabeling, we may assume

that in addition to the properties already noted, supt≥0(Mt −
∑Kn
i=n λ

n
iM

i
t )

2 also converges

almost surely to zero.

Define B = A −M . Note that as A and M both are càdlàg and adapted, B is càdlàg and

adapted, and it is immediate that A− B is in Mu. Therefore, if we can show that B has a

modification which is increasing and predictable, the proof of existence will be concluded.

We are now in a position to outline the remainder of the proof. Put Cn =
∑Kn
i=n λ

n
i B

i.

Note that Cn is càglàd, adapted and increasing. In particular, Cn is predictable. Define

D+ = {k2−n | k ≥ 0, n ≥ 0}. The remainder of the proof will proceed in three parts: First,

we show that Bq = limn→∞ Cnq almost surely for all q ∈ D+, this will allow us to conclude

that B is almost surely increasing. Secondly, we prove that Bt = lim supn→∞ Cnt almost

surely, simultaneuously for all t ≥ 0, this will allow us to show that B has a predictable

modification. Thirdly, we collect our conclusions to obtain existence of the compensator.

Step 1. B is almost surely increasing. Note that for each q ∈ D+, it holds that

Aq = limn→∞Anq pointwise. Therefore,

Bq = Aq −Mq = lim
n→∞

Anq −
Kn∑
i=n

λniM
i
q = lim

n→∞

Kn∑
i=n

λni B
i
q = lim

n→∞
Cnq ,

almost surely. From this, we obtain that B is almost surely increasing on D+. Recalling that

B = A−M so that B is càdlàg, this allows us to conclude that B is almost surely increasing

on all of R+.

Step 2. Bt = lim supn→∞ Cnt simultaneously. Next, we show that almost surely, it

holds that Bt = lim supn→∞ Cnt for all t ≥ 0, this will allow us to show that B has

a predictable modification. To this end, note that for t ≥ 0 and q ∈ D+ with t ≤ q,

lim supn→∞ Cnt ≤ lim supn→∞ Cnq = Bq. As B is càdlàg, this yields lim supn→∞ Cnt ≤ Bt.
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This holds almost surely for all t ∈ R+ simultaneously. Similarly, lim infn→∞ Cnt ≥ Bt−

almost surely, simultaneously for all t ≥ 0. All in all, we conclude that almost surely,

Bt = lim supn→∞ Cnt for all continuity points t of B, simultaneously for all t ≥ 0. As the

jumps of B can be exhausted by a countable sequence of stopping times, we find that in

order to show the desired result on the limes superior, it suffices to show for any stopping

time S that BS = lim supn→∞ CnS . To do so, first note that

lim
t→∞

Cnt = lim
m→∞

Cnm = lim
m→∞

Kn∑
i=n

λni B
i
m = lim

m→∞
Am −

Kn∑
i=n

λniM
i
m = A∞ −

Kn∑
i=n

λniM
i
∞,

so Cn has an almost sure limit Cn∞, which is integrable, and by our earlier bounds, we obtain

‖Cn∞‖2 ≤ ‖A∞‖2 +

∥∥∥∥∥
Kn∑
i=n

λniM
i
∞

∥∥∥∥∥
2

≤ ‖A∞‖2 +

Kn∑
i=n

λni
∥∥M i
∞
∥∥

2

= (EA2
∞)1/2 +

Kn∑
i=n

λni (E(M i
∞)2)1/2 ≤ (1 +

√
12)c,

so (Cn∞)n≥1 is bounded in L2. Now fix a stopping time S. We first note that as we have

0 ≤ CnS ≤ Cn∞, the sequence of variables (CnS )n≥0 is bounded in L2 and thus in particular

uniformly integrable. Therefore, lim supn→∞ECnS ≤ E lim supn→∞ CnS ≤ EBS by Lemma

A.3.8. As lim supn→∞ CnS ≤ BS almost surely, we conclude that in order to show that

lim supn→∞ CnS = BS almost surely, it suffices to show that ECnS converges to EBS .

To this end, define a stopping time Sn by putting Sn = ∞ whenever S = ∞ and putting

Sn = tnk whenever tnk−1 < S ≤ tnk . Then (Sn) is a sequence of stopping times taking

values in D+ and infinity and converging downwards to S. Note that for all n ≥ 1, it holds

that BnS =
∑∞
k=0B

n
tnk+1

1(tnk<S≤t
n
k+1) =

∑∞
k=0B

n
tnk+1

1(Sn=tnk+1) = BnSn . Also, AnSn = ASn .

Therefore, recalling that (Antnk − B
n
tnk

)k≥0 is a uniformly integrable martingale for all n ≥ 1,

we obtain

ECnS = E

Kn∑
i=n

λni B
i
S =

Kn∑
i=n

λni EB
i
Si =

Kn∑
i=n

λni EA
i
Si =

Kn∑
i=n

λni EASi .

As A is càdlàg and bounded, and Sn converges downwards to S, the dominated conver-

gence theorem allows us to obtain that EASn converges to EAS . Therefore,
∑Kn
i=n λ

n
i EASi

also converges to EAS . Combining this with the above and recalling that A − B ∈ Mu,

we conclude that limn→∞ECnS = limn→∞
∑Kn
i=n λ

n
i EASi = EAS = EBS . Recalling our

earlier observations, we may now conclude that lim supn→∞ Cnt = Bt almost surely for all

points of discontinuity of B, and so all in all, the result holds almost surely for all t ∈ R+

simultaneously.
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Step 3. The existence proof. We now collect our conclusions to obtain the existence

of the compensator. Using the two previous steps, let F be the almost sure set where B

is increasing and B = lim supn→∞ Cn. Put Π∗pA = B1F . We claim that Π∗pA satisfies the

requirements to be the compensator of A.

To prove this, first note that by Lemma 2.3.10, 1FC
n is a predictable càdlàg process. As

Π∗pA = lim supn→∞ 1FC
n, Π∗pA is predictable. Also, it is immediate that Π∗pA is increasing.

And as A− Π∗pA is a modification of A−B, A− Π∗pA is a uniformly integrable martingale.

We conclude that Π∗pA satisfies all the requirements to be the compensator of A.

With Lemma 3.2.1 in hand, the remainder of the proof for the existence of the compensator

merely consists of monotone convergence arguments.

Lemma 3.2.2. Let An be a sequence of processes in Ai such that
∑∞
n=1A

n converges point-

wise to a process A. Assume for each n ≥ 1 that Bn is a predictable element of Ai such that

An − Bn is a uniformly integrable martingale. The process A is then in Ai, and
∑∞
n=1B

n

almost surely converges pointwise to a predictable process Π∗pA in Ai such that A−Π∗pA is a

uniformly integrable martingale.

Proof. Clearly, A is in Ai. With B =
∑∞
n=1B

n, B is a well-defined process with values in

[0,∞], since each Bn is nonnegative. We wish to argue that there is a modification of B

which is the compensator of A. First note that as each Bn is increasing and nonnegative, so

is B. Also, as An −Bn is a uniformly integrable martingale, the optional sampling theorem

and two applications of the monotone convergence theorem yields for any bounded stopping

time T that

EBT = lim
n→∞

n∑
k=1

EBkT = lim
n→∞

n∑
k=1

EAkT = EAT ,

which in particular shows that B almost surely takes finite values. Therefore, by Lemma

A.2.7, we obtain that B is almost surely nonnegative, càdlàg and increasing. Also, by another

two applications of the monotone convergence theorem, we obtain for any stopping time T

that EBT = limt→∞EBT∧t = limt→∞EAT∧t = EAT . This holds in particular with T =∞,

and therefore, the limit of Bt as t tends to infinity is almost surely finite and is furthermore

integrable. Lemma A.2.7 then also shows that
∑n
k=1B

k converges almost surely uniformly

to B on R+.

We now let Π∗pA be a nonnegative càdlàg increasing adapted modification of B. Then Π∗pA

is in Ai, and E(Π∗pA)T = EAT for all stopping times T , so by Lemma 1.2.8, A − Π∗pA

is a uniformly integrable martingale. Also,
∑n
k=1B

k almost surely converges uniformly to
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Π∗pA on R+. Therefore, Lemma 2.3.11 shows that Π∗pA is predictable. This concludes the

proof.

Theorem 3.2.3. Let A ∈ Vi`. There exists a predictable process Π∗pA in Vi`, unique up to

indistinguishability, such that A − Π∗pA is a local martingale. If A ∈ Ai, Π∗pA is in Ai, if

A ∈ Vi, Π∗pA is in Vi and if A ∈ Ai`, Π∗pA is in Ai`. Also, A−Π∗pA is a uniformly integrable

martingale when A ∈ Vi.

Proof. We first consider uniqueness. If A ∈ Vi` and B and C are two predictable processes in

Vi` such that A−B and A−C both are local martingales, we find that B−C is a predictable

local martingale with paths of finite variation. By Theorem 3.1.9, uniqueness follows.

As for existence, we first consider the case where A = ξ1[[T,∞[[ with T a positive stopping

time, ξ ∈ L1(FT ) and ξ ≥ 0. There exists a sequence of simple, nonnegative and FT
measurable variables ξn converging upwards to ξ. We can assume without loss of generality

that ξ1 = 0. Define An by putting An = (ξn+1 − ξn)1[[T,∞[[, then An ∈ Ai, and
∑n
k=1A

k

converges pointwise to A. Furthermore, by Lemma 3.2.1, there exists a predictable process

Bn in Ai such that An−Bn is a uniformly integrable martingale. By Lemma 3.2.2, we then

find that there also exists a predictable process Π∗pA in Ai such that A−Π∗pA is a uniformly

integrable martingale.

Now consider a general element A ∈ Ai. By Theorem 2.3.8, there exists a sequence of

positive stopping times (Tn) with disjoint graphs covering the jumps of A. For n ≥ 1, define

An = ∆ATn1[[Tn,∞[[, A
n is then an element of Ai. Also define Ad =

∑∞
n=1 ∆ATn1[[Tn,∞[[. As

A ∈ Ai, Ad is a well-defined element of Ai. Furthermore, A − Ad is a continuous element

of Ai. By the results already shown, there exists predictable processes Bn in Ai with the

property that ∆ATn1[[Tn,∞[[−Bn is a uniformly integrable martingale. As
∑n
k=1A

k converges

pointwise to Ad, we find by Lemma 3.2.2 that there exists a predictable process Π∗pA
d in Ai

such that Ad −Π∗pA
d is a uniformly integrable martingale. Putting Π∗pA = A−Ad + Π∗pA

d,

we find that since A − Ad is a predictable element of Ai, Π∗pA is a predictable element of

Ai, and A− Π∗pA is a uniformly integrable martingale, proving existence for the case where

A ∈ Ai.

Next, assume A ∈ Vi. Using Lemma 1.4.1, we may decompose the process A as A = A+−A−,

where A+, A− ∈ Ai. Putting Π∗pA = Π∗pA
+ − Π∗pA

−, we obtain that Π∗pA is a predictable

element of Vi such that A− Π∗pA is a uniformly integrable martingale. Finally, we consider

the case where A ∈ Vi`. In this case, there is a localising sequence (Tn) such that ATn is in Vi.
From what was already shown, there is a process Π∗pA

Tn , unique up to indistinguishability,
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such that ATn − Π∗pA
Tn is a uniformly integrable martingale. In particular, it holds that

ATn − (Π∗pA
Tn+1)Tn = (ATn+1 − Π∗pA

Tn+1)Tn is a uniformly integrable martingale, and so

(Π∗pA
Tn+1)Tn = Π∗pA

Tn up to indistinguishability. Therefore, the processes Π∗pA
Tn may be

pasted together to a process Π∗pA in Vi` such that for all n ≥ 1, (Π∗pA)Tn = Π∗pA
Tn almost

surely. In particular, it almost surely holds that ∆Π∗pAt = limn→∞∆Π∗pA
Tn
t for all t ≥ 0.

Lemma 2.3.11 then shows that Π∗pA is predictable. As (A−Π∗pA)Tn is a uniformly integrable

martingale, A−Π∗pA is a local martingale. This completes the proof of existence.

As regards the properties of Π∗pA, we have already shown that when A ∈ Ai, we have

Π∗pA ∈ Ai, and when A ∈ Vi, we have Π∗pA ∈ Vi. If A ∈ Ai`, we may take a localising sequence

such that ATn ∈ Ai and obtain Π∗pA
Tn ∈ Ai. By uniqueness, we have (Π∗pA)Tn = Π∗pA

Tn up

to indistinguishability, so that Π∗pA ∈ Ai`.

Theorem 3.2.3 establishes existence and uniqueness of the compensating projection mapping.

Next, we prove some basic properties of the compensator.

Lemma 3.2.4. Let A,B ∈ Vi`. Then, the following holds up to evanescence.

1. Π∗p maps Vi into Vi, Ai into Ai and Ai` into Ai`. If A ∈ Vi, A−Π∗pA ∈Mu.

2. For α, β ∈ R, Π∗p(αA+ βB) = αΠ∗pA+ βΠ∗p.

3. Π∗p(Π
∗
pA) = Π∗pA.

4. For any stopping time T , (Π∗pA)T = Π∗pA
T .

Proof. The first property is part of Theorem 3.2.3. Let α, β ∈ R and let A,B ∈ Vi`. We then

find that αA+βB− (Π∗pA+βΠ∗pB) is inM`, so by uniqueness, Π∗p(αA+βB) = αΠ∗pA+βΠ∗p
up to evanescence. Also, for A ∈ Vi`, as Π∗pA is predictable, we have that Π∗pA satisfies the

requirements for being the compensator of Π∗pA. Finally, let T be some stopping time and let

A ∈ Vi`. Then AT − (Π∗pA)T = (A−Π∗pA)T ∈ M`. By Lemma 2.2.8, (Π∗pA)T is predictable,

so we obtain (Π∗pA)T = Π∗pA
T up to evanescence, as desired.

Lemma 3.2.5. Let A ∈ Vi`. If A only jumps at totally inacessible stopping times, then Π∗pA

is almost surely continuous.

Proof. First consider the case where A ∈ Ai. Fix a process Π∗pA satisfying the requirements

to be the compensator of A. We will argue that Π∗pA is almost surely continuous. By
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Lemma 3.2.4, Π∗pA ∈ Ai and A− Π∗pA ∈ Mu. By Theorem 2.3.9, it holds that Π∗pA almost

surely only jumps at predictable times. Therefore, in order to show that Π∗pA is almost

surely continuous, it suffices to show that ∆Π∗pAT is almost surely zero for all predictable

stopping times T . Consider such a stopping time T . Applying Lemma 3.1.8, we find that

E∆Π∗pAT = E∆AT = 0, since A only jumps at totally inaccessible stopping times. As Π∗pA

is increasing, ∆Π∗pAT is nonnegative and so we obtain that ∆Π∗pAT is almost surely zero, as

desired. We conclude that Π∗pA is almost surely continuous.

Next, consider the case where A ∈ Vi. Define two processes A+
t = 1

2 ((VA)t + At) and

A−t = 1
2 ((VA)t − At), by Lemma 1.4.1 we then obtain A = A+ − A− where A+, A− ∈ Ai.

Furthermore, A+ and A− only jump when A does, and so both of these processes only jump

at totally inaccessible stopping times. By what we already have shown, Π∗pA
+ and Π∗pA

− are

almost surely continuous, and so Π∗pA is almost surely continuous as well by Lemma 3.2.4.

Finally, let A ∈ Vi`. Let (Tn) be a localising sequence such that ATn ∈ Vi. By what we

already have shown, Π∗pA
Tn is almost surely continuous. Applying Lemma 3.2.4, this yields

that Π∗pA is almost surely continuous. This concludes the proof.

For our final basic property of the compensator, we require the following lemma. Note that

this result does not follow from Lemma 1.1.13, as the set [t,∞) is closed.

Lemma 3.2.6. Let A ∈ A, let t ≥ 0 and let T = inf{s ≥ 0 | As ≥ t}. Then T is a stopping

time. If A is predictable, so is T .

Proof. As A is càdlàg and increasing, we have (T ≤ s) ⊆ (T ≤ s,AT ≥ t) ⊆ (As ≥ t).

Conversely, we trivially have (As ≥ t) ⊆ (T ≤ s). Therefore, (T ≤ s) = (As ≥ t) ∈ Fs, so T

is a stopping time. In the case where A is predictable, note that

[[T,∞[[= {(s, ω) ∈ R+ × Ω | T (ω) ≤ s} = {(s, ω) ∈ R+ × Ω | As(ω) ≥ t}.

As A is predictable, the latter is a predictable set. We conclude that [[T,∞[[ is predictable,

and Theorem 2.1.12 then shows that T is a predictable stopping time.

Lemma 3.2.7. Let A ∈ A. Assume that A∞ is square-integrable. Then Π∗pA∞ is square-

integrable as well, and E(Π∗pA∞)2 ≤ 4EA2
∞. If instead A ∈ V and (VA)∞ is square-integrable,

it holds that Π∗pA∞ is square-integrable and E(Π∗pA∞)2 ≤ 8E(VA)2
∞.
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Proof. We first consider the case where A ∈ A with A∞ square-integrable. Fix u ≥ 0. Put

α = Π∗pA∞ and note that

E(u ∧Π∗pA∞)2 = E(u ∧ α)2 = 2E

∫ u∧α

0

(u ∧ α− t) dt

= 2E

∫ u∧α

0

(u ∧ α− t)1(u∧α≥t) dt ≤ 2

∫ u

0

E(α− t)1(α≥t) dt

Now put Tt = inf{s ≥ 0 | Π∗pAs ≥ t}. As Π∗pA is predictable and in A, Lemma 3.2.6 shows

that Tt is a predictable stopping time. Also, it holds that (Tt <∞) = (α ≥ t). In particular,

on (α ≥ t) it holds that Π∗pATt− ≤ t. Letting M = A−Π∗pA, we therefore have

E(α− t)1(α≥t) ≤ E(Π∗pA∞ −Π∗pATt−)1(α≥t)

= E(A∞ −ATt−)1(α≥t) − E(M∞ −MTt−)1(Tt<∞)

≤ EA∞1(α≥t) − E(M∞ −MTt−)1(Tt<∞).

Recalling by Lemma 3.2.4 that M ∈Mu, Theorem 1.2.6 and Lemma 3.1.8 yields

E(M∞ −MTt−)1(Tt<∞) = EM∞1(Tt<∞) − EMTt−1(Tt<∞)

= E1(Tt<∞)(M∞|FTt)− EMTt−1(Tt<∞)

= EMTt1(Tt<∞) − EMTt−1(Tt<∞)

= E∆MTt1(Tt<∞) = 0.

Collecting our results, the Cauchy-Schwartz inequality allows us to conclude that

E(u ∧Π∗pA∞)2 ≤ 2

∫ u

0

EA∞1(α>t) dt = 2EA∞(u ∧ α)

= 2EA∞(u ∧Π∗pA∞) ≤ 2(EA2
∞)1/2(E(u ∧Π∗pA∞)2)1/2,

implying (E(u∧Π∗pA∞)2)1/2 ≤ 2(EA2
∞)1/2 and thus E(u∧Π∗pA∞)2 ≤ 4EA2

∞. Letting u tend

to infinity, we obtain by the monotone convergence theorem that Π∗pA∞ is square-integrable

and E(Π∗pA∞)2 ≤ 4EA2
∞, as desired.

It remains to consider the case where A ∈ V and (VA)∞ is square-integrable. Define two

processes A+
t = 1

2 ((VA)t + At) and A−t = 1
2 ((VA)t − At), by Lemma 1.4.1 we then obtain

A = A+ −A− where A+, A− ∈ A and A+
∞ and A−∞ are both square-integrable. By what we

already have shown, it holds that E(Π∗pA
+
∞)2 ≤ 4E(A+

∞)2 and E(Π∗pA
−
∞)2 ≤ 4E(A−∞)2. This

implies that Π∗pA∞ is square-integrable, and

E(Π∗pA∞)2 = E(Π∗pA
+
∞ −Π∗pA

−
∞)2 ≤ E(Π∗pA

+
∞)2 + E(Π∗pA

−
∞)2

≤ 4E(A+
∞)2 + 4E(A−∞)2 ≤ 8E(VA)2

∞,

as desired.
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We end the section with some general results on local martingales with paths of finite vari-

ation. By fvM`, we denote the set of local martingales with initial value zero and paths of

finite variation. By ivMu, we denote the set of uniformly integrable martingales with initial

value zero and integrable variation. In other words, fvM` =M` ∩V and ivMu =Mu ∩Vi.

Our first lemma shows that every local martingale of finite variation locally is a uniformly

integrable martingale of integrable variation.

Lemma 3.2.8. Let M ∈ fvM`. Then there is a localising sequence (Tn) such that MTn is

in ivMu.

Proof. Using Lemma 3.1.5, let (Sn) be a localising sequence such that MSn is inMu. Define

Rn = inf{t ≥ 0 | (VM )t > n} and put Tn = Sn ∧ Rn. Using Lemma 1.2.10, Lemma A.2.8

and Lemma A.2.10, we then obtain

(VMTn )∞ = (VM )Tn = (VM )Tn− + ∆(VM )Tn ≤ n+ |∆MTn | ≤ 2n+ |MTn |.

As MTn = MSn
Rn

and MSn ∈ Mu, we find that MTn is integrable. Therefore, the above

shows that MTn has integrable variation. As we also have MTn ∈ Mu, we have obtained a

localising sequence (Tn) such that MTn ∈ ivMu.

We next apply the compensating projecting to obtain results about fvM`. Lemma 3.2.9 gives

insight into the structure of fvM`, while Lemma 3.2.10 and Lemma 3.2.11 yields examples

of elements of fvM` with particular jump structures.

Lemma 3.2.9. Let M ∈ fvM`. Define a process A by putting At =
∑

0<s≤t ∆Ms. The sum

defining A is absolutely convergent for all t ≥ 0 and it holds that A ∈ Vi`. Furthermore, Π∗pA

is almost surely continuous and M = A−Π∗pA up to evanescence.

Proof. As
∑

0<s≤t |∆Ms| ≤ (VM )t, it is immediate that the sum defining A is absolutely

convergent for all t ≥ 0. Also, we have At =
∑

0<s≤t ∆Ms1(∆Ms≥0)−
∑

0<s≤t ∆Ms1(∆Ms≤0),

which shows that A is the difference between two increasing processes. Therefore, A has

paths of finite variation. It is immediate that A has càdlàg paths. As the jumps of M may

be covered by a sequence of stopping times by Theorem 2.3.8, we obtain that A is adapted,

proving that A ∈ V. It remains to show that A is locally integrable. To this end, we use

Lemma 3.2.8 to obtain a localising sequence (Tn) such that MTn ∈ ivMu. Then

|(VA)Tn | ≤
∑

0<s<Tn

|∆Ms| ≤ (VM )Tn = (VMTn )∞,
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and as the latter is integrable, we conclude that A is locally integrable. Thus, A ∈ Vi`, in

particular the compensator of A is well-defined.

Next, we show that Π∗pA is almost surely continuous. To this end, it suffices by Theorem

2.3.8 to show that ∆Π∗pAT is almost surely zero for all stopping times T which are either

predictable or totally inaccessible. If T is a totally inaccessible stopping time, it holds by

Theorem 2.3.9 that ∆Π∗pAT is almost surely zero. Next, let T be a predictable stopping time.

Define N = A−Π∗pA and let (Tn) be a localising sequence such that both MTn and NTn are

in Mu. Note that NTn = ATn −Π∗pA
Tn . As ∆Π∗pA

Tn
T is FT− measurable by Theorem 2.3.9,

we obtain E(∆NTn
T |FT−) = E(∆ATnT |FT−)−∆Π∗pA

Tn
T . Furthermore, E(∆NTn

T |FT−) = 0 by

Lemma 3.1.8, yielding ∆Π∗pA
Tn
T = E(∆ATnT |FT−) = E(∆MTn

T |FT−) = 0, again by Lemma

3.1.8. Next, note that ∆Π∗pA
Tn
T = 1(T≤Tn)∆Π∗pAT . Letting n tend to infinity, this implies

that ∆Π∗pAT is almost surely zero. By our earlier deliberations, we may now conclude that

Π∗pA is almost surely continuous.

It remains to show that M = A−Π∗pA up to evanescence. However, as ∆Π∗pA is evanescent

by what was already shown, and ∆M = ∆A, we find that M − (A − Π∗pA) is an element

of fvM` which is almost surely continuous. Therefore, M − (A − Π∗pA) is evanescent by

Theorem 3.1.9, proving that M = A−Π∗pA up to evanescence.

Lemma 3.2.10. Let T be a stopping time with T > 0. Let ξ ∈ L1(FT ). Define At = ξ1(t≥T )

and let M = A − Π∗pA. It then holds that M ∈ Mu. If T is predictable and E(ξ|FT−) = 0,

then Π∗pA is evanescent and ∆M = ∆A almost surely. If T is totally inaccessible, then Π∗pA

is almost surely continuous and ∆M = ∆A almost surely.

Proof. That M ∈ Mu follows from Theorem 3.2.3, as A ∈ Vi. Consider the case where

T is predictable. We claim that Π∗pA is evanescent. To prove this, let S be any stopping

time. As T is predictable, (S ≥ T ) ∈ F(T∧S)− ⊆ FT− by Lemma 2.2.4 and Lemma 2.2.2,

so we obtain EAS = Eξ1(S≥T ) = EE(ξ|FT−)1(S≥T ) = 0, and by Lemma 1.2.8, A is in Mu.

Therefore, Π∗pA is evanescent and so ∆M = ∆A almost surely. In the case where T is totally

inaccessible, Lemma 3.2.5 shows that Π∗pA is almost surely continuous, so ∆M = ∆A almost

surely in this case as well.

Lemma 3.2.11. Let N ∈ M` and let T be a stopping time with T > 0. Assume that T

is predictable or totally inaccesible. Define A = ∆NT 1(t≥T ) and put M = A − Π∗pA. Then

∆M = ∆A almost surely.

Proof. In the case where T is totally inaccessible, Lemma 3.2.5 implies that Π∗pA is almost
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surely continuous and so ∆M = ∆A almost surely follows immediately. Consider the case

where T is predictable. Let (Tn) be a localising sequence such that NTn is in Mu, and note

that

ATnt = ∆NT 1(t∧Tn≥T ) = ∆NT 1(t≥T )1(Tn≥T ) = ∆NTn
T 1(t≥T ),

where ∆NTn
T is integrable by Lemma 3.1.8, and E(∆NTn

T |FT−) = 0. Therefore, Lemma

3.2.10 yields that Π∗pA
Tn is almost surely continuous. As (Π∗pA)Tn = Π∗pA

Tn by Lemma

3.2.4, we obtain that Π∗pA is almost surely continuous by letting n tend to infinity. As a

consequence, ∆M = ∆A almost surely in this case as well.

3.3 The quadratic variation process

In this section, we will prove the existence of the quadratic variation process, and more

generally, the quadratic covariation process between two elements of M`. The quadratic

covariation process will be a central tool in the construction of the stochastic integral with

respect to elements of M` in Chapter 4.

We begin by proving the following essential result. Recall that fvM` denotes the subspace

of elements of M` with paths of finite variation. We also introduce Mb
` as the subspace of

M` such that there is a localising sequence (Tn) with the property that MTn is bounded.

We refer to Mb
` as the space of locally bounded local martingales.

Theorem 3.3.1 (Fundamental theorem of local martingales). Let M ∈ M`. There exists

M b ∈Mb
` and Mv ∈ fvM` such that M = M b +Mv almost surely.

Proof. Define At =
∑

0<s≤t ∆Ms1(|∆Ms|>ε). By Lemma A.2.3, M has only finitely many

jumps larger or equal to ε on any finite interval, yielding that A is a well-defined càdlàg

process. As (VA)t =
∑

0<s≤t |∆Ms1(|∆Ms|>ε)| ≤
∑

0<s≤t |∆Ms|, we obtain by Lemma 3.2.9

that A ∈ Vi`. In particular, the compensator of A is well-defined.

Now put Mv = A− Π∗pA, then Mv ∈ fvM` and we have M = (M −Mv) +Mv, where Mv

and M −Mv are both in M`. We will argue that there is a localising sequence (Tn) such

that (M −Mv)Tn almost surely is bounded. To this end, let (Sn) be a localising sequence

such that MSn ∈Mu and ASn ∈ Vi. We claim that (M −Mv)Sn almost surely has bounded

jumps. To show this, let T be some stopping time. Note that

|∆(M −A)T | = |∆MT −∆MT 1(|∆MT |>ε)| = |∆MT 1(|∆MT |≤ε)| ≤ ε.
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Also note that ∆MSn
T = ∆MT 1(T≤Sn) and analogously for other càdlàg processes. Therefore,

if T is totally inaccessible, Theorem 2.3.9 yields that, almost surely,

|∆(M −Mv)SnT | = |∆(M −Mv)T 1(T≤Sn)| = |∆MT − (∆AT −∆(Π∗pA)T )|1(T≤Sn)

= |∆MT −∆AT |1(T≤Sn) ≤ ε.

Next, let T be predictable. We have ASn ∈ Vi, and so Lemma 3.2.4 yields Π∗pA
Sn ∈ Vi,

(Mv)Sn = ASn − Π∗pA
Sn and (Mv)Sn ∈ Mu. In particular, by Lemma 3.1.8, (Mv)SnT is

integrable with E(∆(Mv)SnT |FT−) = 0. As AT and Π∗pAT both are integrable as well, we

conclude 0 = E(∆(Mv)SnT |FT−) = E(∆ASnT − ∆Π∗pA
Sn
T |FT−) = E(∆ASnT |FT−) − ∆Π∗pA

Sn
T

by Theorem 2.3.9. Thus, E(∆ASnT |FT−) = ∆Π∗pA
Sn
T . As MSn ∈ Mu, Lemma 3.1.8 shows

that ∆MSn
T is also integrable and E(∆MSn

T |FT−) = 0, so that

∆((M −Mv)Sn)T = ∆MSn
T − (∆ASnT −∆Π∗pA

Sn
T )

= ∆MSn
T −∆ASnT + E(∆ASnT |FT−)

= ∆MSn
T −∆ASnT − E(∆MSn

T −∆ASnT |FT−)

= ∆(M −A)T 1(T≤Sn) − E(∆(M −A)T 1(T≤Sn)|FT−),

which yields |∆((M−Mv)Sn)T | ≤ 2ε almost surely. We have now shown that for any stopping

time T which is predictable or totally inaccessible, |∆((M −Mv)Sn)T | ≤ 2ε almost surely.

As the jump times of (M −Mv)Sn by Theorem 2.3.8 can be covered by a regular sequence

of stopping times, this implies that |∆((M −Mv)Sn)| ≤ 2ε almost surely. Letting n tend to

infinity, we obtain that M −Mv almost surely has jumps bounded by 2ε. Now let M b be

a modification of M −Mv in M` with jumps bounded by 2ε. Defining a sequence (Tn) by

putting Tn = inf{t ≥ 0 | |M b
t | > n}, we obtain by Lemma 1.1.13 that (Tn) is a localising

sequence, and by the boundedness of the jumps, (M b)Tn is in Mb. Thus, M b ∈ Mb
`. As

M = M b +Mv almost surely, the proof is complete.

Theorem 3.3.1 will be essential to our construction of both the quadratic variation process

for local martingales and to our construction of the stochastic integral. Now, recall that

we in Theorem 1.3.6 proved the existence of the quadratic variation process for bounded

martingales. Our next objective is to extend this result to all local martingales. To obtain

this, we require two preliminary results. For the first result, recall from Section 1.4 that we

for a progressive and almost surely integrable process H and an element A ∈ V ensured the

existence of a process H ·A ∈ V such that almost surely, for all t ≥ 0 (H ·A)t is equal to the

Lebesgue integral of H with respect to A over [0, t].

Theorem 3.3.2. Let M ∈ fvM` and let X be a predictable process. Assume that there is a

localising sequence (Tn) such that XTn1(Tn>0) is bounded. X is then almost surely integrable
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with respect to M , and X ·M is in M`. The existence of the localising sequence holds in

particular if X is càglàd, adapted and has initial value zero.

Proof. First assume that X is càglàd, adapted and has initial value zero. In this case, we

may put Tn = inf{t ≥ 0 | |Xt| > n} and obtain that (Tn) is a localising sequence such that

XTn is bounded, in particular XTn1(Tn>0) is bounded. This proves the final claim of the

theorem.

Now consider the case where M ∈ ivMu and assume that X is predictable and that there is

a localising sequence (Tn) such that XTn1(Tn>0) is bounded. As (VM )∞ is integrable in this

case, it is almost surely finite. Note that for fixed t ≥ 0 and ω and n large enough, it holds

that XTn
s (ω)1(Tn(ω)>0) = Xs(ω) for 0 ≤ s ≤ t. Therefore, X is almost surely integrable with

respect to M . In particular, by Theorem 1.4.3, the integral process X ·M is uniquely defined

up to indistinguishability. By taking a modification of M , we may assume that (VM )∞ only

takes finite values and retain the property that X is almost surely integrable with respect to

M as well as retain the process X ·M .

We wish to prove that X · M is in M`. To this end, let νω be the measure induced by

M(ω) on (R+,B+) according to Theorem A.2.9. By Lemma 1.4.2, we find that (νω)ω∈Ω is

a P -integrable (Ω,F) kernel on (R+,B+). Theorem A.1.13 therefore yields the existence of

a unique signed measure µ on B+ ⊗ F such that for any A ∈ B+ and F ∈ F , it holds that

µ(A × F ) =
∫
F
νω(A) dP (ω). In order to obtain that X ·M is in M`, we now proceed in

three steps.

Step 1. Proof that µ is zero on Σp. First, we argue that µ is zero on Σp. To this end,

let H = {A ∈ Σp | µ(A) = 0}. It then holds that H is a Dynkin class. In order to show

the result, it therefore suffices to show that H contains a generator for Σp which is stable

under taking intersections. By Lemma 2.1.6, Σp is generated by {[[T,∞[[| T ∈ Tp}, where

Tp denotes the set of predictable stopping times. Furthermore, this generating class is stable

under taking intersections. Therefore, by Lemma A.1.1, in order to show that µ is zero on

Σp, it suffices to show that µ([[T,∞[[) is zero for all predictable stopping times T . Let T be

such a predictable stopping time. By Theorem A.1.17, we have

µ([[T,∞[[) =

∫
1[[T,∞[[ dµ =

∫ ∫
1(T≤t)(ω) dνω(t) dP (ω) = E1(T<∞)(M∞ −MT−).

Now, by Lemma 3.1.8, we know that ∆MT is integrable and E(∆MT |FT−) = 0. As it holds

that (T <∞) ∈ FT−, this yields E(∆MT 1(T<∞)|FT−) = 0 as well. And as MT is integrable,

we obtain in particular that MT 1(T<∞) and thus MT−1(T<∞) are integrable. Noting that
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MT−1(T<∞) is FT− measurable by Lemma 2.2.7, we get E(MT 1(T<∞)|FT−) = MT−1(T<∞)

and so EMT 1(T<∞) = EMT−1(T<∞). Thus,

E1(T<∞)(M∞ −MT−) = E1(T<∞)(M∞ −MT ) = E(M∞ −MT ) = 0.

Collecting our conclusions, we have now shown that µ is zero on Σp.

Step 2. Proof that Y ·M is in Mu for particular Y . Now let Y be any predictable

process which is integrable with respect to µ, this is well-defined as we know by Lemma

1.1.6 and Lemma 1.1.8 that Σp ⊆ Σπ ⊆ B+ ⊗ F . Invoking Theorem A.1.17, we then find

that Y (ω) is integrable with respect to M(ω) over R+ for P almost all ω, that the result is

integrable with respect to P , and E
∫∞

0
Yt dMt =

∫ ∫
Yt(ω) dνω(t) dP (ω) =

∫
Y dµ, and this

latter expression is zero by what we already have shown. Now, as M was arbitrary in ivMu,

this also holds for MT , where T is any stopping time. Therefore, we obtain for any T that

E(Y ·M)T = E(Y ·MT )∞ = 0. By Lemma 1.2.8, this implies that Y ·M is in Mu. This

holds for any predictable Y which is integrable with respect to µ.

Step 3. Proof that X ·M is in M`. Finally, as XTn1(Tn>0) is predictable and bounded,

it is integrable with respect to µ. As MTn is in ivMu whenever M ∈ ivMu, our previous

step shows that XTn1(Tn>0) ·MTn is in Mu. By the properties of Lebesgue integration, we

have

(X ·M)Tn = 1(Tn>0)(X ·M)Tn = 1(Tn>0)(X
Tn ·MTn) = XTn1(Tn>0) ·MTn

almost surely. Thus, X ·M is in M`, as desired.

It now only remains to extend our results to the case where M is in fvM` instead of ivMu.

Assume that M ∈ fvM`. By Lemma 3.2.8, there is a localising sequence (Tn) such that

MTn ∈ ivMu. By what we already have shown, X is integrable with respect to MTn , and

X ·MTn is in M`. Therefore, X is integrable with respect to M as well, and we obtain

(X ·M)Tn = X ·MTn . Thus, (X ·M)Tn is in M` for all n ≥ 1, and so Lemma 3.1.7 shows

that X ·M is in M`, as desired.

Lemma 3.3.3. Let A ∈ Vi and let M ∈Mb. Then MtAt −
∫ t

0
Ms dAs is in Mu.

Proof. Note that the process
∫ t

0
Ms dAs is always a well-defined element of V by Theorem

1.4.3, so the conclusion is well-formed. First assume that A ∈ Ai. Let c ≥ 0 be such that

|Mt| ≤ c for t ≥ 0. We will apply Lemma 1.2.8 to obtain the result. To this end, first note

that by Lemma A.2.12, we have

E(VM ·A)∞ = lim
t→∞

E(VM ·A)t ≤ lim
t→∞

E

∫ t

0

|Ms|dAs ≤ cEA∞,
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which is finite, so M · A ∈ Vi, in particular (M · A) is almost surely convergent. Also, as

M is bounded, M is almost surely convergent, and as A is integrable and increasing, A is

almost surely convergent as well. Therefore, the process MtAt −
∫ t

0
Mt dAt is almost surely

convergent, and so Lemma 1.2.8 yields that in order to prove that the process is in Mu, it

suffices to show that for any stopping time T , MTAT −
∫ T

0
Mt dAt is integrable and has mean

zero.

Fix such a stopping time T . As we have

MTAT −
∫ T

0

Mt dAt = MT
∞A

T
∞ −

∫ ∞
0

Mt1(t≤T ) dATt = MT
∞A

T
∞ −

∫ ∞
0

MT
t dATt ,

we find that it suffices to prove that when M ∈ Mb and A ∈ Ai, M∞A∞ −
∫∞

0
Mt dAt

is integrable and has mean zero. Integrability follows since E|M∞A∞| ≤ cEA∞, which is

finite, and E|
∫∞

0
Mt dAt| ≤ cEA∞ as well, which is also finite. It remains to show that the

expectation is zero. To this end, define Tt = inf{s ≥ 0|As ≥ t}. By Lemma 3.2.6, Tt is a

stopping time. In particular, as (Tt <∞) is in FTt , we have EMTt1(Tt<∞) = EM∞1(Tt<∞)

and so, applying Lemma A.2.14 twice, we find

E

∫ ∞
0

Mt dAt = E

∫ ∞
0

MTt1(Tt<∞) dt =

∫ ∞
0

EMTt1(Tt<∞) dt

=

∫ ∞
0

EM∞1(Tt<∞) dt = E

∫ ∞
0

M∞ dAt = EM∞A∞.

This concludes the proof for the case A ∈ Ai. Now assume A ∈ Vi. By Lemma 1.4.1, there

is a decomposition A = A+ −A−, where A+, A− ∈ Ai. As

MtAt −
∫ t

0

Ms dAs = MtA
+
t −

∫ t

0

Ms dA+
s −

(
MtA

−
t −

∫ t

0

Ms dA−s

)
,

the general result follows.

Theorem 3.3.4. Let M ∈M`. There exists a process [M ] ∈ A, unique up to indistinguisha-

bility, such that M2 − [M ] ∈ M` and ∆[M ] = (∆M)2 almost surely. If M,N ∈ M`, there

exists a process [M,N ] ∈ V, unique up to indistinguishability, such that MN − [M,N ] ∈M`

and ∆[M,N ] = ∆M∆N almost surely. We refer to [M ] as the quadratic variation of M ,

and we refer to [M,N ] as the quadratic covariation of M and N .

Proof. We begin by proving existence and uniqueness of the quadratic variation, the existence

and uniqueness of the quadratic covariation will follow by a simple polarization argument.
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We first consider uniqueness. If A and B are two processes in A such that both M2 − A
and M2 −B are in M` with ∆A = ∆B = (∆M)2 almost surely, we obtain that A−B is in

M`, is almost surely continuous and has paths of finite variation. Therefore, A and B are

indistinguishable by Theorem 3.1.9.

Next, we consider existence. We first consider the case where M = M b+M i, with M b ∈Mb

and M i ∈ ivMu. By Lemma A.2.16,
∑

0<s≤t(∆M
i
t )

2 is absolutely convergent for any

t ≥ 0, and we may therefore define a process Ai in A by putting Ait =
∑

0<s≤t(∆M
i
t )

2. As

M b is bounded, Lemma A.2.16 shows that
∑

0<s≤t ∆M b
t ∆M i

t is almost surely absolutely

convergent, and so we may define a process Ax in V by putting Axt =
∑

0<s≤t ∆M b
t ∆M i

t .

Finally, by Theorem 1.3.6, there exists a process [M b] in Ai such that (M b)2 − [M b] ∈ M`

and ∆[M b] = (∆M b)2. We put At = [M b]t + 2Ax +Ai and claim that A satisfies the criteria

of the theorem.

To this end, first note that A clearly is càdlàg adapted of finite variation, and for 0 ≤ s ≤ t,
we have [M b]t ≥ [M b]s +

∑
s<u≤t(∆M

b
u)2 almost surely, and so

At −As = [M b]t − [M b]s + 2(Axt −Axs ) +Ait −Ais
≥

∑
s<u≤t

(∆M b
u)2 + 2∆M b

u∆M i
u + (∆M i

u)2 =
∑
s<u≤t

(∆M b
u + ∆M i

u)2 ≥ 0,

almost surely, showing that A is almost surely increasing. To prove that M2 − A is in M`,

note that M2 − A = (M b)2 − [M b] + 2(M bM i − Ax) + (M i)2 − Ai. Here, (M b)2 − [M b]

is in M2 by Theorem 1.3.6, in particular in M`. By the integration-by-parts formula, we

have (M i)2
t − Ait = 2

∫ t
0
M i
s− dM i

s, where the integral is well-defined as Ms− is bounded on

compacts. By Lemma 3.3.2, this process is a local martingale, and so (M i)2 − Ai is in M`.

Thus, in order to obtain that M2−A is inM`, it suffices to show that M bM i−Ax is inM`.

By Lemma 3.3.3, M b
tM

i
t −

∫ t
0
M b
s dM i

s is in M`, so it suffices to show that
∫ t

0
M b
s dM i

s −Axt
is in M`. As ∆M b is bounded, it is integrable, and so we have∫ t

0

M b
s dM i

s =

∫ t

0

∆M b
s dM i

s +

∫ t

0

M b
s− dM i

s = Axt + (M b
− ·M i)t.

As M b
− ·M i is inM` by Lemma 3.3.2, we finally conclude that M bM i−Ax is inM`. Thus,

M2−A is inM`. As it is immediate that ∆At = ∆[M b]t+ 2∆M b
t ∆M i

t + (∆M i
t )

2 = (∆Mt)
2

almost surely, this proves existence in the case where M = M b + M i, where M b ∈ Mb and

M i ∈ ivMu.

Now consider the case of a general M ∈ M`. By Theorem 3.3.1, there exists M b ∈ Mb
`

and M i ∈ fvM` such that M = M b + M i almost surely. Put N = M b + M i and let

(Tn) be a localising sequence such that (M b)Tn is in Mb and (M i)Tn is in ivMu. By what
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was already shown, there exists a process [NTn ] ∈ A, unique up to indistinguishability,

such that (NTn)2 − [NTn ] is in M` and ∆[NTn ] = (∆NTn)2 almost surely. By uniqueness,

we have [NTn+1 ]Tn = [NTn ] up to indistinguishability. Therefore, these processes may be

pasted together to yield a process [N ] ∈ A such that ∆[N ] = (∆N)2 almost surely and

N2 − [N ] ∈ M`. As N and M are indistinguishable, [N ] also satifies the criteria for being

the quadratic variation of M . This concludes the proof of existence.

Considering the quadratic covariation, let M,N ∈ M` be given. Recalling the polarization

identity 4xy = (x+ y)2 − (x− y)2 for x, y ∈ R, we define [M,N ] = 1
4 ([M +N ]− [M −N ]).

We then obtain MN − [M,N ] = 1
4 ((M +N)2 − [M +N ])− 1

4 ((M −N)2 − [M −N ]). This

shows that MN − [M,N ] is a local martingale. Furthermore, we have [M,N ] ∈ V, and

∆[M,N ] = 1
4 ((∆(M +N))2− (∆(M −N))2) = ∆M∆N almost surely. This proves existence

of the quadratic covariation. Uniqueness follows as for the quadratic variation.

Theorem 3.3.4 yields the existence and uniqueness of the quadratic variation and quadratic

covariation processes for local martingales, and is one of the main results of this section. A

useful consequence of the result is the following.

Lemma 3.3.5. Let M ∈M`. Then it almost surely holds that for all t ≥ 0,
∑

0<s≤t(∆Ms)
2

is absolutely convergent.

Proof. By Theorem 3.3.4, we know that there exists a process [M ] ∈ A with the property

that ∆[M ]s = (∆Ms)
2 almost surely. As we then have

∑
0<s≤t(∆Ms)

2 ≤ [M ]t for all t ≥ 0

almost surely, the result follows.

In the remainder of this section, we investigate the fundamental properties of the quadratic

covariation and how the quadratic covariation may be applied to understand the structure

of local martingales. We first calculate the quadratic variation and quadratic covariation for

the most commonly occurring process, the Brownian motion. Afterwards, we work towards

proving some general properties of the quadratic covariation.

Theorem 3.3.6. Let W be a p-dimensional Ft Brownian motion. For i ≤ p, [W i]t = t up

to indistinguishability, and for i, j ≤ p with i 6= j, [W i,W j ] is zero up to indistinguishability.

Proof. By Theorem 1.2.13, it holds for i ≤ p that (W i
t )

2 − t is a martingale, in particular an

element of cM`, and so [W i]t = t up to indistinguishability, by the characterization given

in Theorem 3.3.4. Likewise, Theorem 1.2.13 shows that for i, j ≤ p with i 6= j, W i
tW

j
t is a
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martingale, in particular an element of cM`, so [W i,W j ] is zero up to indistinguishability

by Theorem 3.3.4.

Lemma 3.3.7. Let M ∈ M`, let T be a stopping time and let ξ be FT measurable. The

process ξ(M −MT ) is in M`.

Proof. First consider the case where ξ is bounded and M ∈Mu. With S being some stopping

time, we obtain that ξ1(T≤S) is FS∧T measurable by Lemma 1.1.11, and thus

Eξ(MS −MT
S ) = Eξ1(T≤S)(MS −MT

S ) = Eξ1(T≤S)E(MS −MS∧T |FS∧T ) = 0,

by Theorem 1.2.6. By Lemma 1.2.8, ξ(M −MT ) is in Mu. Next, consider the general case

where ξ is merely FT measurable and M ∈M`. Let (Rn) be a localising sequence such that

MRn ∈Mu, and define Sn = T(|ξ|>n). Put Tn = Sn ∧Rn. We then obtain

(ξ(M −MT ))Tn = ξ(MTn −MT∧Tn) = ξ1(|ξ|≤n)(M
Rn − (MRn)T ),

which is in Mu by what was already shown. Thus, ξ(M −MT ) is in M`.

Lemma 3.3.8. Let M and N be in M`, and let T by any stopping time. The quadratic

covariation satisfies the following properties up to indistinguishability.

(1). [M,M ] = [M ].

(2). [·, ·] is symmetric and linear in both of its arguments.

(3). For any α ∈ R, [αM ] = α2[M ].

(4). It holds that [M +N ] = [M ] + 2[M,N ] + [N ].

(5). It holds that [M,N ]T = [MT , N ] = [M,NT ] = [MT , NT ].

(6). [M,N ] is zero if and only if MN ∈M`.

(7). M is evanescent if and only if [M ] is evanescent.

(8). M is evanescent if and only if [M,N ] is zero for all N ∈M`.

(9). If F ∈ F0, 1F [M,N ] = [1FM,N ] = [M, 1FN ] = [1FM, 1FN ].
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Proof. Proof of (1). We know that [M ] is in A and satisfies M2 − [M ] ∈ M`. Therefore,

[M ] is in particular in V, and therefore satisfies the requirements characterizing [M,M ]. By

uniqueness, we conclude that [M,M ] = [M ] up to indistinguishability.

Proof of (2). As MN − [M,N ] is a uniformly integrable martingale if and only if this holds

for NM − [M,N ], we have by uniqueness that the quadratic covariation is symmetric in the

sense that [M,N ] = [N,M ] up to indistinguishability. In particular, it suffices to prove that

the quadratic covariation is linear in its first coordinate. Fix M,M ′ ∈ M` and α, β ∈ R,

then (αM + βM ′)N − (α[M,N ] + β[M ′, N ]) = α(MN − [M,N ]) + β(M ′N − [M ′, N ]), so

(αM + βM ′)N − (α[M,N ] + β[M ′, N ]) is inM` and so by uniqueness, we have the linearity

relationship [αM + βM ′, N ] = α[M,N ] + β[M ′, N ] up to indistinguishability.

Proof of (3). This is immediate from [αM ] = [αM,αM ] = α2[M,M ] = α2[M ], using the

linearity properties already proven.

Proof of (4). This follows as

[M +N ] = [M +N,M +N ]

= [M,M ] + [M,N ] + [N,M ] + [N,N ]

= [M ] + 2[M,N ] + [N ],

using the symmetry and linearity properties already proven.

Proof of (5). Note that as MT and NT are inM`, the conclusion is well-defined by Lemma

3.1.3. To prove the result, first note that by symmetry, it suffices to prove [M,N ]T = [MT , N ],

and this will be accomplished if we can show that MTN − [M,N ]T is in M`. Note that

MTN − [M,N ]T = (MN − [M,N ])T +MT (N −NT )

= (MN − [M,N ])T +MT (N −NT ),

where (MN − [M,N ])T ∈M` by Lemma 3.1.3. By Lemma 3.3.7, MT (N −NT ) is inM` as

well. The result follows.

Proof of (6). This is immediate from the definition of the quadratic covariation.

Proof of (7). If M is the zero process, then the zero process satisfies the requirements for

being the quadratic variation of M . Conversely, assume that [M ] is evanescent. Then M2 is

in M`. Letting Tn be a localising sequence for M2 such that (M2)Tn is in M, we find that

EM2
Tn∧t = E(M2)Tnt = 0, so that M2

Tn∧t is almost surely zero. Therefore, Mt is almost surely

zero as well. As t ≥ 0 was arbitrary and M is càdlàg, we conclude that M is evanescent.
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Proof of (8). Assume that M is evanescent. Then the zero process satisfies the require-

ments characterizing [M,N ] for all N ∈ M`, and so [M,N ] is evanescent for all N ∈ M`.

Conversely, assume that [M,N ] is evanescent for all N ∈ M`. In particular, [M,M ] is

evanescent, so by what was already shown, M is evanescent.

Proof of (9). Note that the conclusion is well-defined, as 1FM is inM` by Lemma 3.1.3. By

the properties already proven for the quadratic covariation, it suffices to prove that for any

F ∈ F0 and M,N ∈M`, 1F [M,N ] = [1FM,N ]. However, we know that MN − [M,N ] is in

M`, and so by Lemma 3.1.3, 1FMN−1F [M,N ] is inM`. Therefore, by the characterisation

of the quadratic covariation, 1F [M,N ] is the quadratic covariation process of 1FM and N ,

meaning that 1F [M,N ] = [1FM,N ], as desired.

For the next result, recall that integrals of the form
∫ t

0
h(s)|dfs| denote integration with

respect to the variation of f .

Theorem 3.3.9 (Kunita-Watanabe). Let M,N ∈ M`, and let H and K be measurable

processes. Then it almost surely holds that for all t ≥ 0,∫ ∞
0

|HtKt|| d[M,N ]t| ≤
(∫ ∞

0

H2
t d[M ]t

) 1
2
(∫ ∞

0

K2
t d[N ]t

) 1
2

.

Proof. First note that the result is well-defined for each ω, as [M,N ], [M ] and [N ] have paths

of finite variation for each ω, and the mappings |HtKt|, H2
t and K2

t from R+ to R are Borel

measurable for each ω.

Applying Lemma A.2.18, it suffices to prove that almost surely, it holds that for all 0 ≤ s ≤ t,
|[M,N ]t− [M,N ]s| ≤

√
[M ]t − [M ]s

√
[N ]t − [N ]s. As the processes are càdlàg, it suffices to

prove the result almost surely for any pair of rational s and t. Fix any such pair, by Lemma

A.2.17 it suffices to prove that λ2([M ]t−[M ]s)+2λ([M,N ]t−[M,N ]s)+[N ]t−[N ]s ≥ 0 for all

λ ∈ Q. Thus, we need to prove that this inequality holds almost surely for rational s, t and λ

with 0 ≤ s ≤ t. Note that λ2[M ]s+2λ[M,N ]s+[N ]s = [λM ]s+2[λM,N ]s+[N ]s = [λM+N ]s,

and [λM + N ]s ≤ [λM + N ]t, so by performing the same calculations in reverse, we obtain

λ2[M ]s+2λ[M,N ]s+[N ]s ≤ λ2[M ]t+2λ[M,N ]t+[N ]t, yielding the desired conclusion. The

theorem now follows from Lemma A.2.18.

We end the section with two results describing the interplay between the quadratic variation

and M2.
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Theorem 3.3.10. Let M ∈ M`. It holds that M ∈ M2 if and only if [M ]∞ is integrable,

and in the affirmative, M2 − [M ] ∈ Mu. If M and N are in M2, then [M,N ] is in Vi, in

particular the limit [M,N ]∞ exists and is integrable, and MN − [M,N ] ∈Mu.

Proof. We begin by proving that M ∈ M2 if and only if [M ]∞ is integrable. First assume

M ∈ M2. We know that M2 − [M ] ∈ M`. Using Lemma 3.1.6, let (Tn) be a localising

sequence with (M2 − [M ])Tn ∈ Mu. By the optional sampling theorem and Theorem 1.3.1,

E[M ]Tn = E[M ]Tn∞ = E(MTn
∞ )2 = EM2

Tn
≤ 4EM2

∞, and then, as [M ] is increasing, we obtain

E[M ]∞ = E limn[M ]Tn = limnE[M ]Tn ≤ 4EM2
∞ by the monotone convergence theorem, so

that [M ]∞ is integrable.

Assume conversely that [M ]∞ is integrable. Let (Tn) be a localising sequence such that

(M2 − [M ])Tn ∈ Mu. Fix t ≥ 0. We then find that M2
t∧Tn − [M ]t∧Tn is integrable, and by

our assumptions, [M ]t∧Tn is integrable as well. As a consequence, M2
t∧Tn is integrable, and

it holds that EM2
t∧Tn = E[M ]t∧Tn ≤ E[M ]∞. Thus, MTn ∈ M2. Applying Theorem 1.3.1,

E sup0≤s≤TnM
2
s = E((MTn)∗2∞) ≤ 4E(MTn

∞ )2 = 4E[M ]Tn∞ = 4E[M ]Tn . Using the monotone

convergence theorem, we then obtain EM∗2∞ ≤ 4E[M ]∞, in particular supt≥0EM
2
t is finite

and so M ∈M2, as desired.

Next, we prove that when [M ]∞ is integrable and M ∈ M2, we have M2 − [M ] ∈ Mu. We

use Lemma 1.2.8. First note that M2 − [M ] is has initial value zero and is convergent to an

almost sure limit, so the conditions for use of the lemma are satisfied. Let T by any stopping

time. As [M ]∞ is integrable and M ∈ M2, we know that M2
T − [M ]T is integrable as well,

we need to show that E(M2
T − [M ]T ) is zero. To this end, let (Tn) be a localising sequence

such that (M2 − [M ])Tn ∈Mu. We then obtain

E[M ]T = E lim
n

[M ]T∧Tn = lim
n
E[M ]TnT = lim

n
E(M2

T )Tn = lim
n
EM2

T∧Tn .

Now, as (MT−MT∧Tn)2 ≤ 4M∗2∞ , which is integrable by Theorem 1.3.1, and MT∧Tn converges

almost surely to MT , we find that M2
T∧Tn converges in L2 to M2

T , so that EM2
T∧Tn tends

to EM2
T , allowing us to conclude that E[M ]T = EM2

T and so Lemma 1.2.8 shows that

M2 − [M ] ∈Mu.

Finally, consider two elements M and N of M2. As [M,N ] = 1
2 ([M + N ] − [M ] − [N ]), we

find by our previous results that [M,N ] is in Vi and that the limit [M,N ]∞ exists and is

integrable. Noting that MN−[M,N ] = 1
2 ((M+N)2−[M+N ])− 1

2 (M2−[M ])− 1
2 (N2−[N ]),

we find that that MN − [M,N ] is in Mu as a linear combination of elements in Mu.

Lemma 3.3.11. Let M ∈M2. Then
∑

0<t(∆Mt)
2 is integrable.
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Proof. By Theorem 3.3.10, we know that [M ]∞ is integrable. As [M ] is increasing and we

have ∆[M ] = (∆M)2, we obtain
∑

0<t(∆Mt)
2 ≤ [M ]∞, and so

∑
0<t(∆Mt)

2 is integrable as

well.

3.4 Purely discontinuous local martingales

In this final section of the chapter, we use the quadratic covariation in a manner similar

to an inner product in order to define the space of purely discontinuous local martingales,

which intuitively corresponds to the orthogonal complement of the space of continuous local

martingales. We will see that purely discontinuous local martingales corresponds precisely to

the subspace of M` where the quadratic variation can be explicitly computed. Also, we will

show that any element of M` can be uniquely decomposed into a continuous and a purely

discontinuous part. This result will prove useful in Chapter 4 when defining the continuous

martingale part of a semimartingale.

Definition 3.4.1. Let M ∈M`. We say that M is purely discontinuous if [M,N ] is evanes-

cent for all N ∈ cM`. The set of purely discontinuous elements of M` is denoted by dM`.

The following two results yield basic properties of purely discontinuous local martingales.

Lemma 3.4.2. dM` is a vector space. If T is a stopping time and M ∈ dM`, then

MT ∈ dM` as well.

Proof. Let M,N ∈ dM` and let α, β ∈ R. Fix L ∈ cM`. By Lemma 3.3.8, we have

[αM + βN,L] = α[M,L] + β[N,L], so [αM + βN,L] = 0 and thus αM + βN is in dM`. We

conclude that dM` is a vector space. Now let M ∈ dM` and let T be a stopping time. With

L ∈ cM`, we have LT ∈ cM` as well, so [MT , L] = [M,LT ] = 0 by Lemma 3.3.8, yielding

MT ∈ dM`.

Lemma 3.4.3. If M is an element of M` which is both in cM` and in dM`, then M is

evanescent.

Proof. By definition, we obtain that [M,M ] is evanescent, which by Lemma 3.3.8 implies

that M is evanescent.
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Next, we show that all elements of fvM` are purely discontinuous martingales. This pro-

vides a certain level of intuitive understanding of the structure of purely discontinuous local

martingales. Afterwards, we prove that any M ∈ M` can be decomposed uniquely into a

continuous and a purely discontinuous part.

Lemma 3.4.4. Let M ∈ fvM` and let N ∈ M`. Almost surely,
∑

0<s≤t ∆Ms∆Ns is

absolutely convergent for all t ≥ 0. Furthermore, [M,N ]t =
∑

0<s≤t ∆Ms∆Ns.

Proof. That
∑

0<s≤t ∆Ms∆Ns is absolutely convergent for all t ≥ 0 follows from Lemma

3.3.5. To prove the result on the quadratic covariation, first note that for any M ∈ fvM`, the

integration-by-parts formula applies and yields that M2
t −

∑
0<s≤t(∆Ms)

2 = 2
∫ t

0
Ms− dMs,

which is a local martingale by Lemma 3.3.2. Therefore, [M ]t =
∑

0<s≤t(∆Ms)
2 in this case.

As a consequence, when M ∈ fvM` and N ∈ fvM`, we have

[M,N ]t =
1

4
[M +N ]t −

1

4
[M −N ]t

=
1

4

∑
0<s≤t

(∆Ms + ∆Ns)
2 − 1

4

∑
0<s≤t

(∆Ms −∆Ns)
2 =

∑
0<s≤t

∆Ms∆Ns.

Next, consider the case where M ∈ fvM` and N ∈Mb. By Lemma 3.3.3, MtNt−
∫ t

0
Ns dMs

is inM`. As N is bounded, we obtain
∫ t

0
Ns dMs =

∑
0<s≤t ∆Ns∆Ms +

∫ t
0
Ns− dMs, where

the latter term is in M` by Lemma 3.3.2. Thus, MN −
∑

0<s≤t ∆Ns∆Ms is in M` and so

[M,N ]t =
∑

0<s≤t ∆Ms∆Ns in this case.

Considering the case where N ∈Mb
`, let (Tn) be a localising sequence such that NTn ∈Mb.

We then obtain [M,N ]Tnt = [M,NTn ]t =
∑

0<s≤t ∆Ms∆N
Tn
s =

∑
0<s≤t∧Tn ∆Ms∆Ns almost

surely, and letting n tend to infinity, we conclude that [M,N ]t =
∑

0<s≤t ∆Ms∆Ns in this

case as well.

Finally, we consider M ∈ fvM` and N ∈M`. By Theorem 3.3.1, there exists N b ∈Mb
` and

N i ∈ fvM` such that N = N b +N i almost surely. By what was already shown, we obtain

[M,N ]t = [M,N b]t + [M,N i]t =
∑

0<s≤t

∆Ms∆N
b
s +

∑
0<s≤t

∆Ms∆N
i
s =

∑
0<s≤t

∆Ms∆Ns,

up to indistinguishability, as desired.

Lemma 3.4.5. It holds that fvM` ⊆ dM`.

Proof. Let M ∈ fvM` and let N ∈ cM`. We then obtain [M,N ]t =
∑

0<s≤t ∆Ms∆Ns = 0

by Lemma 3.4.4, proving M ∈ dM`.
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Lemma 3.4.6. Let M ∈M2. There exists a purely discontinuous square-integrable martin-

gale Md with the properties that ∆Md = ∆M and [Md]t =
∑

0<s≤t(∆Ms)
2 almost surely.

Proof. Let (Tn) be a regular sequence of positive stopping times covering the jumps of M ,

and define An = ∆MTn1(t≥Tn) and Nn = An − Π∗pA
n. We will prove the result by showing

that
∑n
k=1N

n converges in M2 to a purely discontinuous square-integrable satisfying the

requirements of the lemma.

To this end, first note that (VAn)∞ = |∆MTn |. Therefore, by Lemma 1.3.1, An is in V with

(VA)∞ square-integrable. Lemma 3.2.7 then shows that Π∗pA
n is in V with Π∗pA

n
∞ square-

integrable, and E(Π∗pA
n
∞)2 ≤ 8E(VAn)2

∞ = 8E(∆MTn)2. As a consequence, Nn is inM2 and

it holds that E(Nn
∞)2 ≤ 2E(An∞)2 + 2E(Π∗pA

n
∞)2 ≤ 16E(∆MTn)2. Define Mn =

∑n
i=1N

i,

we wish to argue that (Mn) is a Cauchy sequence in M2. To obtain this, note that as

the graphs of (Tn) are disjoint, we obtain by Lemma 3.4.4 and Lemma 3.2.11 for k 6= n

that [Nn, Nk]t =
∑

0<s≤t ∆Nn
s ∆Nk

s =
∑

0<s≤t ∆Ans∆Aks = 0 almost surely. Therefore, by

Theorem 3.3.10, NnNk is inMu, in particular ENn
∞N

k
∞ = 0. For 1 ≤ k < n, we then obtain

that

‖Mn −Mk‖22 = E

(
n∑

i=k+1

N i
∞

)2

=

n∑
i=k+1

n∑
j=k+1

EN i
∞N

j
∞

=

n∑
i=k+1

E(N i
∞)2 ≤ 16

n∑
i=k+1

E(∆MTi)
2 ≤ 16E

∞∑
i=k+1

(∆MTi)
2.

By Lemma 3.3.11,
∑

0<t(∆Mt)
2 is integrable. The dominated convergence theorem then

allows us to conclude that the above tends to zero as k and n tend to infinity. As a conse-

quence, (Mn) is a Cauchy sequence inM2. Therefore, by Theorem 1.3.4, it converges inM2

to some limit Md.

It remains to prove the properties claimed for Md. We first show that Md is in dM`.

Consider some N ∈ cMb. We then have in particular that N ∈ M2. We wish to argue

that [Md, N ] is evanescent. To this end, as [Md, N ] is continuous and has paths of finite

variation, it suffices by Theorem 3.1.9 to show that [Md, N ] ∈ Mu. By Theorem 3.3.10, it

holds that [Md, N ] is almost surely convergent. Therefore, to show [Md, N ] ∈Mu, it suffices

by Lemma 1.2.8 to argue that E[Md, N ]T = 0 for all stopping times T . As N ∈ cMb here is

arbitrary, it suffices to show that E[Md, N ]∞ = 0 for all N ∈ cMb.

To prove E[Md, N ]∞ = 0, first note that [Md, N ] = [Md−Mn, N ]+[Mn, N ] = [Md−Mn, N ],

by Lemma 3.4.4. Thus, it suffices to prove that limnE[Md −Mn, N ]∞ = 0. By Theorem
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3.3.10, we have E[Md −Mn, N ]∞ = E(Md
∞ −Mn

∞)N∞. As Md −Mn converges to zero

in M2, E(Md − Mn)2
∞ converges to zero by Theorem 1.3.1. Therefore, by the Cauchy-

Schwartz inequality, E(Md
∞ −Mn

∞)N∞ also converges to zero. As a consequence, we obtain

E[Md, N ]∞ = limnE[Md −Mn, N ]∞ = 0. Collecting our results, this yields that [Md, N ]

is evanescent for all N ∈ cMb. Now consider instead a general element N ∈ cM`. By

Lemma 3.1.6, there is a localising sequence (Tn) such that MTn ∈ cMb. We then obtain

that [Md, N ]Tn is evanescent by what already was shown, and letting n tend to infinity, we

conclude that [Md, N ] is evanescent for any N ∈ cM`, proving that Md ∈ dM`, as desired.

Next, we show that ∆Md = ∆M . To this end, note that by Theorem 1.3.3, there is a

subsequence such that supt≥0 |Md
t −M

nk
t | converges almost surely to zero. By Lemma A.2.6,

supt≥0 |∆Md
t −∆Mnk

t | then also converges almost surely to zero. Note that by Lemma 3.2.11,

∆Mn =
∑n
i=1 ∆MTi1[[Ti]] almost surely. Therefore, it also almost surely holds that ∆Mnk

converges pointwise to
∑∞
i=1 ∆MTi1[[Ti]]. As a consequence, ∆Md =

∑∞
i=1 ∆MTi1[[Ti]] = ∆M

almost surely, as desired.

It remains to show that [Md]t =
∑

0<s≤t(∆Ms)
2 almost surely. To this end, note that apply-

ing Lemma 3.4.4 twice, we have [Md−Mn]t = [Md]t−2
∑

0<s≤t ∆Md
s∆Mn

s +
∑

0<s≤t(∆M
n
s )2.

Recalling that ∆Mn =
∑n
i=1 ∆MTi1[[Ti]], we find

∑
0<s≤t ∆Md

s∆Mn
s =

∑n
i=1(∆MTi)

21(Ti≤t)

and
∑

0<s≤t(∆M
n
s )2 =

∑n
i=1(∆MTi)

21(Ti≤t), so that

[Md −Mn]t = [Md]t −
n∑
i=1

(∆MTi)
21(Ti≤t).

Now, as M ∈ M2, Lemma 3.3.11 shows that
∑

0<s≤t(∆Ms)
2 is integrable, in particular

almost surely finite. Therefore, the above yields limn[Md−Mn]t = [Md]t−
∑

0<s≤t(∆Ms)
2,

where the limit is almost sure. Furthermore, we obtain that [Md −Mn]t is nonnegative and

bounded from above by [Md]t. As [Md]t is integrable by Theorem 3.3.10, we may apply the

dominated convergence theorem to obtain E limn[Md−Mn]t = limnE[Md−Mn]t. However,

as Md −Mn converges to zero in M2, E[Md −Mn]∞ converges to zero as well. All in all,

we conclude E([Md]t −
∑

0<s≤t(∆Ms)
2) = E limn[Md −Mn]t = 0, and as the integrand is

nonnegative by our earlier observations, this implies [Md]t =
∑

0<s≤t(∆Ms)
2 almost surely,

as desired.

Theorem 3.4.7. Let M ∈ M`. There exists processes M c ∈ cM` and Md ∈ dM`, unique

up to indistinguishability, such that M = M c +Md.

Proof. Uniqueness follows from Lemma 3.4.3. We prove existence.
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First consider the case where M ∈ Mb. By Lemma 3.4.6, there is Md ∈ dM` such that

∆Md = ∆M almost surely. Putting N = M −Md, we find that N ∈ M` and N is almost

surely continuous. Letting F be the null set where N is not continuous, put M c = 1F cN .

Then, M c ∈ cM` and Md ∈ dM`, and M = M c +Md almost surely. This proves existence

in the case M ∈Mb.

Next, consider the case M ∈ Mb
`. Let (Tn) be a localising sequence such that MTn ∈ Mb.

From what we already have shown, there exists processes (MTn)c ∈ cM` and (MTn)d ∈ dM`

such that MTn = (MTn)c + (MTn)d almost surely. As both cM` and dM` are stable

under stopping, uniqueness yields ((MTn+1)c)Tn = (MTn)c and ((MTn+1)d)Tn = (MTn)d.

Therefore, the processes may be pasted together to processes M c and Md in cM` and dM`,

respectively, such that M = M c +Md almost surely, proving existence in the case M ∈Mb
`.

Finally, consider a general M ∈ M`. By Theorem 3.3.1, there exists processes M b ∈ Mb
`

and Mv ∈ fvM` such that M = M b + Mv almost surely. By Lemma 3.4.4, Mv is in

dM`. By what was already shown, there exists a decomposition M b = (M b)c+(M b)d where

(M b)c ∈ cM` and (M b)d ∈ dM`. Therefore, putting M c = (M b)c and Md = (M b)d +Mv,

we obtain the desired result.

Theorem 3.4.7 allows us to prove several interesting results both about M` in general and

about dM` in particular. Theorem 3.4.8 gives a characterization of dM` in terms of the

quadratic covariation, while Theorem 3.4.9 shows how the quadratic covariation can be de-

composed into two components where one is continuous and the other is the sum of its jumps.

Theorem 3.4.11 yields a sufficient criterion for an element of dM` to be in fvM`.

Theorem 3.4.8. Let M ∈M`. The following are equivalent:

(1). M ∈ dM`.

(2). [M ]t =
∑

0<s≤t(∆Ms)
2.

(3). For any N ∈M`, [M,N ]t =
∑

0<s≤t ∆Ms∆Ns.

Proof. Proof that (1) implies (2). First consider the case where M is purely discon-

tinuous with M = M b + M i, where M b ∈ Mb and M i ∈ fvM`. We wish to show

[M ]t =
∑

0<s≤t(∆Ms)
2. By Lemma 3.4.5, M i is purely discontinuous. As M b = M −M i,

M b is purely discontinuous as well. Applying Lemma 3.4.6, we obtain N ∈ dM` with the

properties that ∆N = ∆M b and [N ]t =
∑

0<s≤t(∆M
b
s )2. As M b − N is continuous while
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both M b and N are purely discontinuous, we conclude that M b = N almost surely by Lemma

3.4.3, in particular [M b]t =
∑

0<s≤t(∆M
b
s )2. Applying Lemma 3.4.4, we then obtain

[M ]t = [M b]t + 2[M b,M i]t + [M i]t

=
∑

0<s≤t

(∆M b
s )2 + 2

∑
0<s≤t

∆M b
s∆M i

s +
∑

0<s≤t

(∆M i
s)

2 =
∑

0<s≤t

(∆Ms)
2,

proving the result in this case. Now consider an arbitrary M ∈ dM`. By Theorem 3.3.1,

M = M b + Mv almost surely, where M b ∈ Mb
` and Mv ∈ fvM`. Letting Tn be a common

localising sequence for M b and Mv, our previous result implies

[M ]Tnt = [MTn ]t =
∑

0<s≤t

(∆MTn
s )2 =

∑
0<s≤t∧Tn

(∆Ms)
2,

so letting n tend to infinity yields the result in the general case.

Proof that (2) implies (3). Now consider M ∈ M` such that [M ]t =
∑

0<s≤t(∆Ms)
2.

We wish to argue that for any N ∈ M`, [M,N ]t =
∑

0<s≤t ∆Ms∆Ns. We first show that

M ∈ dM`. Using Theorem 3.4.7, let M = M c + Md be the decomposition of M into its

continuous and purely discontinuous parts. By the implication already proven, it holds that

[Md]t =
∑

0<s≤t(∆M
d
s )2 =

∑
0<s≤t(∆Ms)

2 = [M ]t. As [M ] = [M c+Md] = [M c]+[Md], we

conclude that [M c] is evanescent. By Lemma 3.3.8, M c is evanescent. Therefore, M = Md

almost surely, so M ∈ dM`.

Now take N ∈M`. Using Theorem 3.4.7, let N = N c +Nd be the decomposition of N into

its continuous and purely discontinuous parts. As M ∈ dM`, both M + Nd and M − Nd

are in dM`. By the implication already proven, we then obtain

[M,N ]t = [M,Nd]t = 1
4 ([M +Nd]t − [M −Nd]t)

=
1

4

∑
0<s≤t

(∆Ms + ∆Nd
s )2 − (∆Ms −∆Nd

s )2

=
∑

0<s≤t

∆Ms∆N
d
s =

∑
0<s≤t

∆Ms∆Ns,

as desired.

Proof that (3) implies (1). Fix N ∈ cM`. As [M,N ] =
∑

0<s≤t ∆Ms∆Ns = 0 by our

assumptions, it follows that M ∈ dM`.

Theorem 3.4.9. Let M,N ∈M`. It holds that [M,N ]t = [M c, N c]t +
∑

0<s≤t ∆Ms∆Ns.
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Proof. Fix M,N ∈M`. Applying Theorem 3.4.8, we obtain

[M,N ]t = [M c, N c]t + [M c, Nd]t + [Md, N c]t + [Md, Nd]t

= [M c, N c]t +
∑

0<s≤t

∆Md
s∆Nd

s = [M c, N c]t +
∑

0<s≤t

∆Ms∆Ns,

as was to be proven.

Lemma 3.4.10. Let M ∈M`. If ∆M ∈ V, then ∆M ∈ Vi`.

Proof. Using Lemma 3.1.5, let (Rn) be a localising sequence such that (M b)Rn ∈ Mu, let

Sn = inf{t ≥ 0 | (V∆M )t > n} and let Un = inf{t ≥ 0 | |Mt| > n}. Putting Tn = Rn∧Sn∧Un,

we then obtain

(V Tn∆M )∞ ≤ (V∆M )Tn− + ∆(V∆M )Tn ≤ n+ |∆MTn | ≤ 2n+ |MTn |,

which is integrable, so V Tn∆M ∈ Ai and thus ∆M ∈ Vi`.

Theorem 3.4.11. Assume that M ∈ dM`. If ∆M has finite variation, then M almost

surely has paths of finite variation.

Proof. We know that M = M b + Mv almost surely, where M b ∈ Mb
` and Mv ∈ fvM`. It

will suffice to show that M b almost surely has paths of finite variation. To this end, first note

that ∆M b = ∆M − ∆Mv. As ∆M and ∆Mv are in V, so is ∆M b, and so Lemma 3.4.10

shows that ∆M b ∈ Vi`.

As ∆M b ∈ V, we may define A =
∑

0<s≤t ∆M b
s , where the sum converges absolutely for all

t ≥ 0. As VA ≤ 2V∆Mb , we find that A ∈ Vi`, and so the compensator Π∗pA is well-defined.

Put N = A−Π∗pA, we then have N ∈ fvM`. We claim that N has the same jumps as M . To

show this, let (Tn) be a localising sequence such that ATn ∈ Vi, MTn ∈Mu and NTn ∈Mu.

Let T be some stopping time. If T is totally inaccessible, ∆(Π∗pA)TnT = (Π∗pA
Tn)T = 0 almost

surely by Theorem 2.3.9, yielding ∆NTn
t = ∆ATnT = ∆MTn

T . If T is predictable, we have

E(∆NTn |FT−) = 0 by Lemma 3.1.8 while (Π∗pA)TnT is FT− measurable by Theorem 2.3.9, so

∆Π∗pA
Tn
T = E(∆Π∗pA

Tn
T |FT−) = E(∆ATnT |FT−)− E(∆NTn |FT−) = E(∆MTn

T |FT−) = 0

almost surely. Thus, for any stopping time T which is either predictable or totally inacces-

sible, ∆Π∗pA
Tn
T is almosts surely zero. Applying Theorem 2.3.8, this shows that Π∗pA

Tn is

almost surely continuous, so Π∗pA is almost surely continuous. We conclude that M b and N

almost surely have the same jumps. As both M b and N are in dM`, Lemma 3.4.3 shows

that they are indistinguishable. As N ∈ fvM`, this proves that M b almost surely has paths

of finite variation. This concludes the proof.
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3.5 Exercises

Exercise 3.5.1. Assume that X is a continuous adapted process with initial value zero and

that S and T are stopping times. Show that if XT and XS are inMu, then XS∧T and XS∨T

are in Mu as well.

Exercise 3.5.2. Let M ∈ M`. Show that M ∈ Mu if and only if (MT )T∈C is uniformly

integrable, where C = {T |T is a bounded stopping time}.

Exercise 3.5.3. Let M be a local martingale and assume that M0 is integrable. Show that

if M ≥ 0, then M is a supermartingale.

Exercise 3.5.4. Let M ∈M` and define M∗t = sups≤t |Ms|. Show that M∗ ∈ Ai`.

Exercise 3.5.5. Let M ∈ M`. Show that if ∆M ≥ 0, then ∆MT is almost surely zero for

all predictable stopping times.

Exercise 3.5.6. Let N be an Ft Poisson process, and let Tn be the n’th jump time of N .

Show that Tn is totally inaccessible.

Exercise 3.5.7. Let N be an Ft Poisson process. Show that N ∈ Ai` and that Π∗pNt = t

almost surely.

Exercise 3.5.8. Let A ∈ Ai` and assume that Π∗pA is almost surely continuous. Show that

∆AT is almost surely zero for all predictable stopping times T .

Exercise 3.5.9. Let A ∈ V. Show that if A is predictable, then A ∈ Vi`.

Exercise 3.5.10. Let N be an Ft Poisson process and let Mt = Nt−t. Show that the process∫ t
0
Ns− dMs is in M` while the process

∫ t
0
Ns dMs is not in M`.

Exercise 3.5.11. Let T be a totally inaccessible stopping time, and let At = 1(t≥T ). Show

that E exp(−λΠ∗pAT ) = 1/(1 + λ) for all λ > 0.

Exercise 3.5.12. Let M ∈ M` and let S ≤ T be two stopping times. Show that if the

equality [M ]S = [M ]T holds almost surely, then MT = MS almost surely.

Exercise 3.5.13. Let W be a one-dimensional Ft Brownian motion. Let t ≥ 0 and define

tnk = kt2−n for k ≤ 2n. Show that
∑2n

k=1(Wtnk
− Wtnk−1

)2 converges in probability to t.

Use this to conclude that the convergences
∑2n

k=1Wtnk−1
(Wtnk

−Wtnk−1
)

P−→ 1
2W

2
t − 1

2 t and∑2n

k=1Wtnk
(Wtnk

−Wtnk−1
)

P−→ 1
2W

2
t + 1

2 t hold as n tends to infinity.

Exercise 3.5.14. Define M2
` as the set of M ∈ M` such that there exists a localising

sequence (Tn) with MTn ∈M2. Show that M ∈M2
` if and only if [M ] ∈ Ai`.
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Exercise 3.5.15. Let M,N ∈M2
` . Show that [M,N ] ∈ Vi`.

Exercise 3.5.16. Let M,N ∈ M2
` and define the predictable quadratic covariation 〈M,N〉

as the compensator of [M,N ], and define the predictable quadratic variation 〈M〉 as the

compensator of [M ]. Show that M is evanescent if and only if 〈M〉 is evanescent.

Exercise 3.5.17. Let N be an Ft Poisson process and let Mt = Nt− t. Prove that [M ] = N .

Exercise 3.5.18. Let cM2 = cM` ∩ M2 and dM2 = dM` ∩ M2. Show that for any

M ∈M2, there exists M c ∈ cM2 and Md ∈ dM2 such that M = M c +Md almost surely.
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Chapter 4

Stochastic integration

In this chapter, we introduce the space of semimartingales, which will provide us with a

natural space of integrators for the stochastic integral, and we define the stochastic integral

of a locally bounded predictable process with respect to a semimartingale and consider the

basic properties of the integral, in particular proving Itô’s formula.

The structure of the chapter is as follows. In Section 4.1 we define the space of semimartin-

gales, we introduce the quadratic variation for semimartingales and we prove some elementary

properties. In particular, we introduce the concept of pre-stopping, which is particularly ap-

plicable to semimartingales.

In Section 4.2, we define the stochastic integral. The main difficulty is defining the integral

with respect to local martingales. Here, the theory developed in Chapter 3 will prove essential.

We also prove some elementary properties of the stochastic integral.

Finally, in Section 4.3, we consider some more advanced properties of the stochastic integral,

proving the dominated convergence theorem, the integration-by-parts formula as well as Itô’s

formula.
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4.1 Semimartingales

In this section, we define the space of semimartingales and investigate its basic properties.

Definition 4.1.1. We say that a process X is a semimartingale if it is càdlàg and adapted

and there exists M ∈M` and A ∈ V such that X = X0+M+A. The space of semimartingales

is denoted by S.

The following lemmas yield some fundamental results about semimartingales. Lemma 4.1.2

shows that having an almost sure decomposition of a càdlàg process X is sufficient to en-

sure the semimartingale property, while Lemma 4.1.3 shows that S is a vector space stable

under stopping. Lemma 4.1.4 concerns the level of uniqueness in the decomposition of a

semimartingale into its local martingale and finite variation parts, and Lemma 4.1.5 proves

the existence of a decomposition with extra regularity properties.

Lemma 4.1.2. Let X be a càdlàg process such that X = X0 +M +A almost surely, where

M ∈M` and A ∈ V. Then X is a semimartingale.

Proof. Let N = X − X0 − M − A, the process N is then an evanescent càdlàg process

and therefore an element of M`. We then obtain X = X0 + (M + N) + A, so X is a

semimartingale.

Lemma 4.1.3. It holds that S is a vector space. If T is any stopping time and X ∈ S, then

XT ∈ S as well. If F ∈ F0 and X ∈ S, then 1FX ∈ S as well.

Proof. S is a vector space since M` and V are vector spaces. Next, let T be a stopping

time and assume that X ∈ S with X = X0 + M + A. Then XT = X0 + MT + AT . As

MT ∈ M` and AT ∈ V, it follows that XT ∈ S. Finally, for F ∈ F0, we obtain that

1FX = 1FX0 + 1FM + 1FA, where 1FX0 is F0 measurable, 1FM ∈ M` and 1FA ∈ V.

Thus, 1FX ∈ S.

Lemma 4.1.4. Let X be a semimartingale. If X = X0 +M +A and X = X0 +N +B are

two decompositions of X, it holds that M −N and A−B are in fvM`.

Proof. Clearly, M −N = B−A. The left-hand side is a local martingale, and the right-hand

side is of finite variation. By Theorem 3.1.9, both processes are in fvM`.
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Lemma 4.1.5. Let X be a semimartingale. Then, there exists M ∈ Mb
` and A ∈ V such

that X = X0 +M +A up to indistinguishability.

Proof. Let X = X0 + M + A be some decomposition of X. By Theorem 3.3.1, we there

exists M b ∈ Mb
` and Mv ∈ fvM` such that M = M b + Mv up to indistinguishability. In

particular, Mv has paths of finite variation. Thus, we obtain X = X0 +M b + (A+Mv) up

to indistinguishability, where M b ∈Mb
` and A+Mv ∈ V.

Lemma 4.1.5 provides a useful decomposition of semimartingales, and in particular shows

that locally, and semimartingale is the sum of a bounded martingale and an adapted càdlàg

process of finite variation. We will now introduce pre-stopping and pre-localisation, and

show that semimartingales are stable under pre-stopping and pre-locally possesses some very

regular features.

Definition 4.1.6. Let X be any stochastic process, and let T be a stopping time. The process

X pre-stopped at T , denoted XT−, is defined by XT− = X1[[0,T [[ +XT−1[[T,∞[[.

Intuitively, XT− corresponds to stopping X at T−, or in other words, just before T , while

XT corresponds to stopping X at T . The connection between the two types of localisation

is summarized in the equation XT− = XT − ∆XT 1[[T,∞[[. While martingales are stable

under stopping, they are in general not stable under pre-stopping. The primary usefulness

of pre-stopping is contained in the following three lemmas.

Lemma 4.1.7. Let X be a semimartingale and let T be a stopping time. Then XT− is a

semimartingale as well.

Proof. Let X = X0 +M + A, where M ∈ M` and A ∈ V. Then XT− = XT −∆XT 1[[T,∞[[,

where the latter term is in V. As XT is a a semimartingale by Lemma 4.1.3, we conclude

that XT− is a semimartingale, as desired.

Lemma 4.1.8. Let X be any adapted càdlàg process. Define Tn = inf{t ≥ 0||Xt| > n}.
Then (Tn) is a localising sequence, and XTn−1(Tn>0) is bounded by n. In the case where X

has initial value zero, Tn is positive and XTn− is bounded by n.

Proof. By right-continuity, |XTn | ≥ n. As càdlàg mappings are bounded on compacts, this

implies that Tn increases to infinity. If Tn > 0, we have |Xt| ≤ n for 0 ≤ t < Tn. Therefore,
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XTn−1(Tn>0) is bounded by n. In the case where X has initial value zero, it is immediate

that Tn is positive. Therefore, XTn− = XTn−1(Tn>0), so in this case, XTn− is also bounded

by n.

We express the content of Lemma 4.1.8 by saying that any adapted càdlàg process is pre-

locally bounded.

Lemma 4.1.9. X be a semimartingale. There exists a localising sequence such that almost

surely, XTn− is the sum of X0, a bounded martingale and an adapted càdlàg process of

bounded variation.

Proof. It will suffice to consider the case where X has initial value zero. By Lemma 4.1.5,

we almost surely have X = M + A, where M ∈ Mb
` and A ∈ V. Let (Tn) be a localising

sequence such that MTn is bounded. Since VA is càdlàg adapted, by Lemma 4.1.8 it is

pre-locally bounded. Let (Sn) be a localising sequence such that (VA)Sn− is bounded. Put

Un = Tn ∧ Sn, we then have XUn− = MUn− + AUn− = MUn + (AUn− − ∆MUn1[[Un,∞[[)

almost surely. Here, MUn = (MTn)Sn , so MUn is a bounded martingale. And since it

holds that ∆MUn ≤ supt≤Un ∆Mt ≤ supt≤Tn ∆Mt, we find that ∆MUn is bounded. As

a consequence, ∆MUn1[[Un,∞[[ is of bounded variation. And because (VA)Un− ≤ (VA)Sn−,

we find that (VA)Un− is bounded, and so AUn− has bounded variation. We conclude that

AUn− −∆MUn1[[Un,∞[[ has bounded variation, concluding the proof.

Our use of pre-stopping will in general be as follows. Consider a localising sequence (Tn).

If we are to prove a result solely concerning semimartingales, we first note that if the result

holds on [[0, Tn[[ for all n, it holds for all of R+×Ω. By Lemma 4.1.7, it will therefore suffice

to consider semimartingales pre-stopped at some stopping time. And by Lemma 4.1.9, we

may then reduce to the case where X = X0 +M +A, M being a bounded martingale and A

being of bounded variation.

Next, we introduce the continuous martingale part of a semimartingale, as well as the

quadratic variation and quadratic covariation processes for semimartingales.

Lemma 4.1.10. For any semimartingale X, there exists a process Xc, called the continuous

martingale part of X, unique up to indistinguishability, such that for any decomposition

X = X0 +M +A, Xc is equal to M c, the continuous martingale part of M . We call Xc the

continuous martingale part of X.
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Proof. First, we consider uniqueness. Assume that there exists two processes Y and Z with

the properties given in the lemma. Let X = M + A be a decomposition of X into its

martingale part and finite variation part. Since Y = M c and Z = M c, where M c is unique

up to evanescence by Theorem 3.4.7, Y and Z are equal up to evanescence.

As regards existence, recall that by Theorem 3.4.7, every local martingale M has a continuous

martingale part, unique up to indistinguishability, characterized by M −M c being a purely

discontinuous local martingale. Therefore, the criterion for being the continuous martingale

part of a semimartingale is well-defined. It will suffice to consider the case of initial value

zero. Let X = M + A be a decomposition of X, and let Xc = M c. We claim that Xc so

defined satisfies the requirements of the continuous martingale part of X. To this end, let

X = N+B be another decomposition of X. Then N = M+(N−M), where N−M ∈ fvM`

by Lemma 4.1.4. In particular, by Lemma 3.4.5, N −M ∈ dM`. Therefore, N c = M c and

Xc is equal to the continuous martingale part of N as well.

Lemma 4.1.11. Let X be a semimartingale. Then the sum
∑

0<s≤t(∆Xs)
2 is absolutely

convergent almost surely.

Proof. By the convention that no process jumps at zero, it will suffice to consider the case

with initial value zero. In this case, Let X = M + A be a decomposition of X. From

Lemma 3.3.5, we know that the process
∑

0<s≤t(∆M)2
s is almost surely finite. From Lemma

A.2.16, we know that the process
∑

0<s≤t(∆A)2
s is almost surely finite. Because we know

(∆X)2
s = (∆Ms + ∆As)

2 ≤ 4(∆M)2
s + 4(∆A)2

s, the result follows.

Definition 4.1.12. Let X be a semimartingale. We define the quadratic variation process

of X by [X]t = [Xc]t +
∑

0<s≤t(∆X)2
s, where [Xc] is the quadratic variation of the local

martingale Xc. If Y is another semimartingale, we define the quadratic covariation process

of X and Y by [X,Y ]t = [Xc, Y c]t +
∑

0<s≤t ∆Xs∆Ys.

Note that the sum is absolutely convergent by Lemma 4.1.11. Also note that since [Xc, Y c] is

uniquely determined up to evanescence, [X,Y ] is uniquely determined up to evanescence as

well, and the polarization identity [X,Y ] = 1
4 ([X+Y ]− [X−Y ]) holds. Also, it is immediate

that [X] ∈ A with ∆[X] = (∆X)2 while [X,Y ] ∈ V with ∆[X,Y ] = ∆X∆Y . Further note

the similarity of Definition 4.1.12 with the result in Theorem 3.4.9.

Finally, note that for M,N ∈ M`, their continuous martingale parts as defined in Lemma

4.1.10 coincide with the continuous martingale parts M c and N c as given in Theorem 3.4.7.

Therefore, by Theorem 3.4.8, the quadratic covariation process for semimartingales M and
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N , as given in Definition 4.1.12, is the same as the quadratic covariation process for local

martingales of M and N as given in Theorem 3.3.4.

The following lemma is the semimartingale analogoue of Lemma 3.3.8.

Lemma 4.1.13. Let X and Y be semimartingales, and let T be any stopping time. The

quadratic covariation satisfies the following properties up to indistinguishability.

(1). [X,X] = [X].

(2). [·, ·] is symmetric and linear in both of its coordinates.

(3). For any α ∈ R, [αX] = α2[X].

(4). It holds that [X + Y ] = [X] + 2[X,Y ] + [Y ].

(5). It holds that [X,Y ]T = [XT , Y ] = [X,Y T ] = [XT , Y T ].

(6). [X,Y ] is zero if and only if XcY c ∈M` and ∆X∆Y is evanescent.

(7). X has a continuous modification in V if and only if [X] is evanescent.

(8). X has a continuous modification in V if and only if [X,Y ] is zero for all Y ∈ S.

(9). If F ∈ F0, 1F [X,Y ] = [1FX,Y ] = [X, 1FY ] = [1FX, 1FY ].

(10). [X,Y ]T− = [XT−, Y ] = [X,Y T−] = [XT−, Y T−].

Proof. The first five properties are immediate from Lemma 3.3.8 and the definition of the

quadratic variation and the quadratic covariation processes. We consider the remaining

properties.

Proof of (6). First assume that [X,Y ] is zero. Since [Xc, Y c] is continuous, we obtain

∆Xt∆Yt = ∆

 ∑
0<s≤t

∆Xs∆Ys

 = ∆[X,Y ]t = 0,

so ∆X∆Y is evanescent. As we then have [Xc, Y c] = [X,Y ] = 0 up to evanescence, Lemma

3.3.8 yields that XcY c is a local martingale. Conversely, assume that XcY c ∈ M` and that

∆X∆Y is evanescent. We then obtain [X,Y ] = [Xc, Y c], which is evanescent, again by

Lemma 3.3.8.
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Proof of (7). Assume that [X] is evanescent. By what was previously shown, (Xc)2 is a

local martingale and X is almost surely continuous. We wish show that X almost surely has

paths of finite variation. To this end, let (Tn) be a localising sequence, we then find that

E(Xc)2
t∧Tn = 0 and so (Xc)2

t∧Tn is almost surely zero. Therefore, (Xc)2
t is almost surely zero,

and so Xc is evanescent. Next, consider a decomposition X = X0 +M +A, where M ∈M`

and A ∈ V. It will suffice to show that M almost surely has paths of finite variation. As

Xc is evanescent, M ∈ dM`. And as X is almost surely continuous, there is a modification

N ∈ dM` of M such that ∆N = −∆A. We then obtain ∆N ∈ V, so Theorem 3.4.11 shows

that N almost surely has paths of finite variation. Therefore, M also almost surely has paths

of finite variation, finally yielding that X almost surely has paths of finite variation.

Conversely, if X has a continuous modification in V, we obtain that Xc is evanescent and so

[X] is evanescent.

Proof of (8). This follows from the previous result.

Proof of (9). The conclusion is well-defined as 1FX is in S by Lemma 4.1.3. By the

properties already proven for the quadratic covariation, it suffices to demonstrate that almost

surely, 1F [X,Y ] = [1FX,Y ] for any F ∈ F0 and X,Y ∈ S. To this end, we apply Lemma

3.3.8 to obtain

1F [X,Y ]t = 1F [Xc, Y c]t + 1F
∑

0<s≤t

∆Xs∆Ys

= [1FX
c, Y c]t +

∑
0<s≤t

1F∆Xs∆Ys = [1FX,Y ]t

up to evanescence, as desired.

Proof of (10). By the symmetry and linearity properties already proved, it will suffice to

show [X,Y ]T− = [XT−, Y ]. To this end, let X = X0 +M +A be a decomposition of X. We

then obtain XT− = X0 + MT− + AT− = X0 + MT − ∆MT 1[[T,∞[[ + AT−. Therefore, the

continuous martingale part of XT− is (XT )c. We then obtain

[X,Y ]T−t = [X,Y ]Tt − 1(t≥T )∆Xs∆Ys = [XT , Y ]t − 1(t≥T )∆Xs∆Ys

= [(XT )c, Y c]t +
∑

0<s≤t

∆XT
s ∆Ys − 1(t≥T )∆Xs∆Ys

= [(XT−)c, Y c]t +
∑

0<s≤t

∆XT−
s ∆Ys = [XT−, Y ]t,

proving the result.
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4.2 Construction of the stochastic integral

In this section, we define and prove the existence of the stochastic integral with respect to

semimartingales and consider its basic properties. With the tools developed previously, we

can almost immediately prove the existence of the stochastic integral of a predictable and

locally bounded process with respect to a local martingale.

We begin with a motivating lemma. Consider some M ∈ M`. Let S ≤ T be stopping

times and define H = ξ1]]S,T ]] for some ξ which is bounded and FS measurable. The natural

definition of the integral of H with respect to M over [0, t] is ξ(MT
t − MS

t ). Defining L

by putting L = ξ(MT −MS), we obtain this integral in process form, where Lt intuitively

represents the integral of H with respect to M over [0, t]. The following lemma shows some

properties of this process L.

Lemma 4.2.1. Let M ∈M`, let S ≤ T be stopping times, let ξ be bounded and FS measur-

able, and let H = ξ1]]S,T ]]. Then H is predictable. Defining L = ξ(MT −MS), it holds that

L ∈M`, and for all N ∈M`, [L,N ] = H · [M,N ].

Proof. That H is predictable follows from Lemma 2.2.5. As S ≤ T , we may also write

L = (ξ(M −MS))T . Since ξ is FS measurable, ξ(M −MS) is in M` by Lemma 3.3.7, and

therefore L is in M` as well.

It remains to prove [L,N ] = H · [M,N ] for all N ∈M`. To this end, first note that

∆Lt = ξ(∆MT
t −∆MS

t ) = ξ(∆Mt1(t≤T ) −∆Mt1(t≤S)) = ξ1(S<t≤T )∆Mt = Ht∆Mt,

so ∆L = H∆M . Thus, ∆(H · [M,N ]) = H∆[M,N ] = H∆M∆N = ∆L∆N , as required

from Theorem 3.3.4. It remains to prove that LN −H · [M,N ] is in M`. To do so, we note

that by the properties of the ordinary Lebesgue integral, we have

LN −H · [M,N ] = ξ(MT −MS)N − ξ([M,N ]T − [M,N ]S)

= ξ(MTN − [M,N ]T )− ξ(MSN − [M,N ]S)

= ξ(MTN − [MT , N ])− ξ(MSN − [MS , N ]),

which is in M` by Lemma 3.3.7. By the uniqueness statement of Theorem 3.3.4, we may

now conclude that [L,N ] = H · [M,N ] for all N ∈M`.

Lemma 4.2.1 shows that by defining the integral of a simple process of the form ξ1]]S,T ]] with

respect to M ∈ M` in a manner corresponding to ordinary integrals, we obtain an element
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ofM` characterised by a simple quadratic covariation structure in relation to other elements

of M`. We take this characterisation as our defining feature of the stochastic integral with

respect to integrators inM`. We will later show that this yields an integral which in certain

cases may also be interpreted as a particular limit of ordinary Riemann sums.

First, we introduce the space of processes which will function as integrands in the stochastic

integral.

Definition 4.2.2. By I, we denote the space of predictable processes H such that there is a

localising sequence (Tn) with the property that HTn1(Tn>0) is bounded.

The reason why we include the indicator 1(Tn>0) in Definition 4.2.2 is to ensure that we

can integrate sufficiently many processes with nonzero initial value. Note that if we only

require that H is predictable with HTn bounded for some localising sequence for H to be in

I, we would exclude all processes H of the form H = H0 where H0 is F0 measurable with a

distribution which does not have bounded support. The next two lemmas combine to show

that as defined, I includes large classes of useful processes, and the lemma following that

shows that elements of I may be integrated with respect to elements of V.

Lemma 4.2.3. Assume that X is càdlàg and predictable. Then, there is a localising sequence

(Tn) such that XTn1(Tn>0) is bounded. If X has initial value zero, there is a localising

sequence (Tn) such that XTn is bounded.

Proof. First, assume that H is càdlàg and predictable. Define Tn = inf{t ≥ 0||∆Xt| > n}.
By Lemma 2.3.7, Tn is a localising sequence of positive, predictable stopping times. For each

n ≥ 1, let (Skn) be an announcing sequence for Tn. Since |∆Xt| ≤ n whenever 0 ≤ t < Tn,

we find that ∆XSkn is bounded by n for all k. Define Un = maxi≤n maxk≤n S
k
i . Then ∆XUn

is bounded by n. Furthermore, Un is increasing, and since

sup
n
Un = sup

n
max
i≤n

max
k≤n

Ski = sup
n

sup
k
Skn = sup

n
Tn,

Un tends to infinity. Thus, Un is a localising sequence such that XUn has bounded jumps.

Letting V kn = inf{t ≥ 0 | |XUn
t | > k}, we then obtain that XV kn 1(V kn>0) is bounded. Also, for

each n, (V kn ) tends to infinity. Putting Vn = maxi≤n maxk≤n V
k
i , we obtain that (Vn) is a

localising sequence such that XVn1(Vn>0) is bounded.

In the case where X has initial value zero, it holds that V kn is positive, and so XV kn is

bounded. Therefore, again defining Vn = maxi≤n maxk≤n V
k
i , we obtain that (Vn) is a

localising sequence such that XVn is bounded, as desired.
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Lemma 4.2.4. If H is càglàd and adapted, then H ∈ I. If H is càdlàg and predictable, then

H ∈ I.

Proof. Consider the case where H is càglàd and adapted. Put Tn = inf{t ≥ 0 | |Ht| > n}. As

(Tn < t) = ∪s∈Q+,s<t(|Hs| > n), we find that Tn is a stopping time, and as H is pathwisely

bounded on compacts, (Tn) is a localising sequence. If Tn = 0, HTn1(Tn>0) is zero, and if

Tn > 0, HTn is bounded by n. Thus, HTn1(Tn>0) is bounded by n and we conclude H ∈ I.

In the case where H is càdlàg and predictable, the desired result follows from Lemma 4.2.3.

Lemma 4.2.5. Let H ∈ I and let A ∈ V. Then H is pathwise Lebesgue integrable with

respect to A in the sense of Theorem 1.4.3.

Proof. Let (Tn) be a localising sequence such that HTn1(Tn>0) is bounded. Letting n tend

to infinity, we find that for almost all ω, H(ω) is bounded on compacts, therefore Lebesgue

integrable with respect to A(ω), as desired.

We are now ready to carry out the construction of the stochastic integral of an element of I

with respect to an element of M`. Our objective is to construct a local martingale with a

quadratic covariation structure similar to that found in Lemma 4.2.1. The following lemmas

will be necessary for the proof and the later proofs of the properties of the stochastic integral.

The following two lemmas consider criteria for identifying the jumps of a local martingale

in two particular situations. Note that the integrability conditions in both lemmas precisely

match those necessary for the expectations in the proofs to be well-defined.

Lemma 4.2.6. Let M ∈ Mb, let L ∈ M2 and let H be predictable and bounded. If

E∆LT∆NT = EHT∆MT∆NT for all N ∈M2 and all stopping times T , then ∆L = H∆M

almost surely.

Proof. First note that by Theorem 1.3.1, it holds for any stopping time that ∆LT and ∆NT

are square-integrable whenever L,N ∈ M2. Therefore, both ∆LT∆NT and HT∆MT∆NT

are integrable and the criterion in the lemma is well-formed.

To prove the result, note that by Theorem 2.3.8, it suffices to prove that ∆LT = HT∆MT

for all positive stopping times which are either predictable or totally inaccessible. And to
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do so, it suffices by Lemma A.1.21 to show E∆LT ξ = EHT∆MT ξ for all bounded and FT
measurable variables ξ.

Consider the case where T is predictable. Take ξ such that ξ is bounded and FT measurable.

Note that by Lemma 3.1.8, E∆LTE(ξ|FT−) = EE(∆LT |FT−)ξ = 0. Similarly, we also have

EHT∆MTE(ξ|FT−) = EHTE(∆MT |FT−)ξ = 0, since HT 1(T<∞) is FT− measurable by

Lemma 2.2.6. Therefore, to prove E∆LT ξ = EHT∆MT ξ, it suffices to demonstrate that

E∆LT η = EHT∆MT η, where η = ξ − E(ξ|FT−). Now, as E(η|FT−) = 0, Lemma 3.2.10

and Lemma 3.2.7 yields the existence of N ∈M2 such that ∆NT = η. Therefore, we obtain

E∆LT η = E∆LT∆NT = EHT∆MT∆NT = EHT∆MT η and thus E∆LT ξ = EHT∆MT ξ.

Next, consider the case where T is totally inaccesible. Again, Lemma 3.2.10 and Lemma

3.2.7 yields the existence of N ∈ M2 such that ∆NT = ξ. Therefore, we obtain that

E∆LT ξ = E∆LT∆NT = EHT∆MT∆NT = EHT∆MT ξ, as desired.

Theorem 2.3.8 now yields ∆L = H∆M almost surely.

Lemma 4.2.7. Let M ∈ M`, let L ∈ M` and let H ∈ I. If ∆L∆N = H∆M∆N almost

surely for all N ∈M`, then ∆L = H∆M almost surely.

Proof. We first consider the case where M ∈Mu, L ∈Mu and H is bounded and predictable.

Using Theorem 2.3.8, we find that to obtain ∆L = H∆M , it suffices to show ∆LT = HT∆MT

for all positive stopping times which are either predictable or totally inaccessible.

First consider the case where T is totally inacessible. By Lemma 3.2.10, there exists N ∈M`

such that ∆NT = 1, and so ∆LT = HT∆MT , as desired.

Next, consider the case where T is predictable. To prove ∆LT = HT∆MT , it suffices by

Lemma A.1.21 to show E∆LT ξ = EHT∆MT ξ for all bounded and FT measurable variables

ξ. Consider such a ξ. Note that by Lemma 3.1.8, E∆LTE(ξ|FT−) = EE(∆LT |FT−)ξ = 0.

Similarly, we also have EHT∆MTE(ξ|FT−) = EHTE(∆MT |FT−)ξ = 0, since HT 1(T<∞)

is FT− measurable by Lemma 2.2.6. Therefore, to prove E∆LT ξ = EHT∆MT ξ, it suffices

to prove E∆LT η = EHT∆MT η where η = ξ − E(ξ|FT−). Now, as E(η|FT−) = 0, Lemma

3.2.10 yields the existence of N ∈ Mu such that ∆NT = η. As ξ is bounded, η is bounded

and so in fact N ∈ Mb by the properties given in Lemma 3.2.10. Applying this, we obtain

E∆LT η = E∆LT∆NT = EHT∆MT∆NT = EHT∆MT η and thus E∆LT ξ = EHT∆MT ξ.

Summing up, Theorem 2.3.8 now allows us to conclude that ∆L = H∆M almost surely.
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This concludes the proof in the case where H is bounded and L,M ∈Mu.

Now consider the general case, where H ∈ I and L,M ∈ Mu. Let (Tn) be a localising

sequence such that HTn1(Tn>0) is bounded, LTn ∈ Mu and MTn ∈ Mu. Then, LTn1(Tn>0)

and MTn1(Tn>0) are in Mu as well, and for all N ∈M`, we have

∆(LTn1(Tn>0))∆N = 1(Tn>0)(∆L)Tn∆N = 1(Tn>0)(∆L∆N)Tn

= 1(Tn>0)(H∆M∆N)Tn = 1(Tn>0)H
Tn(∆M)Tn∆N

= (HTn1(Tn>0))∆(MTn1(Tn>0))∆N

almost surely. Therefore, ∆(LTn1(Tn>0)) = HTn1(Tn>0)∆(MTn1(Tn>0)) almost surely by

what we already have shown. Letting n tend to infinity, we obtain that ∆L = H∆M almost

surely, as desired.

Theorem 4.2.8. Let M ∈ M` and let H ∈ I. Then, there exists a process H ·M in M`,

unique up to indistinguishability, such that [H ·M,N ] = H · [M,N ] for all N ∈ M`. We

refer to H ·M as the stochastic integral of H with respect to M .

Proof. We first consider uniqueness. Assume that we have two processes L and K in M`

such that [L,N ] = H · [M,N ] and [K,N ] = H · [M,N ] for all N ∈ M`. In particular,

[L,N ] = [K,N ] for all N ∈ M`, yielding that [L−K,N ] is evanescent for all N ∈ M`. By

Lemma 3.3.8, this implies that L and K are indistinguishable.

Next, we turn to the proof of existence.

Step 1. The case of H bounded and M bounded. Assume that H is bounded and that

M ∈ Mb. In particular, M ∈ M2. For any N ∈ M2, we may apply Theorem 3.3.9 and the

Cauchy-Schwartz inequality to obtain

E

∫ ∞
0

|Hs|| d[M,N ]s| ≤ E

(∫ ∞
0

H2
s d[M ]s

) 1
2

([N ]∞)
1
2

≤
(
E

∫ ∞
0

H2
s d[M ]s

) 1
2

(E[N ]∞)
1
2 ,

which is finite by our assumptions. Therefore, we may define a function ϕ : M2 → R by

putting ϕ(N) = E
∫∞

0
Hs d[M,N ]s. The mapping ϕ is linear, and as

|ϕ(N)| ≤ E
∫ ∞

0

|Hs||d[M,N ]s| ≤
(
E

∫ ∞
0

H2
s d[M ]s

) 1
2

‖N‖2,
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by what we previously showed, it is also continuous. Therefore, Theorem 1.3.5 shows that

there exists L ∈M2 such that for all N ∈M2, ϕ(N) = EN∞L∞. We claim that L satisfies

the criteria for being the stochastic integral of H with respect to M . To prove this, we need

to show that [L,N ] = H · [M,N ] for all N ∈ M`. To do so, we first prove this in the case

where N ∈M2.

Fix N ∈M2. As we also have L ∈M2, Theorem 3.3.10 shows that LN − [L,N ] ∈Mu, and

therefore E[L,N ]∞ = E
∫∞

0
Hs d[M,N ]s. As this holds for any N ∈ M2, we also obtain for

all stopping times T that

E[L,N ]T = E[L,NT ]∞ = E

∫ ∞
0

Hs d[M,NT ]s = E

∫ T

0

Hs d[M,N ]s.

Therefore, by Lemma 1.2.8, the process [L,N ]t−
∫ t

0
Hs d[M,N ]s is inMu. We will show that

it is also continuous, this will yield that the process in fact is evanescent. To prove continuity,

note that the jump process of this martingale is ∆Lt∆Nt−Ht∆Mt∆Nt. Now fix a stopping

time T . As L,N ∈ M2, Theorem 1.3.1 shows that ∆LT and ∆NT are square-integrable for

all stopping times T . Thus, we obtain that E∆LT∆NT = EHT∆MT∆NT for all stopping

times T and all N ∈ M2. Lemma 4.2.6 then shows that ∆L = H∆M almost surely. As

a consequence, [L,N ]t −
∫ t

0
Hs d[M,N ]s is in Mu and almost surely has continuous paths

of finite variation. By Theorem 3.1.9, we then find that the process is evanescent. Thus,

[L,N ] = H · [M,N ] for all N ∈M2. In order to prove that L is the stochastic integral of H

with respect to M , it remains to extend this to all N ∈ M`. To this end, first note that if

N ∈ fvM`, Lemma 3.4.4 yields

[L,N ]t =
∑

0<s≤t

∆Ls∆Ns =
∑

0<s≤t

Hs∆Ms∆Ns =

∫ t

0

Hs d[M,N ]s.

Now take any N ∈ M`. By Theorem 3.3.1, we have N = N b + Nv almost surely, where

N b ∈ Mb
` and Nv ∈ fvM`. Let (Tn) be a localising sequence such that (N b)Tn ∈ Mb, we

then obtain [L,N b]Tn = [L, (N b)Tn ] = H · [M, (N b)Tn ] = (H · [M,N b])Tn . Letting n tend to

infinity, we get [L,N b] = H · [M,N b]. All in all, we then obtain

[L,N ] = [L,N b] + [L,Nv] = H · [M,N b] +H · [M,Nv] = H · [M,N ],

as desired. This proves existence in the case where H and M are bounded.

Step 2. The case of H bounded and M locally bounded. We now retain the as-

sumption that H is bounded while considering M ∈ Mb
`. Let (Tn) be a localising sequence

such that MTn ∈ Mb. By what we already have shown, there exists Ln ∈ M` such that for

any N ∈M`, [Ln, N ] = H · [MTn , N ]. In particular, we have [(Ln+1)Tn , N ] = H · [MTn , N ],
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which by uniqueness yields that (Ln+1)Tn is indistinguishable from Ln. Therefore, may paste

the processes (Ln) together to a process L ∈ M` such that LTn = Ln for all n ≥ 1. Fixing

N ∈M`, we then obtain [L,N ]Tn = [Ln, N ] = H · [MTn , N ] = (H · [M,N ])Tn , and letting n

tend to infinity, [L,N ] = H · [M,N ]. This proves existence in this case.

Step 3. The case of H bounded and M ∈ M`. Now consider the general case, where

we merely assume M ∈ M`, while still assuming that H is bounded. By Theorem 3.3.1,

we have M = M b + Mv almost surely, where M b ∈ Mb
` and Mv ∈ fvM`. By what was

already shown, there exists Lb ∈M` such that [Lb, N ] = H · [M b, N ] for all N ∈M`. Define

Lv = H ·Mv as the pathwise Lebesgue integral given in Theorem 1.4.3. By Lemma 3.3.2,

Lv ∈M`, and by Lemma 3.4.4, we have

[Lv, N ]t =
∑

0<s≤t

∆Lvs∆Nt =
∑

0<s≤t

Hs∆M
v
s ∆Nt =

∫ t

0

Hs d[Mv, N ]s

for all N ∈M`. Putting L = Lb + Lv, we obtain for all N ∈M` that

[L,N ] = [Lb, N ] + [Lv, N ] = H · [M b, N ] +H · [Mv, N ] = H · [M,N ],

completing the construction in this case as well.

Step 4. The general case. Now merely assume that H ∈ I and M ∈ M`. Let (Tn) be a

localising sequence such that HTn1(Tn>0) is bounded. By what we already have shown, there

exists for each n a process Ln ∈M` such that for anyN ∈M`, [Ln, N ] = HTn1(Tn>0)·[M,N ].

By Lemma 3.3.8, This implies

[(Ln+1)Tn1(Tn>0), N ] = 1(Tn>0)[L
n+1, N ]Tn = 1(Tn>0)(H

Tn+11(Tn+1>0) · [M,N ])Tn

= 1(Tn>0)(H
Tn1(Tn+1>0) · [M,N ]) = HTn1(Tn>0) · [M,N ].

By uniqueness, we obtain (Ln+1)Tn1(Tn>0) = Ln. Therefore, we may paste the processes

(Ln) together to a process L such that for all n ≥ 1, LTn1(Tn>0) = Ln almost surely. This in

particular shows by Lemma 3.1.7 that L ∈M`. As we also have

[L,N ]Tn1(Tn>0) = [LTn1(Tn>0), N ] = [Ln, N ]

= HTn1(Tn>0) · [M,N ] = (H · [M,N ])Tn1(Tn>0),

almost surely, we obtain by letting n tend to infinity that [L,N ] = H · [M,N ]. This proves

existence in the general case and thus completes the proof.

Before proceeding to extend the stochastic integral to the case of semimartingale integrators,

we prove that the integral as defined coincides with the pathwise Lebesgue integral whenever

the integrator is of finite variation.
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Theorem 4.2.9. Let M ∈ fvM` be a local martingale with paths of finite variation and

let H ∈ I. Then H is integrable with respect to M in the sense of stochastic integration as

defined Theorem 4.2.8, and H is pathwise Lebesgue integrable with respect to M in the sense

of Theorem 1.4.3, and the two integral processes coincide up to evanescence.

Proof. By Lemma 4.2.5, H is pathwise Lebesgue integrable with respect to M in the sense

of Theorem 1.4.3. We need to prove agreement of the two integral processes. Let X be

the stochastic integral of H with respect to M as given in Theorem 4.2.8, and let Y be the

pathwise Lebesgue integral of H with respect to M as given in Theorem 1.4.3. We wish to

argue that X and Y are indistinguishable.

By construction, we have [X,N ] = H · [M,N ] for all N ∈ M`. In particular, for N ∈ cM`,

[X,N ] is evanescent. Therefore, X ∈ dM`. Furthermore, by Lemma 3.3.2, Y ∈ M`, and it

is purely discontinuous by Lemma 3.4.5.

Next, fix N ∈ M`. As [X,N ] = H · [M,N ] almost surely by construction, we also obtain

∆X∆N = H∆M∆N almost surely. Therefore, by Lemma 4.2.7, ∆X = H∆M = ∆Y almost

surely. Thus, X − Y ∈ dM` and X − Y is almost surely continuous. By Lemma 3.4.3, X

and Y are indistinguishable, as desired.

With Lemma 4.2.5 and Theorem 4.2.8 at our disposal, the construction of the stochastic

integral with respect to semimartingales is a simple task. This existence is the subject of

Theorem 4.2.10. After the proof, we will spend the remainder of the section outlining the

basic properties of the stochastic integral.

Theorem 4.2.10. Let X ∈ S and let H ∈ I. There exists a process H ·X ∈ S, unique up

to evanescence, such that for any decomposition X = X0 +M +A with M ∈M` and A ∈ V,

it holds that H is integrable with respect to M in the sense of Theorem 4.2.8, H is integrable

with respect to A in the sense of Theorem 1.4.3, and

(H ·X)t = (H ·M)t + (H ·A)t,

We refer to H ·X the stochastic integral of H with respect to X.

Proof. Fixing a decomposition X = X0 + M + A, we find that by Theorem 4.2.8, H is

integrable with respect to M , and by Lemma 4.2.5, H is integrable with respect to A. To

prove the theorem, it will suffice to prove that if X = X0 +M +A and X = X0 +N +B are
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two decompositions with M and N in M` and A and B in V, then

(H ·M)t + (H ·A)t = (H ·N)t + (H ·B)t

up to evanescence. To this end, recall from Lemma 4.1.4 that M−N and A−B are in fvM`,

and we have M − N = B − A. Applying Theorem 4.2.9 and the linearity of the ordinary

Lebesgue integral, we obtain

(H ·M)t − (H ·N)t = (H · (M −N))t = (H · (B −A))t = (H ·B)t − (H ·A)t,

so (H ·M)t + (H ·A)t = (H ·N)t + (H ·B)t, as desired. This proves the result.

Note that we cannot define the stochastic integral with respect to a semimartingale using

only the quadratic covariation as we did in Theorem 4.2.8, since the quadratic covariation by

Lemma 4.1.13 is invariant with respect to addition of a continuous finite variation process.

Further note that the stochastic integral H · X always has initial value zero and does not

depend on the initial value of X. The following lemma yields the main properties of the

stochastic integral.

Lemma 4.2.11. Let X and Y be semimartingales, let H,K ∈ I and let T be a stopping time.

The stochastic integral with respect to X has the following properties up to evanescence:

(1). I is a linear space, and H ·X is a linear mapping in both H and X.

(2). H ·X ∈ S with decomposition H ·X = H ·M +H ·A.

(3). H1[[0,T ]] is in I and (H ·X)T = H1[[0,T ]] ·X = H ·XT .

(4). It holds that KH ∈ I and K · (H ·X) = KH ·X.

(5). For any H ∈ I, ∆(H ·X) = H∆X.

(6). It holds that (H ·X)c = H ·Xc.

(7). We have [H ·X,Y ] = H · [X,Y ] and [H ·X] = H2 · [X].

(8). If X has finite variation, H ·X coincides with the pathwise Lebesgue integral.

(9). If F ∈ F0, it holds that 1FH ∈ I, 1FX ∈ S and (1FH) ·X = 1F (H ·X) = H · (1FX).

(10). If HT = KT , then (H ·X)T = (K ·X)T .
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Proof. Proof of (1). Let α, β ∈ R. As H,K ∈ I, there are localising sequences (Tn) and

(Sn) such that HTn1(Tn>0) and KSn1(Sn>0) are bounded. Using Lemma 3.1.2, (Sn ∧ Tn) is

also a localising sequence, and we find that

(αH + βK)Sn∧Tn1(Sn∧Tn>0) = (αHSn∧Tn + βKSn∧Tn)1(Sn>0)1(Tn>0)

= α(HTn1(Tn>0))
Sn1(Sn>0) + β(KSn1(Sn>0))

Tn1(Tn>0),

and since HTn1(Tn>0) and KSn1(Sn>0) are bounded, this shows that αH + βK is in I. It

remains to prove that H · X is linear in both the integrand H and the integrator X. We

first fix X with decomposition X = X0 +M + A and consider the integral as a mapping in

H. We commence by showing that (αH + βK) ·M = α(H ·M) + β(K ·M). Let N ∈ M`

be given, we then have, using the characterisation in Theorem 4.2.8 and the properties of

ordinary Lebesgue integrals,

[α(H ·M) + β(K ·M), N ] = α[H ·M,N ] + β[K ·M,N ]

= α(H · [M,N ]) + β(K · [M,N ])

= (αH + βK) · [M,N ] = [(αH + βK) ·M,N ],

so by Lemma 3.3.8, (αH + βK) ·M = α(H ·M) + β(K ·M), as desired. As we also have

(αH + βK) · A = α(H · A) + β(H · A) when A ∈ V, this proves that the stochastic integral

is linear in the integrand. Next, we prove that it is linear in the integrator. Fix H ∈ I, we

consider X and Y in S and wish to prove that H · (αX+βY ) = α(H ·X)+β(H ·Y ). Assume

that we have decompositions X = X0 + M + A and Y = Y0 + N + B. We first prove that

H · (αM + βN) = α(H ·M) + β(H ·N). Fixing any N ′ ∈M`, we have

[α(H ·M) + β(H ·N), N ′] = α[H ·M,N ′] + β[H ·N,N ′]

= α(H · [M,N ′]) + β(H · [N,N ′])

= H · [αM + βN,N ′] = [H · (αM + βN), N ′],

so that by Lemma 3.3.8, H · (αM + βN) = α(H ·M) + β(H · N). Therefore, as αX + βY

has martingale part αM +βN and finite variation part αA+βB, we obtain, using what was

just proven as well as the linearity properties of ordinary Lebesgue integrals, that

H · (αX + βY ) = H · (αM + βN) +H · (αA+ βB)

= α(H ·M) + β(H ·N) + α(H ·A) + β(H ·B)

= α(H ·X) + β(H · Y ),

as desired.

Proof of (2). This follows immediately from the construction of the integral.
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Proof of (3). Assume that H ∈ I, we first show that H1[[0,T ]] is in I as well. By Lemma

2.1.3, [[0, T ]] is predictable, and therefore, H1[[0,T ]] is predictable. Let (Tn) be a localising

sequence such that HTn1(Tn>0) is bounded. Then (H1[[0,T ]])
Tn1(Tn>0) = HTn1(Tn>0)1[[0,T ]] is

bounded as well. We conclude that H1[[0,T ]] ∈ I, as desired. In order to prove the identities

for the stochastic integral, let X ∈ S with decomposition X = X0 +M +A. We then have

(H ·A)Tt =

∫ T∧t

0

Hs dAs =

∫ t

0

(H1[[0,T ]])s dAs =

∫ t

0

Hs dATs ,

so that (H ·A)T = (H1[[0,T ]]) ·A = H ·AT . As regards the martingale part, let N ∈M`, then

[(H ·M)T , N ] = [H ·M,N ]T = (H · [M,N ])T . Therefore, [(H ·M)T , N ] = H1[[0,T ]] · [M,N ],

proving (H · M)T = H1[[0,T ]] · M , and [(H · M)T , N ] = H · [MT , N ], which shows that

(H ·M)T = H ·MT . Collecting our results for the martingale and finite variation parts and

using linearity, the result follows.

Proof of (4). As H,K ∈ I, we know that there exists a localising sequence (Tn) such that

HTn1(Tn>0) and KTn1(Tn>0) are bounded. As (KH)Tn1(Tn>0) = KTn1(Tn>0)H
Tn1(Tn>0),

and KH is predictable, we conclude KH ∈ I. As regards the integral identity, assume that

X has decomposition X = X0 + M + A. By the properties of ordinary Lebesgue integrals,

K · (H ·A) = KH ·A. As regards the martingale parts, let N ∈M`, we then have

[K · (H ·M), N ] = K · [H ·M,N ] = K · (H · [M,N ]) = KH · [M,N ],

which shows that K · (H ·M) satisfies the criterion for being the stochastic integral of KH

with respect to M , so K · (H ·M) = KH ·M . Collecting our results and using linearity of

the integral in the integrator, we find

K · (H ·X) = K · (H ·M +H ·A) = K · (H ·M) +K · (H ·A)

= KH ·M +KH ·A = KH ·X,

as desired.

Proof of (5). Let X = X0 + M + A. Fixing N ∈ M`, we have [H ·M,N ] = H · [M,N ]

and thus ∆(H ·M)∆N = H∆M∆N . Lemma 4.2.7 then shows that ∆(H ·M) = H∆M . By

the properties of the Lebesgue integral, we also have ∆(H · A) = H∆A. Thus, we obtain

∆(H ·X) = ∆(H ·M) + ∆(H ·A) = H∆M +H∆A = H∆X, as was to be shown.

Proof of (6). Let X = X0 + M + A and recall that H · X = H · M + H · A, where

H · M ∈ M` and H · A ∈ V. Let M = M c + Md be the decomposition of M into its

continuous and purely discontinuous parts. We then also have H ·M = H ·M c + H ·Md.

As ∆(H ·M c) = H∆M c = 0, H ·M c ∈ cM`. And as [H ·Md, N ] = H · [Md, N ] for all
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N ∈ M`, H ·Md is purely discontinuous. Therefore, H ·M c is the continuous martingale

part of H ·X. As M c is the continuous martingale part of X, we obtain (H ·X)c = H ·Xc.

Proof of (7). Let X = X0 +M +A and Y = Y0 +M +A. By what was already shown,

[H ·X,Y ]t = [(H ·X)c, Y c]t +
∑

0<s≤t

∆(H ·X)s∆Ys

= [H ·Xc, Y c]t +
∑

0<s≤t

Hs∆Xs∆Ys

= H · [Xc, Y c]t +
∑

0<s≤t

Hs∆Xs∆Ys = (H · [X,Y ])t,

proving the first equality. As a consequence, we then also obtain

[H ·X] = [H ·X,H ·X] = H · [X,H ·X]

= H · [H ·X,X] = H · (H · [X,X]) = H2 · [X].

Proof of (8). This follows from the construction in Theorem 4.2.10 and the result in

Theorem 4.2.9.

Proof of (9). First note that 1FH ∈ I as 1F is predictable, and by Lemma 4.1.3, 1FX ∈ S.

Let X = X0 + M + A. By the properties of ordinary Lebesgue integrals, we know that

(1FH) · A = 1F (H · A) = H · (1FA) up to indistinguishability. Therefore, it suffices to

prove (1FH) ·M = 1F (H ·M) = H · (1FM). By Lemma 3.1.3, all three processes are in

M`. Therefore, it suffices to prove that their quadratic covariation with any N ∈ M` are

equal. Let N ∈ M`. By Theorem 4.2.8, [(1FH) ·M,N ] = 1FH · [M,N ] = 1F (H · [M,N ]),

while Lemma 3.3.8 shows that we have [1F (H ·M), N ] = 1F [H ·M,N ] = 1F (H · [M,N ])

and [H · 1FM,N ] = H · [1FM,N ] = H · 1F [M,N ] = 1F (H · [M,N ]). Thus, the quadratic

covariation with N is equal to 1F (H · [M,N ]) for all three processes, and so Lemma 3.3.8

shows that (1FH) ·M = 1F (H ·M) = H · (1FM), as desired.

Proof of (10). From what we already have shown, we find

(H ·X)T = H1[[0,T ]] ·X = HT 1[[0,T ]] ·X

= KT 1[[0,T ]] ·X = K1[[0,T ]] ·X = (K ·X)T ,

as desired.

Our final lemma of this section shows that our construction of the stochastic integral coincides

with the intuitive definition in the case of simple integrands.
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Lemma 4.2.12. Let X be a semimartingale, let S ≤ T be stopping times and let ξ be bounded

and FS measurable. Defining H = ξ1]]S,T ]], it holds that H ∈ I and (H ·X)t = ξ(XT −XS).

Proof. With H = ξ1]]S,T ]], we find by Lemma 4.2.1 that H is predictable. As it is also

bounded, we obtain H ∈ I. Let X = X0 + M + A be a decomposition of X. Lemma 4.2.1

then yields H ·M = ξ(MT −MS), and using the properties of ordinary Lebesgue integrals,

we furthermore have H ·A = ξ(AT −AS). Thus, H ·X = ξ(XT −XS).

4.3 Itô’s formula

In this section, we will prove Itô’s formula for semimartingales. In order to do so, we first

prove some related results of general interest. We begin by demonstrating the dominated

convergence theorem for stochastic integrals, and then obtain as moderately simple corollaries

the limit characterisations of stochastic integrals and the quadratic covariation as well as the

integration-by-parts formula. Applying these results, we may obtain Itô’s formula.

Theorem 4.3.1. Let X be a semimartingale and let t ≥ 0 be some constant. Assume that

(Hn) ⊆ I and H ∈ I. Further assume that |Hn1[[0,t]]| and |H1[[0,t]]| are bounded by some K

with K ∈ I. If Hn converges pointwise to H on [[0, t]], then

sup
s≤t
|(Hn ·X)s − (H ·X)s|

P−→ 0.

Proof. As the stochastic integral does not depend on the initial value of the integrator, we

may restrict our attention to the case where X0 is zero.

Step 1. The case of X ∈ M2 and bounded integrands. We first consider the case

where X ∈ M2 and Hn, H and K are bounded by some constant c. For convenience, we

write M instead of X, and thus seek to show sups≤t |(Hn ·M)s − (H ·M)s|
P−→ 0.

To this end, note that by Lemma 4.2.11, we have [(Hn − H) ·M ] = (Hn − H)2 · [M ], and

E((Hn −H)2 · [M ])∞ ≤ 4c2E[M ]∞, which is finite by Theorem 3.3.10. Therefore, we have

(Hn −H) ·M ∈M2. We will show that ((Hn −H) ·M)∞ converges in L2 to zero, this will

yield the desired result.

To this end, note that since E[M ]∞ is finite, [M ]∞ is almost surely finite and therefore the

induced measures almost surely have finite mass. As a result, constants are almost surely
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integrable with respect to [M ]. By Lebesgue’s dominated convergence theorem, we then

obtain

lim
n

∫ ∞
0

(Hn
s −Hs)

2 d[M ]s =

∫ ∞
0

lim
n

(Hn
s −Hs)

2 d[M ]s = 0,

almost surely. Next, since
∫∞

0
(Hn

s − Hs)
2 d[M ]s ≤ 4c2[M ]∞, we can again use Lebesgue’s

dominated convergence theorem to obtain

lim
n
E

∫ ∞
0

(Hn
s −Hs)

2 d[M ]s = E lim
n

∫ ∞
0

(Hn
s −Hs)

2 d[M ]s = 0.

As a result, limnE[(Hn−H) ·M ]∞ = limnE((Hn−H)2 · [M ])∞ = 0. Since we earlier noted

that (Hn −H) ·M ∈ M2, we have E[(Hn −H) ·M ]∞ = E((Hn −H) ·M)2
∞ by Theorem

3.3.10, so we conclude that ((Hn − H) ·M)∞ converges to zero in L2. By Theorem 1.3.3,

we then obtain that supt≥0((Hn−H) ·M)∗∞ converges in L2 to zero, in particular we obtain

that sups≤t |(Hn ·M)s − (H ·M)s|
P−→ 0, as desired.

Step 2. The case of X ∈ V and bounded integrands. Now we consider the case where

X ∈ V, and continue to assume that Hn, H and K are bounded by a constant c. We write

A instead of X and wish to show sups≤t |(Hn · A)s − (H · A)s|
P−→ 0. By the properties of

ordinary Lebesgue integrals, we have

lim sup
n

sup
s≤t
|(Hn ·A)s − (H ·A)s| ≤ lim sup

n
sup
s≤t

∫ s

0

|Hn
u −Hu||dAu|

= lim sup
n

∫ t

0

|Hn
s −Hs||dAs|.

Since the measures induced by A have finite mass on compacts almost surely, the above

is zero almost surely by Lebesgue’s dominated convergence theorem, using the constant

bound 2c. Thus, sups≤t |(Hn ·A)s − (H ·A)s| converges almost surely to zero, which implies

sups≤t |(Hn ·A)s − (H ·A)s|
P−→ 0, as was to be proven.

Step 3. The general case. Now consider a semimartingaleX and processes (Hn), H andK

in I satisfying the conditions of the theorem. By Lemma 4.1.5, there exists a decomposition

X = M + A where M ∈ Mb
` and A ∈ V. Let (Tn) be a localising sequence such that

KTn1(Tn>0) is bounded and MTn ∈ Mb. Then |(Hn)Tn1(Tn>0)1[[0,t]]| ≤ KTn1(Tn>0)1[[0,t]] for

all n ≥ 1 and similarly |HTn1(Tn>0)1[[0,t]]| ≤ KTn1(Tn>0)1[[0,t]]. By what we already have

shown, it then holds that sups≤t |((Hn)Tn1(Tn>0) ·MTn)s − (HTn1(Tn>0) ·MTn)s|
P−→ 0 and

sups≤t |((Hn)Tn1(Tn>0) · ATn)s − (HTn1(Tn>0) · ATn)s|
P−→ 0, which may be combined to

obtain

sup
s≤t
|((Hn)Tn1(Tn>0) ·XTn)s − (HTn1(Tn>0) ·XTn)s|

P−→ 0.
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Now note that

1(Tn>t) sup
s≤t
|(Hn ·X)s − (H ·X)s| = sup

s≤t
1(Tn>t)|(H

n ·X)s − (H ·X)s|,

and applying Lemma 4.2.11, we have

1(Tn>t)|(H
n ·X)s − (H ·X)s| = 1(Tn>t)|(H

n ·X)Tns − (H ·X)Tns |

= 1(Tn>t)|((H
n)Tn ·XTn)s − (HTn ·XTn)s|

= 1(Tn>t)1(Tn>0)|((Hn)Tn ·XTn)s − (HTn ·XTn)s|

≤ |((Hn)Tn1(Tn>0) ·XTn)s − (HTn1(Tn>0) ·XTn)s|.

Combining these observations, we obtain 1(Tn>t) sups≤t |(Hn ·X)s−(H ·X)s|
P−→ 0. Applying

Lemma A.3.1 to the sequence of variables (sups≤t |(Hn ·X)s−(H ·X)s|)n≥1 and the sequence

of sets Fk = (Tk > t), the result follows.

Next, we prove limit characterisations of the stochastic integral and the quadratic covariation,

providing the integral interpretation of H ·X and the quadratic covariation interpretation of

[X,Y ]. We first introduce some notation. Fix t ≥ 0. We say that a finite increasing sequence

(t0, . . . , tK) with 0 = t0 ≤ · · · ≤ tK = t is a partition of [0, t]. We refer to maxk≤K |tk − tk−1|
as the mesh of the partition.

Theorem 4.3.2. Let X ∈ S and let H be adapted and càdlàg. Let t ≥ 0 and assume that

(tnk )k≤Kn , n ≥ 1, is a sequence of partitions of [0, t] with mesh tending to zero. Then

Kn∑
k=1

Htnk−1
(Xtnk

−Xtnk−1
)

P−→ (H− ·X)t.

Proof. First note that as H is adapted and càdlàg, H− is adapted and càglàd, so H− ∈ I

by Lemma 4.2.4 and the integral H · X is well-defined. To prove the result, we define the

sequence of processes Hn = H01[[0]] +
∑Kn
k=1Htnk−1

1]]tnk−1,t
n
k ]]. As the mesh of the partitions

converges to zero, we find that Hn converges pointwise to H−1[[0,t]]. Also note that as H is

càdlàg and adapted, so is H∗, where H∗t = sups≤t |Hs|. In particular, H∗− ∈ I by Lemma

4.2.4, and both Hn and H− are bounded by H∗−. Therefore, by Theorem 4.3.1, we obtain

(Hn ·X)t
P−→ (H− ·X)t.

However, H01[[0]] ·X is evanescent and so
∑Kn
k=1Htnk−1

(Xtnk
−Xtnk−1

) = (Hn ·X)t by Lemma

4.2.12. Combining our conclusions, we obtain
∑Kn
k=1Htnk−1

(Xtnk
−Xtnk−1

)
P−→ (H− ·X)t.
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Theorem 4.3.3 (Integration-by-parts formula). Let X and Y be semimartingales. Let t ≥ 0

and assume that (tnk )k≤Kn , n ≥ 1, is a sequence of partitions of [0, t] with mesh tending to

zero. Then
Kn∑
k=1

(Xtnk
−Xtnk−1

)(Ytnk − Ytnk−1
)

P−→ [X,Y ]t,

and the identity XtYt = X0Y0 + (Y− ·X)t + (X− · Y )t + [X,Y ]t holds.

Proof. We begin by considering a single semimartingale X and prove the two results

Kn∑
k=1

(Xtnk
−Xtnk−1

)2 P−→ [X,X]t and X2
t = X2

0 + 2(X− ·X)t + [X]t.

We begin by assuming that X = X0 +M +A, where M ∈Mb and A ∈ Vi. First note that

X2
t −X2

0 =

Kn∑
k=1

(X2
tnk
−X2

tnk−1
) = 2

Kn∑
k=1

Xtnk−1
(Xtnk

−Xtnk−1
) +

Kn∑
k=1

(Xtnk
−Xtnk−1

)2.

Since X is càdlàg and adapted,
∑Kn
k=1Xtnk−1

(Xtnk
−Xtnk−1

)
P−→ (X− ·X)t by Theorem 4.3.2,

and therefore
∑Kn
k=1(Xtnk

− Xtnk−1
)2 P−→ X2

t − X2
0 − 2(X− · X)t. Our proof of the present

case now proceeds in three steps. Firstly, we argue that X2 −X2
0 − 2(X− ·X) has paths of

finite variation. Secondly, we argue that X2−X2
0 −2(X− ·X)− [X] is continuous with paths

of finite variation. Thirdly, we prove that this process is M` and obtain the desired results

from this. After this, we consider the remaining cases.

Step 1. Proof that X2−X2
0 −2(X− ·X) ∈ V. We wish to argue that X2−X2

0 −2(X− ·X)

is almost surely increasing. To this end, let 0 ≤ p ≤ q be two elements of D+. There exists

j ≥ 1 and naturals np ≤ nq such that p = np2
−j and q = nq2

−j . Consider the particular

partitions of [0, p] and [0, q] given by putting pnk = k2−(n+j) for k ≤ np2n and qnk = k2−(n+j)

for k ≤ nq2
n, respectively. Using Lemma A.3.2 and the convergence result just proven, we

then obtain

X2
p −X2

0 − 2(X− ·X)p = lim
n

np2n∑
k=1

(Xpnk
−Xpnk−1

)2

≤ lim
n

nq2
n∑

k=1

(Xqnk
−Xqnk−1

)2

= X2
q −X2

0 − 2(X− ·X)q,

almost surely, where the limits are in probability. As D+ is countable and dense in R+,

we conclude that X2 −X2
0 − 2(X− ·X) is almost surely increasing. By picking a particular
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modification of X− ·X, we may assume that X2−X2
0 −2(X− ·X) is increasing. In particular,

X2 −X2
0 − 2(X− ·X) ∈ V.

Step 2. Proof that X2 − X2
0 − 2(X− · X) − [X] is continuous and in V. By direct

calculation, we have

∆(X2 − 2X− ·X)t = X2
t −X2

t− − 2Xt−∆Xt = X2
t −X2

t− − 2Xt−Xt + 2X2
t−

= Xt − 2XtXt− +X2
t− = (∆X)2

t = ∆[X].

As we know that [X] ∈ V and X2−X2
0−2(X− ·X) ∈ V, we find that X2−X2

0−2(X− ·X)−[X]

is a continous process in V. Therefore, if we can show that it is a local martingale, Theorem

3.1.9 will yield X2 = X0 + 2(X− ·X) + [X].

Step 3. Conclusion. We wish to argue that X2 −X2
0 − 2(X− ·X) − [X] is in M`. First

note that with Y = X −X0, we have Y = M +A and, using that X = Y +X0,

X2
t −X2

0 − 2(X− ·X)t − [X]t = Y 2
t + 2YtX0 − 2(X− ·X)t − [Y ]t

= Y 2
t + 2YtX0 − 2X0(Xt −X0)− 2(Y− ·X)t − [Y ]t

= Y 2
t − 2(Y− ·X)t − [Y ]t

= Y 2
t − 2(Y− · Y )t − [Y ]t.

Recalling that A2 − 2A− ·A− [A] is evanescent by Lemma A.2.13, we then obtain

X2 −X2
0 −X− ·X − [X] = (M +A)2 − (M +A)− · (M +A)− [M +A] = Nm + 2Nx,

where Nm = M2−2M− ·M− [M ] and Nx = MA−M− ·A−A− ·M− [M,A]. We claim that

both of these processes are in M`. As M2 − [M ] is in M` by Theorem 3.3.4 and M− ·M is

in M` by Theorem 4.2.8, it is immediate that Nm is in M`. Regarding the second process,

first note that A− ·M is a local martingale since A− ∈ I by Lemma 4.2.4 and M ∈ M`.

Furthermore, note that by the properties of ordinary Lebesgue integrals, we have

MtAt − (M− ·A)t − [M,A]t = MtAt −
∫ t

0

Ms− dAs −
∑

0<s≤t

∆Ms∆As

= MtAt −
∫ t

0

Ms− dAs −
∫ t

0

∆Ms dAs

= MtAt −
∫ t

0

Ms dAs,

which is in Mu by Lemma 3.3.3. Combining our findings, X2 − X0 − 2(X− · X) − [X] is

a continuous element of fvM`, so by Theorem 3.1.9 it is evanescent. We conclude that the
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integration-by-parts formula X2 = X0 + 2(X− ·X) + [X] holds. From what was previously

shown, we then also obtain
∑Kn
k=1(Xtnk

−Xtnk−1
)2 P−→ [X]t.

Step 4. Remaining cases. We now consider the result for a single general semimartingale

X. By Lemma 4.1.5, there exists a decomposition X = X0 + M + A where M ∈ Mb
` and

A ∈ Vi`. Let (Tn) be a localising sequence such that MTn and ATn ∈ Vi. From what we

already have shown, it holds that

1(Tn>t)

Kn∑
k=1

(Xtnk
−Xtnk−1

)2 = 1(Tn>t)

Kn∑
k=1

(XTn
tnk
−XTn

tnk−1
)2 P−→ 1(Tn>t)[X

Tn ]t,

and by Lemma 4.1.13, this yields 1(Tn>t)

∑Kn
k=1(Xtnk

− Xtnk−1
)2 P−→ 1(Tn>t)[X]t. Applying

Lemma A.3.1, we conclude
∑Kn
k=1(Xtnk

− Xtnk−1
)2 P−→ [X]t. Next, using Lemma 4.2.11, we

also have

(X2)Tnt = (XTn)2
t = (XTn)2

0 + 2((XTn)− ·XTn)t + [XTn ]t

= X2
0 + 2(XTn

− ·X)Tnt + [XTn ]t = X2
0 + 2(X− ·X)Tnt + [X]Tnt ,

so letting n tend to infinity, we obtain X2
t = X0 + 2(X− · X)t + [X]t. This concludes the

proof of the theorem in the case of a single semimartingale.

It remains to consider the case of two semimartingales X and Y . Define two processes

Z = X + Y and W = X − Y , we then have Z +W = 2X and Z −W = 2Y , yielding

(Ztnk − Ztnk−1
)2 − (Wtnk

−Wtnk−1
)2 = (2Xtnk

− 2Xtnk−1
)(2Ytnk − 2Ytnk−1

)

= 4(Xtnk
−Xtnk−1

)(Ytnk − Ytnk−1
),

and we know from our previous results that
∑Kn
k=1(Ztnk −Ztnk−1

)2 converges in probability to

[Z]t and that
∑Kn
k=1(Wtnk

−Wtnk−1
)2 converges in probability to [W ]t. By Lemma 4.1.13, we

have [Z]t − [W ]t = [X + Y ]t − [X − Y ]t = 4[X,Y ]t almost surely, so collecting our results,

we finally conclude
∑Kn
k=1(Xtnk

− Xtnk−1
)(Ytnk − Ytnk−1

)
P−→ [X,Y ]t, as desired. Analogously,

we find

4XtYt = Z2
t −W 2

t

= Z2
0 −W 2

0 + 2(Z · Z)t − 2(W ·W ) + [Z]t − [W ]t

= 4X0Y0 + 2((X + Y ) · (X + Y ))t − 2((X − Y ) · (X − Y ))t + 4[X,Y ]t

= 4X0Y0 + 4(X · Y )t + 4(Y ·X)t + 4[X,Y ]t,

yielding the integration-by-parts formula in the general case. This concludes the proof.
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Lemma 4.3.4. Let X and Y be semimartingales and let H be adapted and càdlàg. Consider

t ≥ 0 and assume that (tnk )k≤Kn , n ≥ 1, is a sequence of partitions of [0, t] with mesh tending

to zero. Then

Kn∑
k=1

Htnk−1
(Xtnk

−Xtnk−1
)(Ytnk − Ytnk−1

)
P−→ (H− · [X,Y ])t.

Proof. As in the proof of Theorem 4.3.3, by polarization, it will suffice to consider a single

semimartingale X and prove
∑Kn
k=1Htnk−1

(Xtnk
− Xtnk−1

)2 P−→ (H− · [X])t. Also note that

we may assume without loss of generality that X has initial value zero. To prove the result

in this case, note that from Theorem 4.3.3, [X]t = X2
t − 2(X− ·X)t, so that using Lemma

4.2.11, we find H− · [X] = H− ·X2− 2H− · (X− ·X) = H− ·X2− 2H−X− ·X, where X2 ∈ S
since X2 = X0 + 2(X− ·X) + [X]. On the other hand,

Kn∑
k=1

Htnk−1
(Xtnk

−Xtnk−1
)2 =

Kn∑
k=1

Htnk−1
(X2

tnk
−X2

tnk−1
)− 2

Kn∑
k=1

Htnk−1
Xtnk−1

(Xtnk
−Xtnk−1

),

so that two applications of Theorem 4.3.2 yield the result.

With the above results in hand, we are now ready to prove Itô’s formula. By C2(Rp), we

denote the set of mappings f : Rp → R such that all second-order partial derivatives of f exist

and are continuous. Also, for any open set U in Rp, we denote by C2(U) the set of mappings

f : U → R with the same property. We say that a process X with values in Rp is a p-

dimensional semimartingale if each of its coordinate processes Xi, where Xt = (X1
t , . . . , X

p
t ),

is a semimartingale.

Theorem 4.3.5 (Itô’s formula). Let X be a p-dimensional semimartingale and consider

f ∈ C2(Rp). Then

f(Xt) = f(X0) +

p∑
i=1

∫ t

0

∂f

∂xi
(Xs−) dXi

s +
1

2

p∑
i=1

p∑
j=1

∫ t

0

∂2f

∂xi∂xj
(Xs−) d[Xi, Xj ]s + ηt,

up to indistinguishability, where

ηt =
∑

0<s≤t

f(Xs)− f(Xs−)−
n∑
i=1

∂f

∂xi
(Xs−)∆Xi

s −
1

2

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
(Xs−)∆Xi

s∆X
j
s .

Here, almost surely, the sum defining η is absolutely convergent for all t ≥ 0.

Proof. We first argue that the sum defining η converges absolutely. First consider the case

where X takes its values in a compact set. Fix t ≥ 0. By Theorem A.1.22, we then have,
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with rij2 denoting the remainder function given in the statement of Theorem A.1.22,∣∣∣∣∣∣f(Xs)− f(Xs−)−
n∑
i=1

∂f

∂xi
(Xs−)∆Xi

s −
1

2

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
(Xs−)∆Xi

s∆X
j
s

∣∣∣∣∣∣
=

∣∣∣∣∣∣
p∑
i=1

p∑
j=1

rij2 (Xs, Xs−)(∆Xs)
2

∣∣∣∣∣∣ .
By Theorem A.1.22, rij2 (Xs, Xs−) is bounded by the values of ∂2f

∂xi∂xj
on the line segment

from Xs to Xs−. As X takes its values in a compact set, we obtain that there is C > 0 such

that |rij2 (Xs, Xs−)| ≤ C for all i, j ≤ p. Thus, the above sum is bounded by Cp2(∆Xs)
2.

Therefore, by Lemma 4.1.11, almost surely, the sum converges absolutely for all t ≥ 0.

Now consider the general case. Using Lemma 4.1.8, let (Tn) be a localising sequence such

that XTn− is bounded. By the above argument, we then obtain that almost surely, whenever

Tn > 0, the sum converges absolutely for all 0 ≤ t < Tn. Letting n tend to infinity, it follows

that almost surely, the sum defining η is absolutely convergent for all t ≥ 0.

Next, we prove the formula for f(Xt). Fix t ≥ 0 and let tnk = kt2−n. Applying a telescoping

sum, we obtain f(Xt)− f(X0) =
∑2n

k=1 f(Xtnk
)− f(Xtnk−1

) and may use Theorem A.1.22 to

obtain f(Xt) = f(X0) + Snt + Tnt +Rnt where

Snt =

p∑
i=1

2n∑
k=1

∂f

∂xi
(Xtnk−1

)(Xi
tnk
−Xi

tnk−1
)

Tnt =
1

2

p∑
i=1

p∑
j=1

2n∑
k=1

∂2f

∂xi∂xj
(Xtnk−1

)(Xi
tnk
−Xi

tnk−1
)(Xj

tnk
−Xj

tnk−1
)

Rnt =

p∑
i=1

p∑
j=1

2n∑
k=1

rij2 (Xtnk−1
, Xtnk

)(Xi
tnk
−Xi

tnk−1
)(Xj

tnk
−Xj

tnk−1
),

and rij2 (x, y) is the remainder function from Theorem A.1.22. By Theorem 4.3.2, Snt converges

in probability to
∑p
i=1

∫ t
0
∂f
∂xi

(Xs−) dXi
s, and by Lemma 4.3.4, Tnt converges in probability to

1
2

∑p
i=1

∑p
j=1

∫ t
0

∂f
∂xi∂xj

(Xs−) d[Xi, Xj ]s. Therefore, it will suffice to show that the remainder

term Rnt converges in probability to ηt. Note that while we have no guarantee that rij2 is

measurable, we know that Rnt is always measurable, since Rnt = f(Xt) − f(X0) − Snt − Tnt ,

and so the proposition that Rnt converges in probability to ηt is well-defined.

To prove Rnt
P−→ ηt, first consider the case where X takes its values in a compact set. In

particular, all second-order partial derivatives of f are uniformly continuous on the range of
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X. Let ε > 0. Also fix γ > 0, and pick δ > 0 parrying γ for this uniform continuity of the

second-order partial derivatives of f , and assume without loss of generality that δ ≤ γ. Let

Aδ = {s ∈ [0, t] | |∆Xs| ≥ δ/4}. Note that as X is càdlàg, Aδ(ω) is a finite set for all ω.

Define In = {k ≤ 2n | Aδ ∩ (tnk−1, t
n
k ] = ∅} and Jn = {1, . . . , 2n} \ In, and define

(R(J))nt =

p∑
i=1

p∑
j=1

∑
k∈Jn

rij2 (Xtnk−1
, Xtnk

)(Xi
tnk
−Xi

tnk−1
)(Xj

tnk
−Xj

tnk−1
) and

(R(I))nt =

p∑
i=1

p∑
j=1

∑
k∈In

rij2 (Xtnk−1
, Xtnk

)(Xi
tnk
−Xi

tnk−1
)(Xj

tnk
−Xj

tnk−1
).

Furthermore, define

η(Aδ)t =
∑
s∈Aδ

f(Xs)− f(Xs−)−
n∑
i=1

∂f

∂xi
(Xs−)∆Xi

s −
1

2

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
(Xs−)∆Xi

s∆X
j
s ,

and analogously, η(Acδ)t. As Aδ is finite, we have (R(J))nt
a.s.−→ η(Aδ)t. Also noting that

Aγ ⊆ Aδ as δ ≤ γ, we get Acδ ⊆ Acγ and thus obtain

lim sup
n→∞

P (|Rnt − ηt| ≥ ε)

≤ lim sup
n→∞

P (|(R(J))nt − η(Aδ)t| ≥ ε/2) + P (|(R(I))nt − η(Acδ)t| ≥ ε/2)

≤ P (|η(Acγ)t| ≥ ε/4) + lim sup
n→∞

P (|(R(I))nt | ≥ ε/4).

Next, we bound the limes superior in the above. To this end, recall that as |2xy| ≤ x2 + y2,

we find for any i, j ≤ p that∣∣∣∣∣∑
k∈In

rij2 (Xtnk−1
, Xtnk

)(Xi
tnk
−Xi

tnk−1
)(Xj

tnk
−Xj

tnk−1
)

∣∣∣∣∣
≤ 1

2

(
max
k∈In

|rij2 (Xtnk−1
, Xtnk

)|
)( 2n∑

k=1

(Xi
tnk
−Xi

tnk−1
)2 +

2n∑
k=1

(Xj
tnk
−Xj

tnk−1
)2

)
,

Now note that by Theorem A.1.22, there is a mapping ξ : Rp × Rp → Rp such that

rij2 (Xtnk−1
, Xtnk

) = ∂2f
∂xi∂xj

(ξ(Xtnk−1
, Xtnk

))− ∂2f
∂xi∂xj

(Xtnk−1
), where ξ(x, y) always is on the line

segment between x and y. In particular, we have

max
k∈In

|rij2 (Xtnk−1
, Xtnk

)| ≤ max
k∈In

sup
t∈[0,1]

∣∣∣∣ ∂2f

∂xi∂xj
(Xtnk−1

+ t(Xtnk
−Xtnk−1

))− ∂2f

∂xi∂xj
(Xtnk−1

)

∣∣∣∣ ,
and the latter is measurable, since by right-continuity, the supremum may be reduced to a

countable one. Now, by Lemma A.2.5, it holds that

lim sup
n→∞

max
k∈In

sup
tnk−1≤r,s≤t

n
k

|Xs −Xr| ≤ 3 sup
s∈[0,t]\Aδ

|∆f(Xs)| < δ,
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so for n large enough, depending on ω, maxk∈In |r
ij
2 (Xtnk−1

, Xtnk
)| ≤ γ. For each ω, let N(ω)

be the first n such that this bound holds. Then, for n ≥ N , we obtain the bound

(R(I))nt ≤
γ

2

p∑
i=1

p∑
j=1

(
2n∑
k=1

(Xi
tnk
−Xi

tnk−1
)2 +

2n∑
k=1

(Xj
tnk
−Xj

tnk−1
)2

)
,

and by Theorem 4.3.3, the latter converges to γ
2

∑p
i=1

∑p
j=1[Xi]t + [Xj ]t in probability. We

are now ready to bound lim supn→∞ P (|(R(I))nt | ≥ ε/4). By dominated convergence theorem,

we obtain lim supn→∞ P (|(R(I))nt | ≥ ε/4) ≤ lim supn→∞ P ((n ≥ N) ∩ (|(R(I))nt | ≥ ε/4)),

where

lim sup
n→∞

P ((n ≥ N) ∩ (|(R(I))nt | ≥ ε/4))

≤ lim sup
n→∞

P

∣∣∣∣∣∣γ2
p∑
i=1

p∑
j=1

(
2n∑
k=1

(Xi
tnk
−Xi

tnk−1
)2 +

2n∑
k=1

(Xj
tnk
−Xj

tnk−1
)2

)∣∣∣∣∣∣ ≥ ε

4


≤ P

∣∣∣∣∣∣γ2
p∑
i=1

p∑
j=1

[Xi]t + [Xj ]t

∣∣∣∣∣∣ ≥ ε

8

 .

All in all, we have now shown that

lim sup
n→∞

P (|Rnt − ηt| ≥ ε) ≤ P (|η(Acγ)t| ≥ ε/4) + P

∣∣∣∣∣∣γ2
p∑
i=1

p∑
j=1

[Xi]t + [Xj ]t

∣∣∣∣∣∣ ≥ ε

8

 ,

for all ε > 0 and for all γ > 0. Now note that Acγ decreases as γ decreases, and we have

∩γ>0A
c
γ = {s ∈ [0, t] | ∆Xs = 0}. The dominated convergence theorem then yields that

almost surely, η(Acγ)t converges to zero as γ tends to zero. Likewise, γ2
∑p
i=1

∑p
j=1[Xi]t+[Xj ]t

converges to zero as γ tends to zero. Letting γ tend to zero in the above, we then obtain

lim supn→∞ P (|Rnt − ηt| ≥ ε) = 0, so Rnt
P−→ ηt and the proof is complete in the case where

X takes its values in a compact set.

It remains to show Rnt
P−→ ηt in the case of a general X. To this end, define a localising

sequence (Tm) by putting Tm = inf{t ≥ 0 | |Xt| > m}. By Lemma 4.1.8, XTm−1(Tm>0) is

bounded by m. Fix m ≥ 1 and put Y m = XTm−1(Tm>0), Y
m then takes its values in the

compact set [−m,m]p. Note that on (Tm > t), we have

Rnt =

p∑
i=1

p∑
j=1

2n∑
k=1

rij2 (Y mtnk−1
, Y mtnk )((Y m)itnk − (Y m)itnk−1

)((Y m)jtnk
− (Y m)jtnk−1

)

and

ηt =
∑

0<s≤t

f(Y ms )−f(Y ms−)−
n∑
i=1

∂f

∂xi
(Y ms−)∆(Y m)is−

1

2

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
(Y ms−)∆(Y m)is∆(Y m)js.
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Therefore, by what we already have shown, 1(Tm>t)R
n
t

P−→ 1(Tm>t)ηt. Applying Lemma

A.3.1, we obtain Rnt
P−→ ηt.

We have now proved that Itô’s formula for a fixed t ≥ 0 holds almost surely. As the processes

on both sides of the formula are càdlàg and t ≥ 0 was arbitrary, Lemma 1.1.7 shows that we

have equality up to indistinguishability. This proves the theorem.

In practical applications, it will occasionally be necessary to apply Itô’s formula in cases

where function f only is defined on some open set. The following corollary shows that Itô’s

formula also holds in this case.

Corollary 4.3.6. Let U be an open set in Rp, let X be a p-dimensional continuous semi-

martingale taking its values in U and let f : U → R be C2. Then

f(Xt) = f(X0) +

p∑
i=1

∫ t

0

∂f

∂xi
(Xs−) dXi

s +
1

2

p∑
i=1

p∑
j=1

∫ t

0

∂2f

∂xi∂xj
(Xs−) d[Xi, Xj ]s + ηt,

up to indistinguishability, where

ηt =
∑

0<s≤t

f(Xs)− f(Xs−)−
n∑
i=1

∂f

∂xi
(Xs−)∆Xi

s −
1

2

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
(Xs−)∆Xi

s∆X
j
s .

Proof. Let ‖ · ‖ be some norm on Rp and let d(x, y) = ‖x− y‖. Define the set Um by putting

Um = {x ∈ Rp | d(x, U c) < 1
m}. Put Fm = U cm, then Fm = {x ∈ Rp | d(x, U c) ≥ 1

m}. As

x 7→ d(x, U c) is continuous, Um is open and Fm is closed. Put Tm = inf{t ≥ 0 | Xt ∈ Um}.
As Um is open, Lemma 1.1.13 shows that Tm is a stopping time. As (Um) is decreasing,

(Tm) is increasing. We wish to argue that (Tm) tends to infinity almost surely and that on

(Tm > 0), XTm− takes its values in Fm.

To prove that (Tm) tends to infinity almost surely, assume that there is ω such that Tm(ω)

has a finite limit T (ω). By construction, there is for each ε > 0 a t ∈ [Tm(ω), Tm(ω) + ε]

such that Xt ∈ Um, meaning that d(Xt, U
c) < 1

m . Applying right-continuity, this yields

d(XTm(ω), U c) ≤ 1
m . And by left-continuity, d(XT (ω), U c) = limm d(XTm(ω), U c) = 0,

implying XT (ω) ∈ U c, a contradiction. We conclude that (Tm) tends almost surely to

infinity. To show that on (Tm > 0), XTm− takes its values in Fm, we note that on this set,

Xt /∈ Um for t < Tm, so Xt ∈ Fm for t < Tm, and by left-continuity of X and closedness of

Fm, XTm− ∈ Fm as well. Thus, XTm− takes its values in Fm on (Tm > 0).

Now let m be so large that Fm is nonempty, this is possible as U = ∪∞n=1Fm and U is

nonempty because X takes its values in U . Let ym be some point in Fm. Define the
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process Y m by putting (Y m)it = 1(Tm>0)(X
i)Tm−t + yim1(Tm=0). Y

m is then a p-dimensional

continuous semimartingale taking its values in Fm. Now, by Lemma A.1.23, there is a C2

mapping gm : Rp → R such that gm and f agree on Fm. By Theorem 4.3.5, Itô’s formula

holds using Y m and gm, and as gm and f agree on Fm, we obtain

f(Y mt ) = f(Y m0 ) +

p∑
i=1

∫ t

0

∂f

∂xi
(Y ms ) d(Y m)is

+
1

2

p∑
i=1

p∑
j=1

∫ t

0

∂2f

∂xi∂xj
(Y ms ) d[(Y m)i, (Y m)j ]s + ηmt ,

up to indistinguishability, where ηm is the jump sum as given in Theorem 4.3.5. We wish

to argue that as m tends to infinity, all terms in the above converge to the corresponding

terms with Y m exchanged by X. Consider the first-order terms. For any i ≤ p, we may use

Lemma 4.2.11 to obtain

1(Tm>t)

∫ t

0

∂f

∂xi
(Y ms ) d(Y m)is = 1(Tm>t)

∫ t

0

∂f

∂xi
(Y ms ) d(Xi)Tms

= 1(Tm>t)

∫ t

0

1(Tm>0)
∂f

∂xi
(XTm

s ) d(Xi)Tms

= 1(Tm>t)

∫ t

0

∂f

∂xi
(XTm

s ) d(Xi)Tms

= 1(Tm>t)

∫ t

0

∂f

∂xi
(Xs) dXi

s,

and with an application of Lemma 4.1.13, the analogous statement is obtained for the second-

order terms. Also, 1(Tm>t)f(Y mt ) = 1(Tm>t)f(Xt) and 1(Tm>t)f(Y m0 ) = 1(Tm>t)f(X0). All

in all, we conclude that Itô’s formula holds almost surely at time t ≥ 0 on (Tm > t), and

letting m tend to infinity, we obtain that the formula holds at any time t ≥ 0. By Lemma

1.1.7, the result holds up to indistinguishability and the proof is concluded.

4.4 Exercises

Exercise 4.4.1. Let X ∈ S. We say that X is a special semimartingale and write X ∈ Sp
if there exists a decomposition X = X0 + M + A where M ∈ M` and A ∈ V is predictable.

Show that if X ∈ Sp, then the decomposition of X into its local martingale and predictable

finite variation parts is unique up to evanescence.

Exercise 4.4.2. Let X ∈ S and assume that X has initial value zero. Show that X ∈ Sp if

and only if X∗ ∈ Ai`, where we define the process X∗ by putting X∗t = sups≤t |Xs|.
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Exercise 4.4.3. Let X ∈ S. Show that X ∈ Sp if and only if there exists a localising

sequence (Tn) such that XTn ∈ Sp for all n ≥ 1.

Exercise 4.4.4. Let X ∈ S. Show that X is predictable if and only if there exists a decom-

position X = X0 + M + A where M ∈ M` is almost surely continuous and A ∈ V with A

predictable.

Exercise 4.4.5. Let X ∈ S. Show that X has a decomposition of the form X = X0 +M +A

with M ∈M` almost surely continuous and A ∈ V if and only if for all t ≥ 0,
∑

0<s≤t |∆Xs|
is almost surely convergent.

Exercise 4.4.6. Let X ∈ S. Show that X is continuous if and only if there exists a decom-

position X = X0 +M +A where M ∈ cM` and A ∈ V is continuous.

Exercise 4.4.7. Let M ∈ M` and let T be a predictable stopping time. Show that MT− is

an element of M`.

Exercise 4.4.8. Let M ∈ M` and let H ∈ I. Show that H · M ∈ M2 if and only if

E
∫∞

0
H2
s d[M ]s is finite, and in the affirmative, E(H ·M)2

∞ = E
∫∞

0
H2
s d[M ]s.

Exercise 4.4.9. Let M ∈ M` and let H ∈ I. Show that if E
∫ t

0
H2
s d[M ]s is finite for all

t ≥ 0, then H ·M ∈M with E(H ·M)2
t = E

∫ t
0
H2
s d[M ]s for all t ≥ 0.

Exercise 4.4.10. Let W be a one-dimensional Ft Brownian motion and let H ∈ I. Show

that H ·W is in cM2 if and only if E
∫∞

0
H2
s ds is finite. Show that if it holds that for any

t ≥ 0, E
∫ t

0
H2
s ds is finite, then H ·W is in cM and E(H ·W )2

t = E
∫ t

0
H2
s ds for all t ≥ 0.

Exercise 4.4.11. Let A ∈ Vi` and let H ∈ I. Show that the compensator of
∫ t

0
Hs dAs is∫ t

0
Hs dΠ∗pAs.

Exercise 4.4.12. Let N be an Ft Poisson process and let Tn be its n’th event time. Let

H be bounded and predictable. Show that 1
t

∫ t
0
Hs ds converges in probability as t tends to

infinity if and only if 1
n

∑n
k=1HTk converges in probability as n tends to infinity, and in the

affirmative, the limits agree.

Exercise 4.4.13. Let M ∈ M` and let A ∈ V be predictable. Show that almost surely for

all t ≥ 0, [M,A]t =
∑

0<s≤t ∆Ms∆As and show that [M,A] ∈M`.

Exercise 4.4.14. Let A ∈ Vi be predictable and let M ∈Mb. Show that the compensator of∫ t
0
Ms dAs is

∫ t
0
Ms− dAs.

Exercise 4.4.15. Let X ∈ S and let H be a predictable semimartingale. Show that almost

surely, it holds for all t ≥ 0 that (∆H ·X)t =
∑

0<s≤t ∆Hs∆Xs.
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Exercise 4.4.16. Let W be a one-dimensional Ft Brownian motion and let H be bounded,

adapted and continuous. Show that for any fixed t ≥ 0, (Wt+h−Wt)
−1
∫ t+h
t

Hs dWs converges

in probability to Ht as h tends to zero, where we define
∫ t+h
t

Hs dWs = (H ·W )t+h−(H ·W )t.

Exercise 4.4.17. Let X be a continuous process. Let t ≥ 0 and let tnk = kt2−n. Let p > 0 and

assume that
∑2n

k=1 |Xtnk
−Xtnk−1

|p is convergent in probability. Show that
∑2n

k=1 |Xtnk
−Xtnk−1

|q

converges to zero in probability for q > p.

Exercise 4.4.18. Let 0 < H < 1 and X be a continuous adapted process such that X has

finite-dimensional distributions which are normally distributed with mean zero and such that

for any s and t with s, t ≥ 0, EXsXt = 1
2 (t2H + s2H − |t− s|2H). Such a process is called a

fractional Brownian motion with Hurst parameter H. Show that if H = 1
2 , then X has the

distribution of a Brownian motion. Show that if H 6= 1
2 , then X is not in cS.

Exercise 4.4.19. Let W be a p-dimensional Ft Brownian motion. Let f : Rp → R be C2.

Show that f(Wt) is a continuous local martingale if
∑p
i=1

∂2f
∂x2
i
(x) = 0 for all x ∈ Rp.

Exercise 4.4.20. Let W be a one-dimensional Ft Brownian motion. Let f : R2 → R be C2.

Show that f(t,Wt) is a continuous local martingale if ∂f∂t (t, x)+ 1
2
∂2f
∂x2 (t, x) = 0 for (t, x) ∈ R2.

Show that in the affirmative, it holds that f(t,Wt) = f(0, 0) +
∫ t

0
∂f
∂x (s,Ws) dWs.

Exercise 4.4.21. Let W be a one-dimensional Ft Brownian motion and let f : R+ → R be

continuous. Show that f ∈ I in the sense that the process (t, ω) 7→ f(t) is in I. Fix t ≥ 0

and find the distribution of
∫ t

0
f(s) dWs.

Exercise 4.4.22. Let X,Y ∈ S and f, g ∈ C2(R). With f(X)t = f(Xt) and g(Y )t = g(Yt),

show that [f(X), g(Y )]t =
∫ t

0
f ′(Xs)g

′(Ys) d[Xc, Y c]s +
∑

0<s≤t ∆f(Xs)∆g(Ys) for all t ≥ 0

up to indistinguishability. Use this to identify the quadratic variation of W p when W is an

Ft Brownian motion and p ≥ 1.

Exercise 4.4.23. Let W be a p-dimensional Ft Brownian motion. Find the quadratic co-

variation process of W i
tW

j
t for i, j ≤ p.

Exercise 4.4.24. Assume that M ∈ Mb and put tnk = kt2−n. Show that the sequence∑2n

k=1(Mtk −Mtk−1
)2 converges in L1 to [M ]t.
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Chapter 5

Conclusion

In this final chapter, we review our results and give directions for further reading.

We begin by reviewing each chapter by turn and commenting on relevant litterature. As

stated in the introduction, the theory covered here is intended as a short and rigorous path

through the core of stochastic integration theory. The results of Chapter 1 are for the

most part quite standard and can be found in several books on continuous-time stochastic

processes, Karatzas & Shreve (1991) and Rogers & Williams (2000a) are a good sources in

this regard.

Throughout this monograph, progressive measurability is invoked in order to apply Lemma

1.1.12. An interesting observation is that the apparently weaker requirement of being measur-

able and adapted implies the existence of a progressive modification, see for example Section

IV.30 of Dellacherie & Meyer (1978) or Kaden & Potthoff (2005).

In Theorem 1.3.6, Lemma A.3.7 was applied to obtain the existence of the quadratic variation

process for bounded martingales with initial value zero. The method of taking convex com-

binations to obtain convergence has been used several times previously in probability theory,

see for example Lemma A1.1 of Delbaen & Schachermayer (1994) as well as the results in

Delbaen & Schachermayer (1996) and Beiglböck et al. (2012).

The theme of Chapter 2 is that of the “general theory of processes”, and is also covered in

Dellacherie & Meyer (1978), He et al. (1992) and to some degree in Protter (2005). The
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main result of Section 2.1, Theorem 2.1.12, is a version of the PFA Theorem, see Theorem

VI.12.6 of Rogers & Williams (2000b). In Section 2.2, the σ-algebra FT− is introduced. For

more on this, see also Chung & Doob (1965).

In Chapter 3, local martingales are introduced. Our proof in Section 3.2 of the existence of the

compensator is based on ideas from Beiglböck et al. (2012). Other proofs may be obtained

as corollaries of the Doob-Meyer decomposition, see for example Rogers & Williams (2000b)

or Protter (2005) for this approach. Alternatively, an approach based on the predictable

projection mapping may be applied, this approach generally requires the section theorems for

uniqueness of the predictable projection. See He et al. (1992), Rogers & Williams (2000b)

or Elliott (1982) for this approach.

The proof of the existence of the quadratic variation process in Section 3.3 is based on the de-

composition given in the fundamental theorem of local martingales. Alternative approaches

are given in for example Rogers & Williams (2000b) and He et al. (1992), based on con-

sidering the case of M2, in particular Rogers & Williams (2000b) proves a decomposition

of M2 into continuous and purely discontinuous parts and proceeds from there. In Prot-

ter (2005) and Jacod & Shiryaev (2003), the stochastic integral is constructed before the

quadratic variation, and the quadratic variation is then introduced as the remainder term in

the integration-by-parts formula.

The construction of the stochastic integral with respect to a local martingale carried out

in Theorem 4.2.8 of Chapter 4 is inspired by the proof given in Chapter IX of He et al.

(1992). However, while He et al. (1992) applies a decomposition into continuous and purely

discontinuous parts and a characterisation of the jump structure of purely discontinuous

martingales based on the predictable projection, we apply the fundamental theorem of local

martingales. In both cases, however, the Riesz representation theorem for M2 is invoked

to obtain existence in some part of the existence proof. Alternative approaches are given in

Rogers & Williams (2000b), Jacod & Shiryaev (2003) and Kallenberg (2002), based on first

defining the integral for elementary types of processes and then extending by linearity and

continuity requirements. An entirely different approach to the construction of the stochatic

integral is given in Protter (2005), where the concept of a semimartingale is introduced

as a process where the integral may be defined for left-continuous processes, afterwards

proceeding to prove equivalence with the ordinary definition and finally extending the integral

to predictable and locally bounded processes.

Our proof of Itô’s formula in Section 4.3 is based on the methods used in Protter (2005).

Another approach is given in Rogers & Williams (2000b) based on the integration-by-parts
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formula and approximation by polynomials. Elliott (1982) gives a proof based on successive

approximations of semimartingales by more regular processes.

As regards further reading, Chapter IV of Rogers & Williams (2000b) includes some pointers

for applications of the stochastic integral for continuous semimartingales. For topics covering

the discontinuous case, He et al. (1992) contains several relevant chapters on for example

changes of measure, martingale spaces, stochastic differential equations, martingale repre-

sentation and weak convergence of semimartingales. Protter (2005) also covers many of the

same topics, and also includes a chapter on expansion of filtrations. For a detailed account

of many topics related to martingale theory, see Jacod (1979).
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Appendix A

Appendices

In these appendices, we review the general analysis, measure theory and probability theory

which are used in the main text, but whose subject matter is either taken to be more or less

well-known or taken to be sufficiently different from our main interests to merit separation.

A.1 Measure theory and analysis

We first recall two fundamental results of basic measure theory.

Lemma A.1.1 (Dynkin’s lemma). Let E be some set, and let E be a family of subsets of E

which is stable under intersections. Let H be another family of subsets of E such that E ∈ H,

if A,B ∈ H with A ⊆ B then B \ A ∈ H and if (An) is an increasing sequence in H, then

∪∞n=1An ∈ H. Such a family is called a Dynkin class. If E ⊆ H, then σ(E) ⊆ H.

Proof. See Theorem 2.1.3 of Karatzas & Shreve (1991).

Theorem A.1.2. Let (E, E) be a measurable space. Let A be an algebra generating E, and

let H be such that whenever (Hn) is an increasing sequence in H, then ∪∞n=1Hn ∈ H, and

whenever (Hn) is a decreasing sequence in H, then ∩∞n=1Hn ∈ H. We say that H is a

monotone class. If A ⊆ H, then E ⊆ H as well.
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Proof. See Theorem 1.3.9 of Ash (2000).

Next, we consider some results on signed measures. Let (E, E) be a measurable space. A

signed measure on (E, E) is a mapping µ : E → R such that µ(∅) = 0 and whenever (An) is

a sequence of disjoint sets in E ,
∑∞
n=1 |µ(An)| is convergent and µ(∪∞n=1An) =

∑∞
n=1 µ(An).

Theorem A.1.3. Let µ be a signed measure on (E, E). There exists a bounded nonnegative

measure |µ| on (E, E) such that |µ|(A) = sup
∑∞
n=1 |µ(An)|, where the supremum is taken

over all mutually disjoint sequences (An) in E with A = ∪∞n=1An. The nonnegative measure

|µ| is called the total variation measure of µ. In particular, |µ(A)| ≤ |µ|(A) ≤ |µ|(E), so

every signed measure is bounded.

Proof. See Theorem 6.2 and Theorem 6.4 of Rudin (1987).

Lemma A.1.4. Let µ and ν be two signed measures on a measurable space (E, E). Let

E = σ(E), where E is stable under intersections. If µ and ν are equal on E and satisfy

µ(E) = ν(E), they are equal on E.

Proof. We apply Lemma A.1.1. Let H = {A ∈ E|µ(A) = ν(A)}. We wish to show that H is

a Dynkin class. By our assumptions, µ(E) = ν(E), and so E ∈ H. If A,B ∈ H with A ⊆ B,

we obtain the equality µ(B \ A) = µ(B) − µ(A) = ν(B) − ν(A) = ν(B \ A), so B \ A ∈ H.

Finally, if (An) is an increasing sequence of sets in H, we find that {A1, A2 \A1, A3 \A2, . . .}
is a sequence of disjoint sets in H, and therefore,

µ(∪∞n=1An) = µ(A1 ∪ (∪∞n=2An \An−1)) = µ(A1) +

∞∑
n=2

µ(An \An−1)

= ν(A1) +

∞∑
n=2

ν(An \An−1) = ν(A1 ∪ (∪∞n=2An \An−1)) = ν(∪∞n=1An),

where the sums converge absolutely by the definition of a signed measure. Thus, ∪∞n=1An ∈ H,

and so H is a Dynkin class. Therefore, H = σ(E) = E , and so µ = ν.

Theorem A.1.5 (Jordan-Hahn decomposition). Let µ be a signed measure on (E, E). There

is a unique pair of positive bounded singular measures µ+ and µ− such that µ = µ+ − µ−,

given by µ+ = 1
2 (|µ|+µ) and µ− = 1

2 (|µ|−µ). This decomposition also satisfies |µ| = µ++µ−.

We call this the Jordan-Hahn decomposition of µ.
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Proof. By Section 6.6 of Rudin (1987) and Theorem 6.14 of Rudin (1987), the explicit

construction of µ+ and µ− satisfies the requirements of the theorem. For uniqueness, assume

that µ = ν+ − ν−, where ν+ and ν− is another pair of singular positive bounded measures.

Assume that ν+ is concentrated on F+ and ν− is concentrated on F−, while µ+ is concen-

trated on E+ and µ− is concentrated on E−, where F+ and F− are disjoint and E+ and E−

are disjoint. For any A ∈ E , we then have the inequalities µ(A∩E+∩F−) = µ+(A∩F−) ≥ 0

and µ(A ∩ E+ ∩ F−) = −ν−(A ∩ E+) ≤ 0, yielding µ(A ∩ E+ ∩ F−) = 0, as well as the

inequalities µ(A ∩ E− ∩ F+) = ν+(A ∩ E−) ≥ 0 and µ(A ∩ E− ∩ F+) = −µ−(A ∩ F+) ≤ 0,

yielding µ(A ∩ E− ∩ F+) = 0. Applying these results, we obtain

µ+(A) = µ+(A ∩ E+) = µ(A ∩ E+) = µ(A ∩ E+ ∩ F+)

= µ(A ∩ F+) = ν+(A ∩ F+) = ν+(A),

so µ+ and ν+ are equal, and therefore µ− and ν− are equal as well.

Lemma A.1.6. Let µ be a signed measure on (E, E). Let A be an algebra generating E.

Then |µ|(E) = sup
∑n
k=1 |µ(Ak)|, where the sum is taken over finite disjoint partitions (Ak)

of A, and each element Ak is in A.

Proof. We first show that |µ|(E) = sup
∑n
k=1 |µ(Ak)|, where the sum is taken over finite

disjoint partitions (Ak) of E, and each element Ak is in E . To this end, let ε > 0. There is

a countable disjoint measurable partition (An) of E such that |µ|(E) ≤ ε +
∑∞
n=1 |µ(An)|.

Since |µ| is a bounded positive measure, the sum
∑∞
n=1 |µ|(An) is convergent, and therefore,

there is k such that |µ(∪∞n=kAn)| = |
∑∞
n=k µ(An)| ≤

∑∞
n=k |µ(An)| ≤

∑∞
n=k |µ|(An) ≤ ε.

As all the numbers in the chain of inequalities are nonnegative, we find in particular that

||µ(∪∞n=kAn)| −
∑∞
n=k |µ(An)|| ≤ ε and thus

|µ|(E) ≤ ε+

∞∑
n=1

|µ(An)| = ε+

k−1∑
n=1

|µ(An)|+
∞∑
n=k

|µ(An)| ≤ 2ε+ |µ(∪∞n=kAn)|+
k−1∑
n=1

|µ(An)|,

and since the family of sets A1, . . . , Ak−1,∪∞n=kAn is a finite disjoint partition of E with each

element in E , and ε > 0 was arbitrary, we conclude that |µ|(E) = sup
∑n
k=1 |µ(Ak)|, where

the supremum is over finite disjoint measurable partitions of E.

Next, we show that it suffices to consider partitions with each element in A. Let ε > 0,

we need to locate a finite disjoint partition (An) of E with elements from A such that

|µ|(E) ≤ ε+
∑k
n=1 |µ(An)|. From what we have just shown, there is a finite disjoint partition

(An) of E with each An in E such that |µ|(E) ≤ ε+
∑k
n=1 |µ(An)|. For any n ≤ k, we may

use Theorem 1.3.11 of Ash (2000) to obtain some Bn ∈ A with |µ|(An∆Bn) ≤ 1
kε2
−k, where

the symmetric difference An∆Bn is defined by An∆Bn = (An ∩Bcn) ∪ (Acn ∩Bn).
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Now let Pk denote the set of all subsets of {1, . . . , k}, and define the set Cα for any α ∈ Pk
by putting Cα = {x ∈ E | ∀ n ≤ k : x ∈ Bn if n ∈ α and x ∈ Bcn if n /∈ α}. Cα is the

intersection of the Bn’s with n ∈ α and the Bcn’s with n /∈ α. In particular, the family

(Cα)α∈Pk consists of mutually disjoint sets. As for each x ∈ E and each n ≤ k, we either

have x ∈ Bn or x ∈ Bcn, the family (Cα)α∈Pk is a finite disjoint partition of E, and as A is

an algebra, Cα ∈ A for all α ∈ Pk. We claim that |µ|(E) ≤ 3ε+
∑
α∈Pk |µ(Cα)|.

To prove this, we first note that for any n ≤ k, we have

||µ(An)| − |µ(Bn)|| ≤ |µ(An)− µ(Bn)|

≤ |µ(An ∩Bn) + µ(An ∩Bcn)− (µ(An ∩Bn) + µ(Acn ∩Bn))|

= |µ(An ∩Bcn)− µ(Acn ∩Bn)| ≤ |µ(An ∩Bcn)|+ |µ(Acn ∩Bn)|

≤ |µ|(An ∩Bcn) + |µ|(Acn ∩Bn) = |µ|(An∆Bn),

which is less than 1
kε2
−k. Therefore, we obtain

|µ|(E) ≤ ε+

k∑
n=1

|µ(An)| ≤ ε+

k∑
n=1

|µ(Bn)|+
k∑

n=1

||µ(An)| − |µ(Bn)|| ≤ 2ε+

k∑
n=1

|µ(Bn)|.

Note that Bn = ∪α:n∈αCα, with each pair of sets in the union being mutually disjoint. We

will argue that |µ|(Bn) ≤ |µ|(C{n}) + 1
kε. To see this, consider some α ∈ Pn with more than

one element, assume for definiteness that n,m ∈ α with n 6= m. As the An’s are disjoint, we

then find

|µ|(Cα) ≤ |µ|(Bn ∩Bm) = |µ|(Bn ∩An ∩Bm) + |µ|(Bn ∩Acn ∩Bm)

≤ |µ|(An ∩Bm) + |µ|(Bn ∩Acn) = |µ|(An ∩Acm ∩Bm) + |µ|(Bn ∩Acn)

≤ |µ|(Acm ∩Bm) + |µ|(Bn ∩Acn) ≤ |µ|(Am∆Bm) + |µ|(An∆Bn),

which is less than 2
kε2
−k. We now note, using C{n} ⊆ Bn, that

|µ(Bn)| ≤ |µ(C{n})|+ |µ(Bn)− µ(C{n})|

= |µ(C{n})|+ |µ(Bn \ C{n})|

≤ |µ(C{n})|+ |µ|(Bn \ C{n}).

However, |µ|(Bn \ C{n}) = |µ|(Bn) − |µ|(C{n}) =
∑
n∈α,α6={n} |µ|(Cα) and as there are less

than 2k−1 elements in the sum, with each element according to what was alerady proven

has a value of less than 2
kε2
−k, we find |µ|(Bn) ≤ |µ|(C{n}) + 1

kε. We may now conclude

|µ|(E) ≤ 2ε +
∑k
n=1 |µ(Bn)| ≤ 3ε +

∑k
n=1 |µ(C{n})| ≤ 3ε +

∑
α∈Pn |µ(Cα)|. As ε was

arbitrary, we conclude that |µ(E)| = sup
∑k
n=1 |µ(An)|, where the sum is taken over finite

disjoint partitions (Ak) of E, and each element Ak is in A.
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Next, we consider two results on algebras and σ-algebras.

Lemma A.1.7. Let E be some set, and let A be a set family on E. Let A denote the family

of finite unions of elements of A. Assume that

1. A contains E.

2. A is stable under finite intersections.

3. The complements of sets in A are in A.

Then A is an algebra.

Proof. We need to prove that A is stable under finite unions and intersections. The family A
is stable under finite unions by construction. It will therefore suffice to show stability under

finite intersections. As we have A ∩ B = (Ac ∪ Bc)c, it will be sufficient to show stability

under complements. Let A ∈ A with A = ∪nk=1Ak, where Ak ∈ A for k ≤ n. By assumption,

Ack ∈ A, so Ack = ∪mki=1Bik for some Bik ∈ A. We then have

Ac = ∩nk=1A
c
k = ∩nk=1 ∪

mk
i=1 Bik = ∪m1

i1=1 · · · ∪
mn
in=1 ∩

n
k=1Bikk.

Since A is stable under finite intersections, we obtain Ac ∈ A, as desired.

Lemma A.1.8. Let (E, E) be a measurable space endowed with a bounded positive measure

µ, and let A be an algebra generating E. For any A ∈ E, it holds that

µ(A) = sup{µ(B)|B ∈ Aδ, B ⊆ A} = inf{µ(B)|B ∈ Aσ, A ⊆ B},

where Aδ and Aσ denotes the family of countable intersections and countable unions of ele-

ments in A, respectively.

Proof. Let H be the family of sets A in E with the desired approximation property. We wish

to show that H is equal to E . Clearly, H contains the algebra A generating E . Therefore,

by Theorem A.1.2, we may conclude that H is equal to E if only we can prove that H is a

monotone class.

To this end, we first let (An) be an increasing sequence of elements in H and we define

A = ∪∞n=1An. We wish to show that A ∈ H as well. We first consider the approximation

of A by elements of Aδ. Fix ε > 0. We may use the continuity of µ to find n so large
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that µ(A \ An) ≤ ε
2 . Let B ∈ Aδ with B ⊆ An be such that µ(An) ≤ µ(B) + ε

2 , we then

obtain µ(A) = µ(A \ An) + µ(An) ≤ µ(B) + ε. As B ⊆ An ⊆ A, we obtain the inequality

µ(A) ≤ sup{µ(B)|B ∈ Aδ, B ⊆ A}. As the other inequality always holds, this leads os to

conclude that µ(A) = sup{µ(B)|B ∈ Aδ, B ⊆ A}, showing that A may be approximated from

the inside by elements of Aδ. Next, we consider the approximation of A from the outside by

elements of Aσ. For each n, take Bn ∈ Aσ such that An ⊆ Bn and µ(Bn\An) ≤ ε2−n. Define

B = ∪∞n=1Bn, then B ∈ Aσ as well. Furthermore, we have A = ∪∞n=1An ⊆ ∪∞n=1Bn = B,

and we find

µ(B) = lim
n
µ(∪nk=1Bk) = lim

n
µ(∪nk=1Bk \An) + µ(An) = µ(A) + lim

n
µ(∪nk=1Bk \An).

Here, as (An) is increasing, (Acn) is decreasing, and so we have

µ(∪nk=1Bk \An) ≤
n∑
k=1

P (Bk ∩Acn) ≤
n∑
k=1

P (Bk ∩Ack) ≤
n∑
k=1

ε2−k ≤ ε,

allowing us to conclude that µ(B) ≤ µ(A) + ε, and so µ(A) ≥ inf{µ(B)|B ∈ Aσ, A ⊆ B}.
And as the other inequality is obvious, we find that we have equality. This finally allows us

to conclude that A ∈ H.

We have now shown that when (An) is an increasing sequence of sets in H, then ∪∞n=1An ∈ H
as well. To prove the analogous result for decreasing sequences, we first show that H is

stable under complements. To this end, first note that if (Bn) is a sequence in A, then

(∪∞n=1Bn)c = ∩∞n=1B
c
n, where (Bcn) is also a sequence in A. Therefore, B ∈ Aδ if and only if

Bc ∈ Aσ. Now let A ∈ H. We then find that

µ(Ac) = µ(E)− µ(A)

= µ(E)− sup{µ(B)|B ∈ Aδ, B ⊆ A}

= µ(E) + inf{−µ(B)|B ∈ Aδ, B ⊆ A}

= inf{µ(Bc)|B ∈ Aδ, B ⊆ A}

= inf{µ(B)|B ∈ Aσ, Ac ⊆ B},

and in the same manner, µ(Ac) = sup{µ(B)|B ∈ Aδ, B ⊆ Ac}. Thus Ac ∈ H. In order

to complete the proof that H is a monotone class, now assume that (An) is a decreasing

sequence in H. Then (Acn) is an increasing sequence in H, so from what we already have

shown, ∪∞n=1A
c
n ∈ H. By stability under complements, this yields ∩∞n=1An ∈ H as well.

Theorem A.1.2 now allows us to conclude that H is equal to E and so the lemma holds.

Finally, we introduce integration measures and prove versions of the Tonelli and Fubini

theorems. For these purposes, the following lemma will come in handy. We use the notation
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that for set families E and F of subsets of sets E and F , respectively, E×F denotes the family

{A×B | A ∈ E, B ∈ F}.

Lemma A.1.9. Let (E, E) and (F,F) be two measurable spaces. Let E be a generator for

E and let F be a generator for F . Assume that there are sequences (En) ⊆ E and (Fn) ⊆ F
such that E = ∪∞n=1En and F = ∪∞n=1Fn. It then holds that E ⊗ F = σ(E× F).

Proof. First define E = E∪{E} and F = F∪{F}. We begin by proving σ(E×F) = σ(E×F).

The inclusion σ(E×F) ⊆ σ(E×F) is immediate, so it will suffice to show σ(E×F) ⊆ σ(E×F),

and to do so, it will suffice to prove E×F ⊆ σ(E×F). To this end, let A ∈ E. We then have

A×Fn ∈ E×F, so A×F = ∪∞n=1A×Fn ∈ σ(E×F). Thus, all sets of the form A×F , where

A ∈ E, is in σ(E × F). In the same manner, we may argue that all sets of the form E × B,

where B ∈ F, is in σ(E× F). Finally, we also have E ×F = ∪∞n=1En ×Fn ∈ σ(E× F). Thus,

E× F ⊆ σ(E× F), as claimed, yielding σ(E× F) = σ(E× F).

Now, let H be the σ-algebra generated by E × F. From what we have just shown, to prove

the claim of the lemma, it will suffice to prove E ⊗F = H. It is immediate that H ⊆ E ⊗F ,

we need to prove the opposite inclusion. To do so, it will suffice to prove E ×F ⊆ H. In order

to obtain this, let F′ be the family of sets B ∈ F such that E × B ∈ H. Then F′ is stable

under complements and countable unions, and F ⊆ F′. In particular, F ∈ F′. We conclude

that F′ is a σ-algebra containing F, therefore F ⊆ F′. This shows that E × B ∈ H for any

F ∈ F . Analogously, we can prove that A×F ∈ H for any A ∈ E . Letting A ∈ E and B ∈ F ,

we then obtain A × B = (A × F ) ∩ (E × B) ∈ H, as desired. We conclude E × F ⊆ H and

therefore E ⊗ F ⊆ H, as was to be proved.

Next, we consider the existence and properties of integration measures. We will restrict our

attention to the case where (E, E) is countably generated in the sense that there exists a

countable generating family for E . We begin by considering a few lemmas.

Lemma A.1.10. Assume that (E, E) is a countably generated measure space. Then, there

exists a sequence of finite partitions (Pn)n≥1 of E with Pn ⊆ E such that (σ(Pn))n≥1 is

increasing and such that E is generated by ∪∞n=1Pn.

Proof. This is shown on p. 209 of Stroock (2010).

Lemma A.1.11. Assume that (E, E) is a countably generated measure space. Then, there

exists a countable algebra generating E.
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Proof. By Lemma A.1.10, there exists a sequence of finite partitions (Pn)n≥1 of E with

Pn ⊆ E such that (σ(Pn))n≥1 is increasing and such that E is generated by ∪∞n=1Pn. Then E
is also generated by ∪∞n=1σ(Pn). As Pn is finite, σ(Pn) is finite as well. Therefore, ∪∞n=1σ(Pn)

is countable, and it is immediate that it is an algebra.

Lemma A.1.12. Let (νω) be a family of signed measures on (E, E). Assume that ω 7→ νω(A)

is F measurable for all A ∈ E. Then ω 7→ |νω|(A) is also F measurable for all A ∈ E.

Proof. Note that as E is countably generated, Lemma A.1.11 shows that E is generated by a

countable algebra. Thus, we are in the setting of Section 2 of Dubins & Freedman (1964).

Therefore, Theorem 2.9 of Dubins & Freedman (1964) yields the result.

In the following, assume that (E, E) is countably generated. Assume further given a measur-

able space (Ω,F) endowed with a probability measure P , and let (νω) be a family of signed

measures on (E, E). Assume that ω 7→ νω(A) is F measurable for all A ∈ E and assume that∫
Ω
|νω|(E) dP (ω) is finite. We then say that (νω) is a P -integrable F kernel on E . Note that∫

Ω
|νω|(E) dP (ω) always is well-defined by Lemma A.1.12.

Theorem A.1.13. Let (νω) be a P -integrable F-kernel on E. There exists a unique signed

measure λ on F ⊗ E, called the integration of (νω) with respect to P , uniquely characterized

by the requirement that for F ∈ F and A ∈ E, λ(F × A) =
∫
F
νω(A) dP (ω). If each νω is

nonnegative, λ is nonnegative.

Proof. Note that the proposed expression for λ(F × A) is well-defined, as ω 7→ νω(A) is F
measurable for all A ∈ E . Defining ν+

ω = 1
2 (|νω| + νω) and ν−ω = 1

2 (|νω| − νω), we know

from Theorem A.1.5 that νω = ν+
ω −ν−ω is the Jordan-Hahn decomposition of νω. By Lemma

A.1.12, we find that ω 7→ ν+
ω (A) and ω 7→ ν−ω (A) are F measurable for all A ∈ E . By Theorem

4.20 of Pollard (2002), there exists two positive measures λ+ and λ− on F ⊗ E such that

for any F ∈ F and A ∈ E , λ+(F ×A) =
∫
F
ν+
ω (A) dP (ω) and λ−(F ×A) =

∫
F
ν−ω (A) dP (ω).

As
∫

Ω
|νω|(E) dP (ω) is finite, both λ+ and λ− are bounded. Therefore, we may define

λ = λ+ − λ− and obtain a signed measure on F ⊗ E with the desired qualities. Clearly, if

each νω is nonnegative, ν−ω is zero for all ω and so λ− is zero, such that λ is nonnegative in

this case.

Uniqueness follows from Lemma A.1.4, since the class of sets F ×A where F ∈ F and A ∈ E
forms a generating family for F ⊗ E which is stable under intersections.
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In order to obtain Tonelli’s and Fubini’s theorems for integration measures, we first need to

identify the total variation measure of an integration measure.

Lemma A.1.14. Let (νω) be a P -integrable F-kernel on E. There exists an F ⊗ E-B mea-

surable mapping h : Ω × E → R taking its values in {−1, 1} such that for all ω ∈ Ω, the

measure ν+
ω is concentrated on {x ∈ E | h(ω, x) = 1} and the measure ν−ω is concentrated on

{x ∈ E | h(ω, x) = −1}.

Proof. By Theorem 6.12 of Rudin (1987), for each ω ∈ Ω, there exists a E-B measurable

mapping k(ω, ·) : E → R with values in {−1, 1} which is a version of the Radon-Nikodym

derivative of νω with respect to |νω|. Now let (Pn)n≥1 be a sequence of finite partitions as

given in Lemma A.1.10, and define

hn(ω, x) =
∑
A∈Pn

1A(x)
νω(A)

|νω|(A)
1(|νω|(A)>0).

The mapping hn is F ⊗ E-B measurable. Furthermore, define G = {ω ∈ Ω | |νω|(E) 6= 0}.
By Lemma A.1.12, G is F measurable. For ω ∈ G, let µω = |νω|/|νω|(E), we then also have

hn(ω, x) =
∑
A∈Pn

1A(x)
1

µω(A)

∫
k(ω, x) dµω(x)1(µω(A)>0).

From this, we see that hn(ω, ·) is the conditional expectation of k(ω, ·) with respect to σ(Pn)

on the probability space (E, E , µω). By arguments as in Theorem 5.2.7 of Stroock (2010),

hn then converges µω almost surely to the conditional expectation of k(ω, ·) with respect to

σ(∪∞n=1σ(Pn)), which is almost surely equal to k(ω, ·).

Now define a mapping h : Ω×E → R by letting h(ω, x) be the limit of hn whenever this exists

and is equal to either −1 or 1 and ω ∈ G, and 1 otherwise. Then h is F ⊗ E-B measurable

and takes its values in {−1, 1}. Fix ω ∈ Ω, we need to show that ν+
ω is concentrated on

{x ∈ E | h(ω, x) = 1} and ν−ω is concentrated on {x ∈ E | h(ω, x) = −1}. If ω ∈ Gc, it holds

that νω is zero, so the result trivially holds in this case. Consider instead ω ∈ G. As hn(ω, ·)
converges µω almost surely to k(ω, ·) in this case and k(ω, ·) takes its values in {−1, 1}, it

holds in particular that µω almost surely, h(ω, ·) = k(ω, ·). Therefore, this also holds |νω|
almost surely, and so we obtain

ν+
ω ({x ∈ E | h(ω, x) = −1}} = ν+

ω ({x ∈ E | k(ω, x) = −1}}

=

∫
1{x∈E|k(ω,x)=−1}(y)k(ω, y) d|νω|(y) ≤ 0,

so ν+
ω ({x ∈ E | h(ω, x) = −1}) = 0 and thus ν+

ω is concentrated on {x ∈ E | h(ω, x) = 1}.
Similarly, we may obtain that ν−ω is concentrated on {x ∈ E | h(ω, x) = −1}. This concludes

the proof.
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Lemma A.1.15. Let (νω) be a P -integrable F-kernel on E. Let λ be the integration of (νω)

with respect to P . The variation measure of λ is the integration of the P -integrable F-kernel

(|νω|) on E.

Proof. By Lemma A.1.14, there exists an F⊗E-B measurable mapping h : Ω×E → R taking

its values in {−1, 1} such that for all ω ∈ Ω, ν+
ω is concentrated on {x ∈ E | h(ω, x) = 1}

and ν−ω is concentrated on {x ∈ E | h(ω, x) = −1}. Using Theorem A.1.13, let λ+ and λ− be

the integrations of (ν+
ω ) and (ν−ω ), respectively. By Lemma A.1.4, we obtain λ = λ+ − λ−.

Applying Theorem 4.20 of Pollard (2002), we obtain

λ+({(ω, x) ∈ Ω× E | h(ω, x) = −1}) =

∫ ∫
1{(ω,x)∈Ω×E|h(ω,x)=−1} dν+

ω (x) dP (ω)

=

∫
ν+
ω ({(ω, x) ∈ Ω× E | h(ω, x) = −1}) dP (ω),

which is zero, so λ+ is concentrated on {(ω, x) ∈ Ω × E | h(ω, x) = 1}. Similarly, λ− is

concentrated on {(ω, x) ∈ Ω × E | h(ω, x) = −1}. Therefore, we find that λ+ and λ− are

singular. By the uniqueness statement of Theorem A.1.5, we conclude that λ = λ+ − λ−

is the Jordan-Hahn decomposition of λ, and thus |λ| = λ+ + λ−, also by Theorem A.1.5.

As λ+ and λ− are the integrations of (ν+
ω ) and (ν−ω ), respectively, this shows that |λ| is the

integration of (|νω|), as desired.

Theorem A.1.16 (Tonelli’s theorem for integration measures). Let P be a probability mea-

sure on (Ω,F), let (E, E) be a measurable space and let (νω) be a P -integrable F-kernel on

E. Let λ be the integration of (νω) with respect to P . For any nonnegative F ⊗E measurable

function f : Ω× E → [0,∞], the following holds:

1. The mapping x 7→ f(ω, x) is E measurable for each ω ∈ Ω.

2. The mapping ω 7→
∫
f(ω, x) d|νω|(x) is F measurable.

3.
∫
f(ω, x) d|λ|(ω, x) =

∫ ∫
f(ω, x) d|νω|(x) dP (ω).

Proof. By Lemma A.1.15, |λ| is the integration of the P -integrable F-kernel (|νω|)ω∈Ω on E .

Therefore, the result follows from Theorem 4.20 of Pollard (2002).

Theorem A.1.17 (Fubini’s theorem for integration measures). Let P be a probability mea-

sure on (Ω,F), let (E, E) be a measurable space and let (νω) be a P -integrable F-kernel on E.

Let λ be the integration of (νω) with respect to P . Let f : Ω×E → R be an F ⊗E measurable

function which is integrable with respect to |λ|.
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1. The mapping x 7→ f(ω, x) is E measurable for each ω ∈ Ω.

2. For P almost all ω, the mapping x 7→ f(ω, x) is integrable with respect to νω, and

the mapping ω 7→
∫
f(ω, x) dνω(x) is F measurable and P integrable when put to zero

whenever undefined.

3. It holds that
∫
f(ω, x) dλ(ω, x) =

∫ ∫
f(ω, x) dνω(x) dP (ω).

Proof. For the first claim, see Theorem 7.5 of Rudin (1987). As regards the second claim,

Theorem A.1.16 yields that for each ω, x 7→ |f(ω, x)| is E measurable, ω 7→
∫
|f(ω, x)||dνω|(x)

is F measurable and
∫ ∫
|f(ω, x)||dνω(x)|dP (ω) =

∫
|f(ω, x)||dλ|(ω, x), and the latter is

finite by assumption. Therefore,
∫
|f(ω, x)||dνω(x)| is finite for P almost all ω. In par-

ticular, for such ω, x 7→ f(ω, x) is integrable with respect to νω. Now let N be the

null set such that
∫
|f(ω, x)||dνω(x)| is infinite. As ω 7→

∫
|f(ω, x)||dνω|(x) is F mea-

surable by Theorem A.1.16, we obtain N ∈ F . Now let f+(ω, x) = max{f(ω, x), 0} and

f−(ω, x) = min{f(ω, x), 0}, and let λ+ = 1
2 (|λ|+λ) and λ− = 1

2 (|λ|−λ), By Theorem A.1.5,

λ+ and λ− are then the positive and negative parts of λ in the Jordan-Hahn decomposition

of λ. Applying Lemma A.1.15, we find that λ+ is the integration of (ν+
ω )ω∈Ω with respect to

P , and λ− is the integration of (ν−ω )ω∈Ω with respect to P . We then have

1Nc(ω)

∫
f(ω, x) dνω(x) = 1Nc(ω)

∫
f+(ω, x) dν+

ω (x)− 1Nc(ω)

∫
f−(ω, x)dfν+

ω (x)

+ 1Nc(ω)

∫
f+(ω, x) dν−ω (x)− 1Nc(ω)

∫
f−(ω, x)dfν−ω (x),

where the right-hand side is F measurable by Theorem A.1.16. This proves the second claim.

For the third claim, we note that∫
f(ω, x) dλ+(ω, x)

=

∫
1Nc(ω)f+(ω, x) dλ+(ω, x)−

∫
1Nc(ω)f−(ω, x) dλ+(ω, x)

=

∫
1Nc(ω)

∫
f+(ω, x) dν+

ω (x) dP (ω)−
∫

1Nc(ω)

∫
f−(ω, x) dν+

ω (x) dP (ω)

=

∫
1Nc(ω)

∫
f(ω, x) dν+

ω (x) dP (ω) =

∫ ∫
f(ω, x) dν+

ω (x) dP (ω),

where all integrals are well-defined by Theorem A.1.16. By similar calculations, we obtain

the same result for λ−. Adding positive and negative parts, we obtain the proof of the third

claim.
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Theorem A.1.18. Let H be a nonempty family of random variables. There exists a variable

X such that for all Y ∈ H, Y ≤ X almost surely, and if X ′ is another variable with this

property, then X ≤ X ′ almost surely. Furthermore, there exists a sequence (Xn) ∈ H such

that X = supnXn. X is called the essential upper envelope of H.

Proof. See Theorem 1.13 of He et al. (1992).

Lemma A.1.19. Let X be some integrable variable. Let G be a sub-σ-algebra of F . If

E1FX ≥ 0 for all F ∈ G, then E(X|G) ≥ 0 almost surely.

Proof. Pick n ∈ N and define F = (E(X|G) ≤ − 1
n ). As E(X|G) is G measurable, we have

F ∈ G and therefore obtain E1FX = E1FE(X|G) ≤ − 1
nP (F ). Therefore, P (F ) = 0. By

the continuity properties of probability measures, we conclude P (E(X|G) < 0) = 1, so that

E(X|G) ≥ 0 almost surely.

Lemma A.1.20. Let X ≥ 0. It holds that X has mean zero if and only if X is almost surely

zero.

Proof. Clearly, X has mean zero if X is almost surely zero. Assume instead that X has

mean zero. For any n ∈ N, we have EX ≥ EX1(X≥ 1
n ) ≥ 1

nP (X ≥ 1
n ). Thus, we conclude

P (X ≥ 1
n ) = 0 for all n, and therefore P (X > 0) = 0, so that X is almost surely zero.

Lemma A.1.21. Let X and Y be two integrable variables. Assume that for all bounded

variables ξ, it holds that EXξ = EY ξ. Then X and Y are almost surely equal.

Proof. Put ξ = 1(X−Y >0). Then E(X − Y )1(X−Y >0) = 0, yielding that (X − Y )1(X−Y >0) is

almost surely zero, so (X − Y > 0) is a null set. Similarly, we obtain that (X − Y < 0) is a

null set, leading us to conclude that X and Y are almost surely equal.

For the next results, recall that for any open set U in Rp, C2(U) denotes the set of mappings

f : U → R such that all second-order partial derivatives of f exists and are continuous.

Furthermore, C∞(U) denotes the set of f : U → R such that all partial derivatives of any

order of f exists, and C∞c (U) denotes the set of elements in C∞(U) which have compact

support.
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Theorem A.1.22. Let f ∈ C2(Rp), and let x, y ∈ Rp. Assume that all second-order partial

derivatives of f are uniformly continuous. It then holds that

f(y) = f(x) +

p∑
i=1

∂f

∂xi
(x)(yi − xi) +

1

2

p∑
i=1

p∑
j=1

∂2f

∂xi∂xj
(x)(yi − xi)(yj − xj) +R2(x, y),

where R2(x, y) =
∑p
i=1

∑p
j=1 r

ij
2 (y, x)(yi − xi)(yj − xj), and

rij2 (y, x) =
1

2

(
∂2f

∂xi∂xj
(ξij(x, y))− ∂2f

∂xi∂xj
(x)

)
,

where ξij(x, y) is some element on the line segment between x and y.

Proof. Define g : R→ R by g(t) = f(x+ t(y − x)). Note that g(1) = f(y) and g(0) = f(x).

We will prove the theorem by applying the one-dimensional Taylor formula, see Apostol

(1964) Theorem 7.6, to g. Clearly, g ∈ C2(R), and we obtain g(1) = g(0) + g′(0) + 1
2g
′′(s),

where 0 ≤ s ≤ 1. Applying the chain rule, we find g′(t) =
∑p
i=1

∂f
∂xi

(x + t(y − x))(yi − xi)
and g′′(t) =

∑p
i=1

∑p
j=1

∂2f
∂xi∂xj

(x + t(y − x))(yi − xi)(yj − xj). Substituting and writing

ξ = x+ s(y − x), we may conclude

f(y) = f(x) +

p∑
i=1

∂f

∂xi
(x)(yi − xi) +

1

2

p∑
i=1

p∑
j=1

∂2f

∂xi∂xj
(ξ)(yi − xi)(yj − xj).

In particular, we find R2(x, y) =
∑p
i=1

∑p
j=1 r

ij
2 (y, x)(yi − xi)(yj − xj), where rij2 : R2 → R

is defined by putting

rij2 (y, x) =
1

2

(
∂2f

∂xi∂xj
(ξ)− ∂2f

∂xi∂xj
(x)

)
,

where ξ of course depends on x and y, as it is on the line segment between the two. This

proves the result.

Lemma A.1.23. Let U be an open set in Rp and let f ∈ C2(U). Let ε > 0. With ‖ · ‖
denoting some norm on Rp and d(x, y) = ‖x − y‖, put F = {x ∈ Rp|d(x, U c) ≥ ε}. There

exists g ∈ C2(Rp) such that f and g agree on F .

Proof. Let G = {x ∈ Rp|d(x, U c) ≥ ε
2} and H = {x ∈ Rp|d(x, U c) ≥ ε

4}. We first prove that

there exists a mapping χ ∈ C∞(Rp) such that χ is one on F and zero on Hc. From Lemma

2.1 of Grubb (2008) and Section 0.B of Zimmer (1990), there exists a mapping ψ ∈ C∞c (Rp)
such that

∫
Rp ψ(x) dx = 1 and ψ is zero outside of the open euclidean ball B centered at the

origin with radius ε
4 . Define χ : Rp → R by putting χ(x) =

∫
Rp 1G(y)ψ(x − y) dy, this is
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well-defined as ψ has compact support, and compact sets have finite Lebesgue measure. We

claim that χ satisfies the requirements. Applying the methods of the proof of Proposition

B.3 of Zimmer (1990), we find that χ ∈ C∞(Rp). Note that by the translation invariance of

Lebesgue measure, we have

χ(x) =

∫
Rp

1G(x− y)ψ(y) dy =

∫
B

1G(x− y)ψ(y) dy.

Now, given some x ∈ F , we find that for any y ∈ B, d(x, U c) ≤ d(x − y, U c) + ‖y‖ and so

d(x− y, U c) ≥ d(x, U c)− ‖y‖ ≥ ε− ε
4 ≥

ε
2 . Thus, x− y ∈ G and so χ(x) =

∫
B
ψ(y) dy = 1.

Conversely, if x ∈ Hc, it holds that d(x− y, U c) ≤ d(x, U c) + ‖y‖ < ε
4 + ε

4 = ε
2 , so x− y /∈ G,

and χ(x) = 0. Thus, χ is in C∞(Rp) and χ(x) = 1 when x ∈ F and χ(x) = 0 when x ∈ Hc.

We now define g : Rp → R by putting g(x) = f(x)χ(x) when x ∈ U and g(x) = 0 otherwise.

We claim that g satisfies the requirements of the lemma.

To see this, first note that when x ∈ F , g(x) = f(x)χ(x) = f(x), so g and f agree on F .

Therefore, we merely need to check that g is C2. To see this, note that on U , g is the product

of an C2 mapping and an C∞ mapping, so g is C2 on U . Conversely, as χ is zero on Hc, we

find that g is in particular C2 on Hc. As H ⊆ U , U c ⊆ Hc and so Rp = U ∪Hc. Therefore,

we conclude that g is in C2(Rp), as desired.

A.2 Càdlàg and finite variation mappings

In this section, we introduce càdlàg mappings and finite variation mappings and consider

their connection to pairs of positive singular measures. These types of mappings will be

important in our consideration of continuous-time stochastic processes of finite variation, of

which the quadratic covariation will be a primary example. Consider a mapping f : R+ → R.

We say that f is càdlàg if f is right-continuous on R+ and has limits from the left on (0,∞).

For t > 0, we write f(t−) for the limit of f(s) with s converging upwards to t. By convention,

f(0−) = f(0). We define ∆f(t) = f(t)− f(t−).

Furthermore, for any mapping f : R+ → R, we define the variation of f on [0, t] by Vf (0) = 0

and Vf (t) = sup |f(tk+1) − f(tk)|, where the supremum is over all partitions of the type

0 = t0 < · · · < tn = t. We say that f is of finite variation on [0, t] if Vf (t) is finite. We say

that f is of finite variation if Vf (t) is finite for t ≥ 0. We say that f is of bounded variation

if supt Vf (t) is finite.

Finally, by FV, we denote the càdlàg mappings f : R+ → R of finite variation, and by FV0
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we define the elements of FV with initial value zero. By cFV, we denote the elements of FV

which are continuous, and by cFV0, we denote the elements of FV0 which are continuous.

Note that any monotone function has finite variation. Also, it holds that for any increasing

function f : R+ → R with initial value zero, Vf (t) = f(t).

We begin by considering some results solely relating to càdlàg mappings.

Lemma A.2.1. Let A be an infinite subset of R. A contains either a strictly increasing

sequence or a strictly decreasing subsequence.

Proof. Assume that A contains no strictly decreasing sequence. Let (tn) be a sequence of

distinct elements in A, then (tn) does not contain a strictly decreasing sequence either. Define

sn = infk≥n tk, then (sn) is increasing. Assume, expecting a contradiction, that (sn) contains

only finitely many different elements. Then (sn) is constant from some point onwards, say

N . For any n ≥ N , we then have min{tn, infk≥n+1 tk} = infk≥n tk = infk≥n+1 tk, so tn ≥ tk

for k ≥ n+ 1. We conclude that (tk)k≥n is decreasing. As the elements of (tn) are distinct,

(tk)k≥n is a strictly decreasing sequence of elements, a contradiction. We conclude that sn

contains infinitely many different numbers. In particular, there is a subsequence (snk) which

is strictly increasing.

Next, assume, again expecting a contradiction, that sn does not attain its infimum. Then,

for any ε > 0, there exists tk with k ≥ n such that sn < tk < sn + ε. In particular, there

exists a decreasing sequence of distinct elements in {tk}k≥n. Consisting of distinct elements,

the sequence in fact constitutes a strictly decreasing sequence in A, a contradiction. We

conclude that sn attains its infimum. In particular, snk = tmk for some mk. (tmk) is then a

strictly increasing sequence in A, since (snk) is strictly increasing.

Lemma A.2.2. If f : R+ → R is càdlàg, then f is bounded on compact sets.

Proof. It suffices to prove that f is bounded on [0, t] for t > 0. Assume contrarily that

there is some t > 0 such f is not bounded on [0, t]. There exists a sequence (sn) such that

f(sn) is unbounded. In particular, (sn) is infinite and we may assume that |f(sn)| has no

convergent subsequence. By Lemma A.2.1, (sn) has either a strictly increasing subsequence

(snk) or a strictly decreasing subsequence (snk). In both cases, f(snk) is convergent by the

càdlàg property, which is in contradiction with the assumption that |f(sn)| has no convergent

subsequence. We conclude that f is bounded on [0, t].

Lemma A.2.3. Let f : R+ → R be a càdlàg mapping and let t ≥ 0. For any ε > 0,

|∆f(s)| ≥ ε only for finitely many s ∈ [0, t]. In particular, f only has countably many jumps.
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Proof. Let ε > 0 and t > 0, and assume contrarily that there is a sequence (tn) in [0, t]

such that |∆f(tn)| ≥ ε for all n and such that all the numbers tn are distinct. By Lemma

A.2.1, (tn) has a strictly increasing convergent subsequence or (tn) has a strictly decreasing

convergent subsequence.

Assume first that (tn) has a strictly increasing subsequence (tnk) with limit s. For any

δ > 0, there exists k such that s − δ < tnk < s. As |∆f(tnk)| ≥ ε, we must have either

|f(tnk) − f(s−)| ≥ ε
2 or |f(tnk−) − f(s−)| ≥ ε

2 . In any case, we see that there is u with

s− δ < u < s such that |f(u)− f(−s)| ≥ ε
4 . As δ was arbitrary, this is a contradiction. We

conclude that (tn) cannot have a strictly increasing subsequence. Analogously, we may prove

that (tn) cannot have a strictly decreasing subsequence. We have obtain a contradiction and

conclude that for any ε > 0, |∆f(s)| ≥ ε only for finitely many s ∈ [0, t]. As we can write

{t ≥ 0|∆f(t) 6= 0} = ∪∞n=1 ∪∞k=1 {t ∈ [0, n]||∆f(t)| ≥ 1
k}, we find in particular that f only

has countably many jumps.

Lemma A.2.4. Let f : R+ → R be càdlàg. Fix ε > 0. For any t > 0, there exists

0 = t0 < · · · < tp = t such that for i ≤ p, supti−1≤s,r<ti |f(s)− f(r)| ≤ ε.

Proof. Let ε > 0 be given and let A be the set of t > 0 such that the finitely many numbers

exists. We wish to prove that A = (0,∞). To this end, first consider some t ∈ A and

let 0 < u ≤ t, we will prove that u ∈ A. Let 0 = t0 < · · · < tp = t be such that

supti−1≤s,r<ti |f(s) − f(r)| ≤ ε for i ≤ p. Let ui = ti ∧ u for i ≤ p. Clearly, for i such that

ti < u, supui−1≤s,r<ui |f(s) − f(r)| ≤ ε. Let q be the first i such that ui = u, we then have

supui−1≤s,r<ui |f(s) − f(r)| ≤ supti−1≤s,r<ti |f(s) − f(r)| ≤ ε. Therefore, {u0, . . . , uq} is a

partition of [0, u] such that supui−1≤s,r<ui |f(s) − f(r)| ≤ ε. Thus, u ∈ A. We conclude

that whenever t ∈ A, u ∈ A as well for all u with 0 < u ≤ t. Next, also note that as f is

right-continuous at zero, it is immediate that A contains (0, δ] for some δ > 0. Combining

our observations, we find that in order to show that A = R+, it suffices to show that supA

is infinite.

To this end, assume that supA is finite, we wish to obtain a contradiction. Let τ denote the

supremum. By our previous results, we then have [0, τ) ⊆ A. Let xτ− denote the left limit

of X at τ . Since X has a left-limit and is right-continuous at τ , there exists δ > 0 such that

whenever t ∈ [τ−δ, τ), we have |f(τ−)−f(t)| ≤ ε
2 , and when t ∈ [τ, τ+δ], |f(τ)−f(t)| ≤ ε

2 . In

particular, for any s, r ∈ [τ−δ, τ) we have |f(s)−f(r)| ≤ |f(s)−f(τ−)|+ |f(τ−)−f(r)| ≤ ε,
and for any s, r ∈ [τ, τ + δ), we have |f(s)− f(r)| ≤ |f(s)− f(τ)|+ |f(τ)− f(r)| ≤ ε.

Now, as τ − δ ∈ A, we may pick finitely many numbers 0 = t0 < · · · < tp = τ − δ such
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that supti−1≤s,r<ti |f(s) − f(r)| ≤ ε for i ≤ p. Putting ui = ti for i ≤ p, up+1 = τ and

up+2 = τ + δ, we then obtain that that the sequence u0, . . . , up+2 shows that τ + δ ∈ A. This

is in contradiction with the fact that τ is the finite supremum of A, and we conclude that

the supremum must be infinite. This concludes the proof.

Lemma A.2.5. Let f : R+ → R be càdlàg. Let t > 0 and let (tnk )k≤Kn be a sequence

of partitions of [0, t] with mesh tending to zero. Let A be some subset of [0, t]. Defining

In = {1 ≤ k ≤ Kn | A ∩ (tnk−1, t
n
k ] = ∅}, it holds that

lim sup
n→∞

max
k∈In

sup
tnk−1≤r,s≤t

n
k

|f(s)− f(r)| ≤ 3 sup
x∈[0,t]\A

|∆f(x)|.

Proof. Fix t > 0 and consider η > 0. Fix n and k ∈ In. Using that f is right-continuous,

pick δ > 0 with tnk−1 + δ < tnk such that |f(s) − f(tnk−1)| ≤ η whenever s ∈ [tnk−1, t
n
k−1 + δ].

Then, for s ∈ [tnk−1, t
n
k−1 + δ], we obtain |f(s) − f(tnk−1)| ≤ η, and for s ∈ (tnk−1 + δ, tnk ], we

obtain |f(s)− f(tnk−1)| ≤ η + |f(s)− f(tnk−1 + δ)|. This shows that

sup
tnk−1≤r,s≤t

n
k

|f(s)− f(r)| ≤ η + sup
tnk−1<r,s≤t

n
k

|f(s)− f(r)|,

and as η > 0 was arbitrary, suptnk−1≤r,s≤t
n
k
|f(s)− f(r)| ≤ suptnk−1<r,s≤t

n
k
|f(s)− f(r)|. Next,

note that

sup
tnk−1<r,s≤t

n
k

|f(s)− f(r)| ≤ sup
tnk−1<r,s<t

n
k

|f(s)− f(r)|+ sup
tnk−1<r<t

n
k

|f(tnk )− f(r)|.

As A ∩ (tnk−1, t
n
k ] = ∅, we in particular have tnk /∈ A, so

sup
tnk−1<r<t

n
k

|f(tnk )− f(r)| ≤ |∆f(tnk )|+ sup
tnk−1<r<t

n
k

|f(tnk−)− f(r)|

≤ sup
x∈[0,t]\A

|∆f(x)|+ sup
tnk−1<r,s<t

n
k

|f(s)− f(r)|,

so that all in all, we obtain

max
k∈In

sup
tnk−1≤r,s≤t

n
k

|f(s)− f(tnk−1)| ≤ sup
x∈[0,t]\A

|∆f(x)|+ 2 max
k∈In

sup
tnk−1<r,s<t

n
k

|f(s)− f(r)|.

We consider the limes superior of the latter term. Again, fix η > 0. By Lemma A.2.4, there

is a partition 0 = s0 < · · · < sp = t with the property that maxsi−1≤r,s<si |f(s) − f(r)| ≤ η

for all i ≤ p. Now let n be so large that for each k ≤ Kn, each interval [tnk−1, t
n
k ] contains at

most one element of {s0, . . . , sp}, this is possible as the mesh of the partitions tend to zero.

Let k ∈ In. If (tnk−1, t
n
k ) does not contain any of the points in {s0, . . . , sp}, then (tnk−1, t

n
k ) is

included in [si−1, si) for some i and so suptnk−1<r,s<t
n
k
|f(s) − f(r)| ≤ η. Contrarily, assume
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that (tnk−1, t
n
k ) contains some si. Let tnk−1 < r, s < tnk . If tnk−1 < r, s < si or si ≤ r, s < tnk ,

we obtain |f(s)− f(r)| ≤ η. If instead tnk−1 < r < si ≤ s < tnk , we obtain

|f(s)− f(r)| ≤ |f(s)− f(si)|+ |f(si)− f(r)|

≤ |f(s)− f(si)|+ |∆f(si)|+ |f(si−)− f(r)|

≤ 2η + |∆f(si)|,

and similarly for tnk−1 < s < si ≤ r < tnk . As we have assumed si ∈ (tnk−1, t
n
k ) and k ∈ In, we

have si /∈ A, so |∆f(si)| ≤ supx∈[0,t]\A |∆f(x)|. All in all, we obtain that for n large enough

and for all k ∈ In for such n, suptnk−1<r,s<t
n
k
|f(s) − f(r)| ≤ 2η + supx∈[0,t]\A |∆f(x)|. From

this, we conclude

lim sup
n→∞

max
k∈In

sup
tnk−1<r,s<t

n
k

|f(s)− f(r)| ≤ sup
x∈[0,t]\A

|∆f(x)|,

and combining this with our earlier results, we obtain the desired result.

Lemma A.2.6. Let (fn) be a sequence of bounded càdlàg mappings from R+ to R. If (fn)

is Cauchy in the uniform norm, there is a bounded càdlàg mapping f from R+ to R such

that supt≥0 |fn(t)−f(t)| tends to zero. In this case, it holds that supt≥0 |fn(t−)−f(t−)| and

supt≥0 |∆fn(t)−∆f(t)| tends to zero as well.

Proof. Assume that for any ε > 0, for n and m large enough, supt≥0 |fn(t)−fm(t)| ≤ ε. This

implies that (fn(t))n≥1 is Cauchy for any t ≥ 0, therefore convergent. Let f(t) be the limit.

Now note that as (fn) is Cauchy in the uniform norm, (fn) is bounded in the uniform norm,

and therefore supt≥0 |f(t)| ≤ supn≥1 supt≥0 |fn(t)|, so f is bounded as well. In order to obtain

uniform convergence, let ε > 0. Let k be such that for m,n ≥ k, supt≥0 |fn(t)− fm(t)| ≤ ε.

Fix t ≥ 0, we then obtain for n ≥ k that |f(t)− fn(t)| = limm |fm(t)− fn(t)| ≤ ε. Therfore,

supt≥0 |f(t)− fn(t)| ≤ ε, and so fn converges uniformly to f .

We now show that f is càdlàg. Let t ≥ 0, we will show that f is right-continuous at t. Take

ε > 0 and take n so that supt≥0 |f(t)− fn(t)| ≤ ε. Let δ > 0 be such that |fn(t)− fn(s)| ≤ ε
for s ∈ [t, t + δ], then |f(t) − f(s)| ≤ |f(t) − fn(t)| + |fn(t) − fn(s)| + |fn(s) − f(s)| ≤ 3ε

for such s. Therefore, f is right-continuous at t. Now let t > 0, we claim that f has

a left limit at t. First note that for n and m large enough, it holds for any t > 0 that

|fn(t−)− fm(t−)| ≤ supt≥0 |fn(t)− fm(t)|. Therefore, the sequence (fn(t−))n≥1 is Cauchy,

and so convergent to some limit ξ(t). Now let ε > 0 and take n so that supt≥0 |f(t)−fn(t)| ≤ ε
and |fn(t−)−ξ(t)| ≤ ε. Let δ > 0 be such that t−δ ≥ 0 and such that whenever s ∈ [t−δ, t),
|fn(s)−fn(t−)| ≤ ε. Then |f(s)−ξ(t)| ≤ |f(s)−fn(s)|+|fn(s)−fn(t−)|+|fn(t−)−ξ(t)| ≤ 3ε

for any such s. Therefore, f has a left limit at t. This shows that f is càdlàg.
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Finally, we have for any t > 0 and any sequence (sn) converging strictly upwards to t that

|f(t−)− fn(t−)| = limm |f(sm)− fn(sn)| ≤ supt≥0 |f(t)− fn(t)|, so supt≥0 |f(t−)− fn(t−)|
converges to zero as well. Therefore, supt≥0 |∆f(t)−∆fn(t)| converges to zero as well.

Lemma A.2.7. Let (fn) be a sequence of nonnegative increasing càdlàg mappings from R+

to R. Assume that
∑∞
n=1 fn converges pointwise to some mapping f from R+ → R. Then,

the convergence is uniform on compacts, and f is a nonnegative increasing càdlàg mapping.

If f(t) has a limit as t tends to infinity, the convergence is uniform on R+.

Proof. Fix t ≥ 0. For m ≥ n, we have

sup
0≤s≤t

∣∣∣∣∣
m∑
k=1

fk(s)−
n∑
k=1

fk(s)

∣∣∣∣∣ = sup
0≤s≤t

m∑
k=n+1

fk(s) =

m∑
k=n+1

fk(t),

which tends to zero as m and n tend to infinity. Therefore, (
∑n
k=1 fk) is uniformly Cauchy

on [0, t], and so has a càdlàg limit on [0, t]. As this limit must agree with the pointwise

limit, we conclude that
∑n
k=1 fk converges uniformly on compacts to f , and therefore f is

nonnegative, increasing and càdlàg.

It remains to consider the case where f(t) has a limit f(∞) as t tends to infinity. In this

case, we find that limt fn(t) ≤ limt f(t) = f(∞), so fn(t) has a limit fn(∞) as t tends to

infinity as well. Fixing n ≥ 1, we have

n∑
k=1

fk(∞) =

n∑
k=1

lim
t→∞

fk(t) = lim
t→∞

n∑
k=1

fk(t) ≤ lim
t→∞

f(t) = f(∞).

Therefore, (fk(∞)) is absolutely summable. As we have

sup
0≤t

∣∣∣∣∣
m∑
k=1

fk(t)−
n∑
k=1

fk(t)

∣∣∣∣∣ = sup
0≤t

m∑
k=n+1

fk(t) =

m∑
k=n+1

fk(∞),

we find that (
∑n
k=1 fk) is uniformly Cauchy on R+, and therefore uniformly convergent. As

the limit must agree with the pointwise limit, we conclude that fn converges uniformly to f

on R+. This concludes the proof.

Next, we consider càdlàg finite variation mappings, in particular introducing the integral

with respect to such a mapping.

Lemma A.2.8. If f ∈ FV0, then Vf is càdlàg and ∆Vf (t) = |∆f(t)|. If f ∈ cFV0, Vf is

continuous.



156 Appendices

Proof. That Vf is càdlàg when f ∈ FV0 and Vf is continuous when f ∈ cFV0 follows

from Theorem 13.9 of Carothers (2000). It remains to prove that ∆Vf = |∆f(t)|. We

may restrict our attention to t > 0. We will show Vf (t) = Vf (t−) + |∆f(t)|. First, note

that Vf (t−) = sup
∑n
k=1 |f(tk) − f(tk−1)|, where (tk) is a partition of [0, s] for some s < t.

Now consider a sequence of partitions of [0, t], 0 = tm0 < . . . < tmnm = t, such that we have

Vf (t) = limm

∑nm
k=1 |f(tmk )− f(tmk−1)|. We can assume without loss of generality that tmnm−1

tends to t. We then have

Vf (t) = lim
m
|f(t)− f(tmnm−1)|+

nm−1∑
k=1

|f(tmk )− f(tmk−1)|

≤ Vf (t−) + lim
m
|f(t)− f(tmnm−1)| = Vf (t−) + |∆f(t)|.

On the other hand, let (Pn) be a sequence of partitions of [0, t), Pm = (tm0 , . . . , t
m
nm), such

that Vf (t−) = limm

∑nm
k=1 |f(tmk )− f(tmk−1)|. Here, we can assume without loss of generality

that tmnm tends to t. We then obtain

Vf (t−) + |∆f(t)| = lim
m
|f(t)− f(tmnm)|+ lim

m

nm∑
k=1

|f(tmk )− f(tmk−1)| ≤ Vf (t).

This proves the lemma.

Theorem A.2.9. Let f ∈ FV0. There is a unique decomposition f = f+−f− such that f+

and f− are increasing functions in FV0 with the property that there exists two unique positive

singular measures µ+
f and µ−f with zero point mass at zero such that for any 0 ≤ a ≤ b,

µ+
f (a, b] = f+(b) − f+(a) and µ−f (a, b] = f−(b) − f−(a). The decomposition is given by

f+ = 1
2 (Vf + f) and f− = 1

2 (Vf − f). In particular, the measures µ+
f and µ−f are finite on

bounded intervals, and (µ+
f + µ−f )(a, b] = Vf (b)− Vf (a).

Proof. We first show that the explicit construction of f+ and f− satisfies the properties

required. It is immediate that f+ and f− are increasing and zero at zero, and so, as monotone

function are of finite variation, we conclude that f+ and f− are in FV0, the càdlàg property

being a consequence of Lemma A.2.8. By Theorem 1.4.4 of Ash (2000), there exists unique

nonnegative measures µ+
f and µ−f with zero point mass at zero such that for any 0 ≤ a ≤ b,

µ+
f (a, b] = f+(b)−f+(a) and µ−f (a, b] = f−(b)−f−(a). Then (µ+

f +µ−f )(a, b] = Vf (b)−Vf (a)

as well. It remains to prove that µ+
f and µ−f are singular, and to this end, it suffices to prove

that the measures are singular on [0, t] for any t ≥ 0.

To do so, fix t ≥ 0. Put µtf = µ+
f − µ−f on Bt, then µtf is a signed measure on Bt, and

for any 0 ≤ a ≤ b ≤ t, µtf (a, b] = f(b) − f(a). We consider the total variation of µtf . Fix
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0 ≤ a ≤ b ≤ t and let A be the set of finite unions of intervals of the form (c, d] with

a ≤ c ≤ d ≤ b, A is an algebra generating the Borel-σ-algebra on (a, b]. Lemma A.1.6 shows

that we have |µtf |(a, b] = sup
∑k
n=1 |µtf (An)|, where (An) is a finite disjoint partition of (a, b]

with elements from A. In particular, we obtain |µtf |(a, b] ≤ Vf (t), and as we trivially have

Vf (t) ≤ |µtf |(a, b], we have equality. Thus, |µtf |(a, b] = Vf (b) − Vf (a). Let (µtf )+ and (µtf )−

be the Jordan-Hahn decomposition of Theorem A.1.5, we then obtain

(µtf )+(a, b] = 1
2 (|µtf |(a, b] + µtf (a, b]) = 1

2 (Vf (b)− Vf (a) + f(b)− f(a)) = µ+
f (a, b],

and so we find that (µtf )+ and µ+
f agree on Bt. Analogously, (µtf )− and µ−f agree on Bt as

well. As the components of the Jordan-Hahn decomposition are singular, we conclude that

µ+
f and µ−f are singular on [0, t], and so µ+

f and µ−f are singular measures.

It remains to prove uniqueness. Assume that f = g+ − g− is another decomposition with

the same properties. Let ν+
f and ν−f be the two corresponding singular positive measures.

As earlier, we may then define νtf = ν+
f − ν

−
f on Bt. Then νtf and µtf are equal, and so in

particular, we have the Jordan-Hahn decompositions µtf = µ+
f − µ

−
f and µtf = νtf = ν+

f − ν
−
f

on Bt. By uniqueness of the decomposition, we conclude µ+
f = ν+

f and µ−f = ν−f , and so

f+ = g+ and f− = g−, proving uniqueness.

Theorem A.2.9 shows that càdlàg finite variation mappings with initial value zero correspond

to pairs of positive singular measures. As stated in the theorem, for any f ∈ FV0, we denote

by f+ and f− the increasing and decreasing parts of f , given by f+ = 1
2 (Vf + f) and

f− = 1
2 (Vf − f). Furthermore, we denote by µ+

f and µ−f the two corrresponding positive

singular measures, and we put |µf | = µ+ +µ− and call |µf | the total variation measure of f .

By Theorem A.2.9, |µf | is the measure induced by the increasing function Vf using Theorem

1.4.4 of Ash (2000). As µ+
f and µ−f has finite mass on bounded intervals, so does |µf |, in

particular we have |µf |([0, t]) = Vf (t) according to Theorem A.2.9. Also note that if f is

increasing, Vf = f and so µ− is zero.

These results lead to a concept of integration with respect to càdlàg functions of finite varia-

tion. Let f ∈ FV0 and let h : R+ → R be some measurable function. We say that h is inte-

grable with respect to f if
∫ t

0
|h(s)|d|µf |s is finite for all t ≥ 0, and in the affirmative, we put∫ t

0
h(s) df(s) =

∫ t
0
h(s) d(µ+

f )s −
∫ t

0
h(s) d(µ−f )s and call

∫ t
0
h(s) df(s) the integral of h with

respect to f over [0, t]. Furthermore, we denote by
∫ t

0
h(s)|dfs| the integral

∫ t
0
h(s) d|µf |s.

Next, we consider some further properties of finite variation mappings and their integrals.

Lemma A.2.10. Let f ∈ FV0. Then |f(t)| ≤ Vf (t) for all t ≥ 0.
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Proof. As {0, t} is a partition of [0, t], |f(t)| = |f(t)−f(0)| ≤ sup |f(tk)−f(tk−1)| = Vf (t).

Lemma A.2.11. Let f ∈ FV0. If g : R+ → R is continuous, then g is integrable with respect

to f , and for each t ≥ 0 and sequence of partitions 0 = t0 < · · · < tn = t, the Riemann sums∑n
k=1 g(tk−1)(f(tk) − f(tk−1)) converge to

∫ t
0
g(s) df(s) as the mesh maxk≤n |tk − tk−1| of

the partition tends to zero.

Proof. As g is continuous, g is bounded on compacts, and therefore g is integrable with

respect to f . We have

n∑
k=1

g(tk−1)(f(tk)− f(tk−1)) =

n∑
k=1

g(tk−1)µ+
f ((tk−1, tk])−

n∑
k=1

g(tk−1)µ−f ((tk−1, tk])

=

∫ t

0

sn dµ+
f −

∫ t

0

sn dµ−f ,

where sn =
∑n
k=1 g(tk−1)1(tk−1,tk]. As the mesh tends to zero, sn tends to g by the continuity

of g. As g is bounded on [0, t], two applications of the dominated convergence theorem yields

the result.

Lemma A.2.12. Let f ∈ FV0 and let h be integrable with respect to f . It then holds that

|
∫ t

0
h(s) dfs| ≤

∫ t
0
|h(s)|| dfs|.

Proof. We find∣∣∣∣∫ t

0

h(s) dfs

∣∣∣∣ =

∣∣∣∣∫ t

0

h(s) dµ+
f −

∫ t

0

h(s) dµ−f

∣∣∣∣ ≤ ∣∣∣∣∫ t

0

h(s) dµ+
f

∣∣∣∣+

∣∣∣∣∫ t

0

h(s) dµ−f

∣∣∣∣
≤

∫ t

0

|h(s)|dµ+
f +

∫ t

0

|h(s)|dµ−f =

∫ t

0

|h(s)|d|µf |,

and the latter is what we denote by
∫ t

0
|h(s)||dfs|.

Lemma A.2.13 (Integration by parts). Let f, g ∈ FV, then for any t ≥ 0,

f(t)g(t) = f(0)g(0) +

∫ t

0

f(s−) dgs +

∫ t

0

g(s−) dfs +
∑

0<s≤t

∆f(s)∆g(s),

where the sum converges absolutely.

Proof. To obtain the absolute convergence of the sum, we note that Lemma A.2.8 and the

fact that Vf and Vg are both increasing functions allows us to conclude∑
0<s≤t

|∆f(s)∆g(s)| ≤
∑

0<s≤t

∆Vf (s)∆Vg(s) ≤ Vf (t)
∑

0<s≤t

∆Vg(s) ≤ Vf (t)Vg(t).
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For the proof of the integration-by-parts formula, see Section IV.18 of Rogers & Williams

(2000b).

Lemma A.2.14. Let f ∈ FV0 be increasing, let µf be the positive measure induced by f

and let g : R+ → R be measurable. Define β : R+ → R by β(s) = inf{t ≥ 0|f(t) ≥ s}. Then

g is integrable with respect to µf if and only if s 7→ g(β(s))1(β(s)<∞) is Lebesgue integrable,

and in the affirmative case,∫ ∞
0

g(t) dµf (t) =

∫ ∞
0

g(β(s))1(β(s)<∞) ds.

Proof. First note that the conclusion is well-defined, since β is increasing and thus measur-

able. As the set of g such that the result holds is a vector space stable under pointwise

increasing convergence of nonnegative mappings, it will suffice to prove the results for the

mapping g = 1[0,u], u ≥ 0. Therefore, let u ≥ 0. First off, we have
∫∞

0
1[0,u](t) dµf (t) = f(u).

To analyze the expression containing β, first note that since 1[0,u] is well-defined in infinity

as zero, we can write
∫∞

0
1[0,u](β(s))1(β(s)<∞) ds =

∫∞
0

1[0,u](β(s)) ds. Next, note that if

β(s) < t, then f(t) ≥ s. And if β(s) = t, there is a sequence tn converging downwards to t

such that f(tn) ≥ s. By right-continuity, f(t) ≥ s. In total, we conclude that if β(s) ≤ t,

then f(t) ≥ s. Likewise, if f(t) ≥ s, then β(s) ≤ t. We therefore obtain∫ ∞
0

1[0,u](β(s)) ds =

∫ ∞
0

1[0,f(u)](s) ds = f(u),

as desired.

Lemma A.2.15. If f ∈ FV0, then Vf can be written as Vf (t) = sup
∑n
k=1 |F (tk)−F (tk−1)|,

where the supremum is taken over partitions in Q+ ∪ {t}.

Proof. It will suffice to prove that for any ε > 0 and partition (t0, . . . , tn), there exists another

partition (q0, . . . , qn) such that |
∑n
k=1 |f(tk) − f(tk−1)| −

∑n
k=1 |f(qk) − f(qk−1)|| < ε. To

this end, choose δ parrying ε
2n for the right-continuity of F in the points t0, . . . , tn−1. Let,

for k < n, qk be some rational with qk ≥ tk and |qk − tk| ≤ δ, and put qn = tn. It then holds

that |(f(tk)− f(tk−1))− (f(qk)− f(qk−1))| ≤ ε
n , and since | · | is a contraction, this implies

||f(tk)− f(tk−1)| − |f(qk)− f(qk−1)|| ≤ ε
n , finally yielding∣∣∣∣∣

n∑
k=1

|f(tk)− f(tk−1)| −
n∑
k=1

|f(qk)− f(qk−1)|

∣∣∣∣∣
≤

n∑
k=1

||f(tk)− f(tk−1)| − |f(qk)− f(qk−1)|| ≤ ε,

proving the result.
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Lemma A.2.16. Let f : R+ → R be càdlàg. If f has finite variation,
∑

0<s≤t |∆f(s)|p is

finite for all p ≥ 1 and t ≥ 0. If f has bounded variation,
∑

0<t |∆f(t)|p is finite as well.

Proof. We first prove the claim in the case where p = 1. First assume that f has finite

variation and fix t ≥ 0. By Lemma A.2.3, f has only countably many jumps on [0, t], let

(tn) be an enumeration of the jumps of f on [0, t]. Fix n, let ε > 0 and let s1, . . . , sn be the

ordered values of t1, . . . , tn. Defining s0 = 0, for each k ≤ n, take uk ∈ (sk−1, sk) such that

||f(sk)− f(uk)| − |∆f(sk)|| ≤ ε
n . We then have

n∑
k=1

|∆f(tk)| =
n∑
k=1

|∆f(sk)| ≤ ε+

n∑
k=1

|f(sk)− f(uk)| ≤ Vf (t) + ε,

as the set (s0, u1, s1, . . . , un, sn, t) constitutes a partition of [0, t]. As ε > 0 was arbitrary, we

conclude
∑n
k=1 |∆f(tk)| ≤ Vf (t). As n was arbitrary, this shows

∑
0<s≤t |∆f(s)| ≤ Vf (t),

so the sum converges. In the case where f has bounded variation, we can apply the same

argument to obtain
∑

0<t |∆f(t)| ≤ Vf (∞), so the sum also converges in this case.

Now let p > 1. In the case where f has finite variation, fix t ≥ 0 and note that by Lemma

A.2.3, f only have finitely many jumps of magnitude larger than 1, say t1, . . . , tn. We then

obtain

∑
0<s≤t

|∆f(s)|p =

n∑
k=1

|∆f(tk)|p +
∑

0<s≤t

|∆f(s)|p1(|∆f(s)|≤1)

≤
n∑
k=1

|∆f(tk)|p +
∑

0<s≤t

|∆f(s)|,

which is finite by what we already proved. Finally, assume that f has bounded variation.

In this case, f can only have finitely many jumps larger than 1 on all of R+, so the same

argument as above applies to show that
∑

0<t |∆f(t)|p is finite.

The following two results which will aid us in the proof of the Kunita-Watanabe inequality.

Lemma A.2.17. Let α, γ ≥ 0 and β ∈ R. It then holds that |β| ≤
√
α
√
γ if and only if

λ2α+ 2λβ + γ ≥ 0 for all λ ∈ Q.

Proof. First note that by continuity, the requirement that λ2α + 2λβ + γ ≥ 0 for all λ ∈ Q
is equivalent to the same requirement for all λ ∈ R.



A.2 Càdlàg and finite variation mappings 161

Consider first the case α = 0. If |β| ≤
√
α
√
γ, clearly β = 0, and the criterion is trivially

satisfied. Conversely, assume that the criterion holds, which in this case is equivalent to

2λβ + γ ≥ 0 for all λ ∈ Q. Letting λ tend to infinity or minus infinity depending on the sign

of β, the requirement that γ be nonnegative forces β = 0, so that β ≤
√
α
√
γ. This proves

the result in the case α = 0. Next, consider the case α 6= 0, so that α > 0. The mapping

λ2α+ 2λβ + γ ≥ 0 takes its minimum at −β
α , and the minimum value is

inf
λ∈R

λ2α+ 2λβ + γ =

(
−β
α

)2

α− 2β2

α
+ γ =

1

α
(αγ − β2),

which is nonnegative if and only if |β| ≤
√
α
√
γ. This proves the result.

Lemma A.2.18. Let f, g, h : R+ → R be in FV0, with f and g increasing. If it holds

for all 0 ≤ s ≤ t that |h(t) − h(s)| ≤
√
f(t)− f(s)

√
g(t)− g(s), then for any measurable

x, y : R+ → R, we have∫ ∞
0

|x(t)y(t)||dh(t)| ≤
(∫ ∞

0

x(t)2 df(t)

) 1
2
(∫ ∞

0

y(t)2 dg(t)

) 1
2

.

Proof. Let µf , µg and µh be the measures corresponding to the finite variation mappings f ,

g and h. Clearly, the measures µf , µg and µh are all absolutely continuous with respect to

ν = µf + µg + |µh|. Then, by the Radon-Nikodym Theorem, there exists densities ϕf , ϕg

and ϕh of the three measures with respect to ν, and it therefore suffices to prove(∫ ∞
0

|x(t)y(t)||ϕh(t)|dν(t)

)2

≤
(∫ ∞

0

x(t)2ϕf (t) dν(t)

)(∫ ∞
0

y(t)2ϕg(t) dν(t)

)
.

To this end, we wish to argue that |ϕh(t)| ≤
√
ϕf (t)

√
ϕg(t), almost everywhere with respect

to ν. By Lemma A.2.17, this is equivalent to proving that almost everywhere in t with

respect to ν, it holds that for all λ ∈ Q that λ2ϕf (t) + 2λϕh(t) + ϕg(t) ≥ 0. As a countable

intersection of null sets is again a null set, it suffices to prove that for any λ ∈ Q, it holds

that λ2ϕf (t) + 2λϕh(t) + ϕg(t) ≥ 0 almost everywhere with respect to ν. However, for any

0 ≤ s ≤ t, we have∫ t

s

λ2ϕf (t) + 2λϕh(t) + ϕg(t) dν(t) = λ2µf (s, t] + 2λµh(s, t] + µg(s, t],

and as |µh(s, t]| ≤
√
µf (s, t]

√
µg(s, t] by assumption, the above is nonnegative by Lemma

A.2.17. By an extension argument, we obtain that
∫
A
λ2ϕf (t) + 2λϕh(t) + ϕg(t) dν(t) ≥ 0

for any A ∈ B+, in particular λ2ϕf (t) + 2λϕh(t) +ϕg(t) ≥ 0 almost everywhere with respect

to ν. Thus, we finally conclude |ϕh(t)| ≤
√
ϕf (t)

√
ϕg(t). The Cauchy-Schwartz inequality
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then immediately yields∫ ∞
0

|x(t)y(t)||ϕh(t)|dν(t) ≤
∫ ∞

0

|x(t)
√
ϕf (t)||y(t)

√
ϕg(t)|dν(t)

≤
(∫ ∞

0

x(t)2ϕf (t) dν(t)

) 1
2
(∫ ∞

0

y(t)2ϕg(t) dν(t)

) 1
2

=

(∫ ∞
0

x(t)2 df(t)

) 1
2
(∫ ∞

0

y(t)2 df(t)

) 1
2

,

as desired.

Lemma A.2.19. Let f : R+ → R be some càdlàg mapping. Let U(f, a, b) denote the number

of upcrossings from a to b of f , meaning that

U(f, a, b) = sup{n | ∃ 0 ≤ s1 < t1 < · · · sn < tn : f(sk) < a, f(tk) > b, k ≤ n}.

It holds that f(t) has a limit in [−∞,∞] as t tends to infinity if U(f, a, b) is finite for all

a, b ∈ Q with a < b.

Proof. Assume that U(f, a, b) is finite for all a, b ∈ Q with a < b. Assume, expecting a

contradiction, that f(t) does not converge to any limit in [−∞,∞] as t tends to infinity.

Then lim inft f(t) < lim supt f(t). In particular, there exists a, b ∈ Q with a < b such that

lim inft f(t) < a < b < lim supt f(t).

Now consider U(f, a, b), we wish to derive a contradiction with our assumption that U(f, a, b)

is finite. If U(f, a, b) is zero, either f(t) ≥ a for all t ≥ 0, or f(t) < a for some t and

f(t) ≤ b from a point onwards. In this first case, lim inft f(t) ≥ a, and in the second case,

lim supt f(t) ≤ b, both leading to contradictions. Therefore, U(f, a, b) must be nonzero. As

we have assumed that U(f, a, b) is finite, we obtain that either f(t) ≥ a from a point onwards,

or f(t) ≤ b from a point onwards. In the first case, lim inft f(t) ≥ a and in the second case,

lim supt f(t) ≤ b. Again, we obtain a contradiction, and so conclude that f(t) must exist as

a limit in [−∞,∞].

A.3 Convergence results and uniform integrability

In this section, we recall some basic results on convergence of random variables. Let (Ω,F , P )

be a probability triple. Let Xn be a sequence of random variables and let X be another

random variable. By Lp, p ≥ 1, we denote the variables X where E|X|p is finite. If Xn(ω)
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converges to X(ω) for all ω except on a null set, we say that Xn converges almost surely to

X and write Xn
a.s.−→ X. If it holds for all ε > 0 that limn P (|Xn −X| > ε) = 0, we say that

Xn converges in probability to X under P and write Xn
P−→ X. If limnE|Xn − X|p = 0,

we say that Xn converges to X in Lp and write Xn
Lp−→ X. Convergence in Lp and almost

sure convergence both imply convergence in probability. Convergence in probability implies

convergence almost surely along a subsequence.

The following lemmas will be useful at various points in the main text.

Lemma A.3.1. Let Xn be a sequence of random variables, let X be another random variable

and let (Fn) ⊆ F . Assume that Xn1Fk
P−→ X1Fk for all k ≥ 1 and that limk P (F ck ) = 0.

Then Xn
P−→ X as well.

Proof. For any ε > 0, we find

P (|Xn −X| > ε) = P ((|Xn −X| > ε) ∩ Fk) + P ((|Xn −X| > ε) ∩ F ck )

≤ P (|Xn1Fk −X1Fk | > ε) + P (F ck ),

and may therefore conclude lim supn P (|Xn −X| > ε) ≤ P (F ck ). Letting k tend to infinity,

we obtain Xn
P−→ X.

Lemma A.3.2. Let (Xn) and (Yn) be two sequences of variables convergent in probability

to X and Y , respectively. If Xn ≤ Yn almost surely for all n, then X ≤ Y almost surely.

Proof. Picking nested subsequences, we find that for some subsequence, Xnk tends almost

surely to X and Ynk tends almost surely to Y . From the properties of ordinary convergence,

we obtain X ≤ Y almost surely.

Next, we consider the concept of uniform integrability, its basic properties and its relation to

convergence of random variables. Let (Xi)i∈I be a family of random variables. We say that

Xi is uniformly integrable if it holds that

lim
λ→∞

sup
i∈I

E|Xi|1(|Xi|>λ) = 0.

Note that as supi∈I E|Xi|1(|Xi|>λ) is decreasing in λ, the limit always exists in [0,∞]. We

will review some basic results about uniform integrability. We refer the results mainly for

discrete sequences of variables, but many results extend to sequences indexed by R+ as well.
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Lemma A.3.3. Let (Xi)i∈I be some family of variables. (Xi) is uniformly integrable if and

only if it holds that (Xi) is bounded in L1, and for every ε > 0, it holds that there is δ > 0

such that whenever F ∈ F with P (F ) ≤ δ, we have E1F |Xi| ≤ ε for all i ∈ I.

Proof. First assume that (Xi)i∈I is uniformly integrable. Clearly, we then have

sup
i∈I

E|Xi| ≤ sup
i∈I

E|Xi|1(|Xi|>λ) + sup
i∈I

E|Xi|1(|Xi|≤λ)

≤ λ+ sup
i∈I

E|Xi|1(|Xi|>λ),

and as the latter term converges to zero, it is in particular finite from a point onwards, and

so supi∈I E|Xi| is finite, proving that (Xi) is bounded in L1. Now fix ε > 0. For any λ > 0,

we have E1F |Xi| = E1F |Xi|1(|Xi|>λ) + E1F |Xi|1(|Xi|≤λ) ≤ supi∈I E|Xi|1(|Xi|>λ) + λP (F ).

Therefore, picking λ so large that supi∈I E|Xi|1(|Xi|>λ) ≤ ε
2 and putting δ = ε

2λ , we obtain

E1F |Xi| ≤ ε for all i ∈ I, as desired.

In order to obtain the converse, assume that (Xi)i∈I is bounded in L1 and that for all

ε > 0, there is δ > 0 such that whenever F ∈ F with P (F ) ≤ δ, we have E1F |Xi| ≤ ε

for all i ∈ I. We need to prove that (Xi)i∈I is uniformly integrable. Fix ε > 0, we wish

to prove that there is λ > 0 such that supi∈I E|Xi|1(|Xi|>λ) ≤ ε. To this end, let δ > 0 be

such that whenever P (F ) ≤ δ, we have E1F |Xi| ≤ ε for all i ∈ I. Note that by Markov’s

inequality, P (|Xi| > λ) ≤ 1
λE|Xi| ≤ 1

λ supi∈I E|Xi|, which is finite as (Xi)i∈I is bounded

in L1. Therefore, there is λ > 0 such that P (|Xi| > λ) ≤ δ for all i. For this λ, we then

have E|Xi|1(|Xi|>λ) ≤ ε for all i ∈ I, in particular supi∈I E|Xi|1(|Xi|>λ) ≤ ε for this λ and

all larger λ as well, proving limλ→∞ supi∈I E|Xi|1(|Xi|>λ) = 0 and thus proving uniform

integrability.

Lemma A.3.4. The property of being uniformly integrable satisfies the following properties.

1. If (Xi)i∈I is a finite family of integrable variables, then (Xi) is uniformly integrable.

2. If (Xi)i∈I and (Yj)j∈J are uniformly integrable, then their union is uniformly integrable.

3. If (Xi)i∈I and (Yi)i∈I are uniformly integrable, so is (αXi + βYi)i∈I for α, β ∈ R.

4. If (Xi)i∈I is uniformly integrable and J ⊆ I, then (Xj)j∈J is uniformly integrable.

5. If (Xi)i∈I is bounded in Lp for some p > 1, (Xi)i∈I is uniformly integrable.

6. If (Xi)i∈I is uniformly integrable and |Yi| ≤ |Xi|, then (Yi)i∈I is uniformly integrable.
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Proof. Proof of (1). Assume that (Xi)i∈I is a finite family of integrable variables. The

dominated convergence theorem then yields

lim
λ→∞

sup
i∈I

E|Xi|1(|Xi|>λ) ≤ lim
λ→∞

∑
i∈I

E|Xi|1(|Xi|>λ) =
∑
i∈I

E lim
λ→∞

|Xi|1(|Xi|>λ),

which is zero. Therefore, (Xi)∈I is uniformly integrable.

Proof of (2). As the maximum function is continuous, we find

lim
λ→∞

max{sup
i∈I

E|Xi|1(|Xi|>λ), sup
j∈J

E|Yj |1(|Yj |>λ)}

= max{ lim
λ→∞

sup
i∈I

E|Xi|1(|Xi|>λ), lim
λ→∞

sup
j∈J

E|Yj |1(|Yj |>λ)},

which is zero when the two families (Xi)i∈I and (Yj)j∈J are uniformly integrable, and the

result follows.

Proof of (3). Assume that (Xi)i∈I and (Yi)i∈I are uniformly integrable. If α and β

are both zero, the result is trivial, so we assume that this is not the case. Let ε > 0.

Using Lemma A.3.3, pick δ > 0 such that whenever P (F ) ≤ δ, we have the inequalities

E1F |Xi| ≤ ε(|α|+ |β|)−1 and E1F |Yi| ≤ ε(|α|+ |β|)−1 for any i ∈ I. Then

E1F |αXi + βYi| ≤ |α|E1F |Xi|+ |β|E1F |Yi|

≤ |α|ε(|α|+ |β|)−1 + |β|ε(|α|+ |β|)−1 ≤ ε,

so that by Lemma A.3.3, the result holds.

Proof of (4). As J ⊆ I, we have supj∈J E|Xj |1(|Xj |>λ) ≤ supi∈I E|Xi|1(|Xi|>λ), and the

result follows.

Proof of (5). Assume that (Xi)i∈I is bounded in Lp for some p > 1. We have

lim
λ→∞

sup
i∈I

E|Xi|1(|Xi|>λ) ≤ lim
λ→∞

λ1−p sup
i∈I

E|Xi|p1(|Xi|>λ) ≤ sup
i∈I

E|Xi|p lim
λ→∞

λ1−p,

which is zero, as p− 1 > 0, so (Xi)i∈I is uniformly integrable.

Proof of (6). In the case where (Xi)∈I is uniformly integrable and (Yi)i∈I is such that

|Yi| ≤ |Xi|, we get E|Yi|1(|Yi|>λ) ≤ E|Xi|1(|Xi|>λ) for all i, and it follows immediately that

(Yi)i∈I is uniformly integrable.

Lemma A.3.5. Let (Xn) be a sequence of random variables indexed by N, and let X be

another variable. Xn converges in L1 to X if and only if (Xn) is uniformly integrable and
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converges in probability to X. If (Xt) is a sequence of random variables indexed by R+, Xt

converges to X in L1 if (Xt) is uniformly integrable and converges in probability to X.

Proof. Consider first the discrete-time case. Assume that Xn converges to X in L1, we need

to prove that (Xn) is uniformly integrable. We use the criterion from Lemma A.3.3. As

(Xn) is convergent in L1, (Xn) is bounded in L1, and Xn converges to X in probability. Fix

ε > 0 and let m be such that whenever n ≥ m, E|Xn−X| ≤ ε
3 . As the finite-variable family

{X1, . . . , Xm, X} is uniformly integrable by Lemma A.3.4, using Lemma A.3.3 we may obtain

δ > 0 such that whenever P (F ) ≤ δ, E1F |X| ≤ ε
3 and E1F |Xn| ≤ ε

3 for n ≤ m. We then

obtain that for all such F ∈ F ,

sup
n
E1F |Xn| ≤ sup

n≤m
E1F |Xn|+ sup

n≥m
E1F |Xn|

≤ ε
3 + E1F |X|+ sup

n≥m
E1F |Xn −X|

≤ 2ε
3 + sup

n≥m
E|Xn −X| ≤ ε,

so (Xn) is uniformly integrable.

Consider the converse statement, where we assume that (Xn) is uniformly integrable and

converges to X in probability. As (Xn) is uniformly integrable, (Xn) is bounded in L1.

Using that there is a subsequence (Xnk) converging to X almost surely, we obtain by Fatou’s

lemma that E|X| = E limk |Xnk | ≤ lim infk E|Xnk | ≤ supnE|Xn|, so X is integrable. By

Lemma A.3.4, (Xn − X) is uniformly integrable. Let ε > 0. Using Lemma A.3.3, we pick

δ > 0 such that whenever P (F ) ≤ δ, we have E1F |Xn − X| ≤ ε. As Xn
P−→ X, there is

m such that whenever n ≥ m, we have P (|Xn − X| > ε) ≤ δ. For such n, we then find

E|Xn −X| = E1(|Xn−X|≤ε)|Xn −X|+ E1(|Xn−X|>ε)|Xn −X| ≤ 2ε, proving that Xn tends

to X in L1.

As for the case of a family (Xt)t≥0 indexed by R+, we see that the proof that Xt is convergent

in L1 to X if Xt is convergent in probability to X and is uniformly integrable may be copied

more or less verbatim from the discrete-time case.

Lemma A.3.6. Let X be any integrable random variable on probability space (Ω,F , P ). Let

I be the set of all sub-σ-algebras of F . Then, (E(X|G))G∈I is uniformly integrable.

Proof. Using Jensen’s inequality and the fact that (E(|X||G) > λ) ∈ G, we have

sup
G∈I

E|E(X|G)|1(|E(X|G)|>λ) ≤ sup
G∈I

EE(|X||G)1(E(|X||G)>λ) = sup
G∈I

E|X|1(E(|X||G)>λ).
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Fix ε > 0, we show that for λ large enough, the above is smaller than ε. To this end, note

that for any sub-σ-algebra G of F , we have P (E(|X||G) > λ) ≤ 1
λEE(|X||G) = 1

λE|X|
by Markov’s inequality. Applying Lemma A.3.3 with the family {X}, we know that there

is δ > 0 such that whenever P (F ) ≤ δ, E1F |X| ≤ ε. Therefore, picking λ so large that
1
λE|X| ≤ δ, we obtain P (E(|X||G) > λ) ≤ δ and so supG∈I E|X|1(E(|X||G)>λ) ≤ ε. This

concludes the proof.

Lemma A.3.7 (Mazur’s lemma). Let (Xn) be sequence of variables bounded in L2. There

exists a sequence (Yn) such that each Yn is a convex combination of a finite set of elements

in {Xn, Xn+1, . . .} and (Yn) is convergent in L2.

Proof. Let αn be the infimum of EZ2, where Z ranges through all convex combinations of

elements in {Xn, Xn+1, . . .}, and define α = supn αn. If Z =
∑Kn
k=n λkXk for some convex

weights λn, . . . , λKn , we obtain
√
EZ2 ≤

∑Kn
k=n λ

n
k

√
EX2

k ≤ supn
√
EX2

n, in particular we

have αn ≤ supnEX
2
n and so α ≤ supnEX

2
n as well, proving that α is finite. For each n,

there is a variable Yn which is a finite convex combination of elements in {Xn, Xn+1, . . .}
such that E(Yn)2 ≤ αn + 1

n . Let n be so large that αn ≥ α − 1
n , and let m ≥ n, we then

obtain

E(Yn − Ym)2 = 2EY 2
n + 2EY 2

m − E(Yn + Ym)2

= 2EY 2
n + 2EY 2

m − 4E( 1
2 (Yn + Ym))2

≤ 2(αn + 1
n ) + 2(αm + 1

m )− 4αn

= 2( 1
n + 1

m ) + 2(αm − αn).

As (αn) is convergent, it is Cauchy. Therefore, the above shows that (Yn) is Cauchy in L2,

therefore convergent, proving the lemma.

Lemma A.3.8. Let (Xn) be a uniformly integrable sequence of variables. It then holds that

lim sup
n→∞

EXn ≤ E lim sup
n→∞

Xn.

Proof. Since (Xn) is uniformly integrable, it holds that

0 ≤ lim
λ→∞

sup
n
EXn1(Xn>λ) ≤ lim

λ→∞
sup
n
E|Xn|1(|Xn|>λ) = 0

Let ε > 0 be given, we may then pick λ so large that EXn1(Xn>λ) ≤ ε for all n. Now, the
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sequence (λ−Xn1(Xn≤λ))n≥1 is nonnegative, and Fatou’s lemma therefore yields

λ− E lim sup
n→∞

Xn1(Xn≤λ) = E lim inf
n→∞

(λ−Xn1(Xn≤λ))

≤ lim inf
n→∞

E(λ−Xn1(Xn≤λ))

= λ− lim sup
n→∞

EXn1(Xn≤λ).

The terms involving the limes superior may be infinite and are therefore a priori not amenable

to arbitrary arithmetic manipulation. However, by subtracting λ and multiplying by minus

one, we may still conclude that lim supn→∞EXn1(Xn≤λ) ≤ E lim supn→∞Xn1(Xn≤λ). As

we have ensured that EXn1(Xn>λ) ≤ ε for all n, this yields

lim sup
n→∞

EXn ≤ ε+ E lim sup
n→∞

Xn1(Xn≤λ) ≤ ε+ E lim sup
n→∞

Xn,

and as ε > 0 was arbitrary, the result follows.

A.4 Discrete-time martingales

In this section, we review the basic results from discrete-time martingale theory. Assume

given a probability field (Ω,F , P ). If (Fn) is a sequence of sub-σ-algebras of F indexed by N
which are increasing in the sense that Fn ⊆ Fn+1, we say that (Fn) is a filtration. We then

refer to (Ω,F , (Fn), P ) as a filtered probability space. In the remainder of this section, we

will assume given a filtered probability space of this kind.

A discrete-time stochastic process is a sequence X = (Xn) of random variables defined on

(Ω,F). If Xn is Fn measurable, we say that the process X is adapted. If X is adapted and

E(Xn|Fk) = Xk whenever n ≥ k, we say that X is a martingale. If instead E(Xn|Fk) ≤ Xk,

we say that X is a supermartingale and if E(Xn|Fk) ≥ Xk, we say that X is a submartingale.

Any martingale is also a submartingale and a supermartingale. Furthermore, if X is a

supermartingale, then −X is a submartingale and vice versa.

A stopping time is a random variable T : Ω → N ∪ {∞} such that (T ≤ n) ∈ Fn for any

n ∈ N. We say that T is finite if T maps into N. We say that T is bounded if T maps into a

bounded subset of N. If X is a stochastic process and T is a stopping time, we denote by XT

the process XT
n = XT∧n and call XT the process stopped at T . Furthermore, we define the

stopping time σ-algebra FT by putting FT = {A ∈ F|A ∩ (T ≤ n) ∈ Fn for all n ∈ N0}. FT
is a σ-algebra, and if T is constant, the stopping time σ-algebra is the same as the filtration

σ-algebra.
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Lemma A.4.1 (Doob’s upcrossing lemma). Let Z be a supermartingale which is bounded in

L1. Define U(Z, a, b) = sup{n | ∃ 1 ≤ s1 < t1 < · · · sn < tn : Zsk < a,Ztk > b, k ≤ n} for

any a, b ∈ R with a < b. We refer to U(Z, a, b) as the number of upcrossings from a to b by

Z. Then

EU(Z, a, b) ≤ |a|+ supnE|Zn|
b− a

Proof. See Corollary II.48.4 of Rogers & Williams (2000a).

Theorem A.4.2 (Doob’s supermartingale convergence theorem). Let Z be a supermartin-

gale. If Z is bounded in L1, Z is almost surely convergent. If Z is uniformly integrable, Z

is also convergent in L1, and the limit Z∞ satisfies that for all n, E(Z∞|Fn) ≤ Zn almost

surely.

Proof. That Z converges almost surely follows from Theorem II.49.1 of Rogers & Williams

(2000a). The results for the case where Z is uniformly integrable follows from Theorem

II.50.1 of Rogers & Williams (2000a).

Theorem A.4.3 (Uniformly integrable martingale convergence theorem). Let M be a discrete-

time martingale. The following are equivalent:

1. M is uniformly integrable.

2. M is convergent almost surely and in L1.

3. There is some integrable variable ξ such that Mn = E(ξ|Fn) for n ≥ 1.

In the affirmative, with M∞ denoting the limit of Mn almost surely and in L1, we have for all

n ≥ 1 that Mn = E(M∞|Fn) almost surely, and M∞ = E(ξ|F∞), where F∞ = σ(∪∞n=1Fn).

Proof. From Theorem II.50.1 in Rogers & Williams (2000a), it follows that if (1) holds, then

(2) and (3) holds as well. From Theorem II.50.3 of Rogers & Williams (2000a), we find that

if (3) holds, then (1) and (2) holds. Finally, (2) implies (1) by Lemma A.3.5.

In the affirmative case, Theorem II.50.3 of Rogers & Williams (2000a) shows that we have

M∞ = E(ξ|F∞), and so in particular, Mn = E(ξ|Fn) = E(E(ξ|F∞)|Fn) = E(M∞|Fn)

almost surely.
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Lemma A.4.4 (Doob’s L2 inequality). Let M be a martingale such that supn≥1EM
2
n is

finite. Then M is convergent almost surely and in L2 to a square-integrable variable M∞,

and EM∗2∞ ≤ 4EM2
∞, where M∗∞ = supn≥0 |Mn| and M∗2∞ = (M∗∞)2.

Proof. This is Theorem II.52.6 of Rogers & Williams (2000a).

Lemma A.4.5 (Optional sampling theorem). Let Z be a discrete-time supermartingale,

and let S ≤ T be two stopping times. If Z is uniformly integrable, then Z is almost surely

convergent, ZS and ZT are integrable, and E(ZT |FS) ≤ ZS.

Proof. That Z is almost surely convergent follows from Theorem II.49.1 of Rogers & Williams

(2000a). That ZS and ZT are integrable and that E(ZT |FS) ≤ ZS then follows from Theorem

II.59.1 of Rogers & Williams (2000a).

Next, we consider backwards martingales. Let (Fn)n≥1 be a decreasing sequence of σ-algebras

and let (Zn) be some process. If Zn is Fn measurable and integrable and Xn = E(Xk|Fn)

for n ≥ k, we say that (Zn) is a backwards martingale. If instead Zn ≤ E(Zk|Fn), we say

that (Zn) is a backwards supermartingale, and if Zn ≥ E(Zk|Fn), we say that (Zn) is a

backwards submartingale.

Note that for both ordinary supermartingales and backwards supermartingales, the definition

is essentially the same. A process Z is a supermartingale when, for n ≥ k, E(Zn|Fk) ≤ Zk,

while Z is a backwards supermartingale when, for n ≥ k, Zn ≤ E(Zk|Fn). Furthermore, if

Z is a backwards supermartingale, then −Z is a backwards submartingale and vice versa.

Theorem A.4.6 (Backwards supermartingale convergence theorem). Let (Fn) be a decreas-

ing sequence of σ-algebras, and let (Zn) be a backwards supermartingale. If supn≥1EZn is

finite, then Z is uniformly integrable and convergent almost surely and in L1. Furthermore,

the limit satisfies Z∞ ≥ E(Zn|F∞), where F∞ is the σ-algebra ∩∞n=1Fn.

Proof. See Theorem II.51.1 of Rogers & Williams (2000a).

Finally, we give a result on discrete-time compensators. Let (An)n≥0 be an increasing adapted

process with An integrable for each n. Assume that A has initial value zero, meaning that

A0 = 0. Define a process (Bn)n≥0 by putting Bn =
∑n
k=1E(Ak −Ak−1|Fk−1). By Theorem

II.54.1 of Rogers & Williams (2000a), A − B is then a martingale. We refer to B as the

compensator of A.
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Lemma A.4.7. Let A be an increasing adapted process such that A∞ is bounded by c. Let

B be the compensator of A. Then B∞ is square-integrable and EB2
∞ ≤ 2c2.

Proof. First note that for n ≥ 1,

B2
n = 2B2

n −
n−1∑
k=0

B2
k+1 −B2

k = 2

n−1∑
k=0

Bn(Bk+1 −Bk)−
n−1∑
k=0

B2
k+1 −B2

k

=

n−1∑
k=0

2(Bn −Bk)(Bk+1 −Bk)− (Bk+1 −Bk)2.

Taking means and recalling that Bk+1 is Fk measurable, this yields

EB2
n ≤

n−1∑
k=0

2E(Bn −Bk)(Bk+1 −Bk) = E

n−1∑
k=0

2E(Bn −Bk|Fk)(Bk+1 −Bk)

= E

n−1∑
k=0

2E(An −Ak|Fk)(Bk+1 −Bk) ≤ 2cE

n−1∑
k=0

Bk+1 −Bk

= 2cEBn = 2cEAn ≤ 2c2.

Letting n tend to infinity, the monotone convergence theorem yields that B2
∞ is square-

integrable and that EB2
∞ = E limnB

2
n = limnEB

2
n ≤ 2c2, as desired.
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Appendix B

Hints for exercises

B.1 Hints for Chapter 1

Hints for exercise 1.5.1. Pick n so that n ≤ t < n + 1 and ε so small that t + ε < n + 1.

Rewrite ∩s>tFs in terms of Fs for t < s ≤ t+ ε. ◦

Hints for exercise 1.5.2. First pick t > 0 and show that the restriction of X to [0, t) × Ω is

Bt ⊗Ft measurable. ◦

Hints for exercise 1.5.3. First argue that

(T < t) = ∪∞n=1( ∃ s ∈ R+ : s ≤ t− 1
n and Xs ∈ F ).

Next, show that

( ∃ s ∈ R+ : s ≤ t− 1
n and Xs ∈ F ) = ∩∞k=1( ∃ q ∈ Q+ : q ≤ t− 1

n and Xq ∈ Uk),

where Uk = {x ∈ R | ∃y ∈ F : |x− y| < 1
k}. Argue that the right-hand side is in Ft and use

this to obtain the result. ◦

Hints for exercise 1.5.4. First argue that it suffices to show that for all t > 0, the set

( ∃ s ∈ R+ : s ≤ t and it holds that Xs ∈ F or Xs− ∈ F )
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is Ft measurable. To do so, define Uk = {x ∈ R | ∃y ∈ F : |x− y| < 1
k} and show that

( ∃ s ∈ R+ : s ≤ t and it holds that Xs ∈ F or Xs− ∈ F )

= ∩∞k=1( ∃ q ∈ Q+ ∪ {t} : q ≤ t and it holds that Xq ∈ Uk).

◦

Hints for exercise 1.5.5. Use Exercise 1.5.3 to conclude that T is a stopping time. To show

that XT = a whenever T < ∞, show that whenever T is finite, there is a sequence (un)

depending on ω such that T ≤ un ≤ T + 1
n and such that Xun = a. Use this to obtain the

desired result. ◦

Hints for exercise 1.5.6. For the inclusion FS∨T ⊆ σ(FS ,FT ), use that for any F , it holds

that F = (F ∩ (S ≤ T )) ∪ (F ∩ (T ≤ S)). ◦

Hints for exercise 1.5.7. Use Lemma 1.1.9, to show FT ⊆ ∩∞n=1FTn . In order to obtain the

other inclusion, let F ∈ ∩∞n=1FTn . Show that F ∩(T ≤ t) = ∩∞n=1∪∞m=1∩∞k=mF ∩(Tk ≤ t+ 1
n ).

Use this and the right-continuity of the filtration to prove that F ∩(T ≤ t) ∈ Ft, and conclude

∩∞n=1FTn ⊆ FT from this. ◦

Hints for exercise 1.5.8. To show that M is not uniformly integrable, assume that M is

in fact uniformly integrable. Prove that 1
tMt then converges to zero in L1 and obtain a

contradiction from this. ◦

Hints for exercise 1.5.10. In order to prove that Mα is a martingale, recall that for any

0 ≤ s ≤ t, Wt −Ws is independent of Fs and has a normal distribution with mean zero and

variance t − s. In order to obtain the result on the Laplace transform of the stopping time

T , first reduce to the case of a ≥ 0. Note that by the properties of Brownian motion, T is

almost surely finite. Show that (Mα)T is uniformly integrable and use the optional sampling

theorem in order to obtain the result. ◦

Hints for exercise 1.5.11. For the first process, use W 3
t = (Wt−Ws)

3+3W 2
t Ws−3WtW

2
s +W 3

s

and calculate conditional expectations using the properties of the Ft Brownian motion. Apply

a similar method to obtain the martingale property of the second process. ◦

Hints for exercise 1.5.12. To show the equality for P (T <∞), consider the martingale Mα

defined in Exercise 1.5.10 by Mα
t = exp(αWt − 1

2α
2t) for α ∈ R. Show that the equality

E1(T<∞)M
2b
T = exp(2ab)P (T < ∞) holds. Recalling that limt→∞

Wt

t = 0, use the optional

sampling theorem and the dominated convergence theorem to show that E1(T<∞)M
2b
T = 1.
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Use this to obtain the result. ◦

Hints for exercise 1.5.13. First show that we always have 0 < T ≤ 1 andW 2
T = a(1−T ). From

Theorem 1.2.13 and Exercise 1.5.11, it is known that the processes W 2
t −t and W 4

t −6tW 2
t +3t2

are in cM. Use these facts to obtain expressions for ET and ET 2. ◦

Hints for exercise 1.5.14. Use that N2
t = (Nt − Ns)2 + 2NtNs − N2

s and that Nt − Ns is

Poisson distributed with paramter t− s and independent of Fs. ◦

Hints for exercise 1.5.15. Use that for 0 ≤ s ≤ t, Nt − Ns is independent of Fs, and recall

the formula for the moment generating function of the Poisson distribution. ◦

B.2 Hints for Chapter 2

Hints for exercise 2.4.2. Define Un = (a − 1/n, a + 1/n), Sn = inf{t ≥ 0 | Xt ∈ Un} and

Tn = Sn ∧ n. Argue that (Tn) is an announcing sequence for T . ◦

Hints for exercise 2.4.3. Apply Lemma 2.2.4. ◦

Hints for exercise 2.4.5. Let (qn) be an enumeration of qn, define a sequence of stopping

times (Tn) by putting Tn = n ∧ S(S+qn≥T ) ∧ (S + qn)(S+qn<T ) and apply Exercise 2.4.4. ◦

Hints for exercise 2.4.6. Apply Lemma 2.2.6 and Lemma 2.2.5. ◦

Hints for exercise 2.4.7. Apply Lemma 2.2.7. ◦

Hints for exercise 2.4.9. To show that T is predictable when (T = S) ∈ FS− for all pre-

dictable stopping times S, take a sequence of predictable times (Sn) with the property that

[[T ]] ⊆ ∪∞n=1[[Sn]], consider Tn = (Sn)(T=Sn) and apply Lemma 2.1.9. ◦

Hints for exercise 2.4.11. Define a sequence of stopping times (Tn) by approximating T

through the dyadic rationals D+ from above. ◦
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B.3 Hints for Chapter 3

Hints for exercise 3.5.2. In order to obtain that M ∈ Mu when (MT )T∈C is uniformly

integrable, use Lemma 1.2.8 and Lemma A.3.5. ◦

Hints for exercise 3.5.3. Apply Fatou’s lemma. ◦

Hints for exercise 3.5.4. First consider the case where M ∈ Mu and note that in this case,

|MT | is integrable for all stopping times T . ◦

Hints for exercise 3.5.5. First consider M ∈Mu and apply Lemma 3.1.8. ◦

Hints for exercise 3.5.6. Apply Exercise 3.5.5. ◦

Hints for exercise 3.5.9. First consider the case where A ∈ A. Use Lemma 3.2.6 to obtain

A ∈ Ai`. For the case where A ∈ V, decompose A as in Lemma 1.4.1 and use Theorem 2.3.9

to show that each component in the decomposition is predictable. ◦

Hints for exercise 3.5.10. To show that the process
∫ t

0
Ns− dMs is inM`, apply Lemma 3.3.2.

To show that the process
∫ t

0
Ns dMs is not in M`, assume to the contrary that the process

is a local martingale. Let Tn be the n’th jump time of N . Argue that both
∫ t

0
Ns− dMs and∫ t

0
Ns dMs, when stopped at Tn, are in Mu. Obtain a contradiction from this. ◦

Hints for exercise 3.5.11. Fix λ > 0. Use Lemma 3.3.2 and its proof to obtain

E exp(−λΠ∗pAT ) = E

∫ ∞
0

exp(−λΠ∗pAs) dΠ∗pAs.

Apply Lemma A.2.14 to calculate the right-hand side in the above. ◦

Hints for exercise 3.5.13. In order to obtain the final two convergences in probability, apply

the relation W 2
t = 2

∑2n

k=1Wtnk−1
(Wtnk

−Wtnk−1
) +

∑2n

k=1(Wtnk
−Wtnk−1

)2. ◦

Hints for exercise 3.5.14. Apply Theorem 3.3.10. ◦

Hints for exercise 3.5.17. Apply Lemma 3.4.4. ◦

Hints for exercise 3.5.18. Apply Lemma 3.4.6. ◦
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B.4 Hints for Chapter 4

Hints for exercise 4.4.1. Apply Theorem 3.1.9. ◦

Hints for exercise 4.4.2. Apply Lemma 4.2.3 and Exercise 3.5.4. ◦

Hints for exercise 4.4.5. To prove that X = X0 +M +A with M ∈M` almost surely contin-

uous and A ∈ V, apply Theorem 3.4.7 Theorem 3.4.11 to obtain the desired decomposition.

◦

Hints for exercise 4.4.6. Use Theorem 3.4.11. ◦

Hints for exercise 4.4.7. First consider the case where M ∈ Mu, and apply Lemma 3.1.8

and Lemma 3.2.10 to obtain that MT− ∈M` in this case. ◦

Hints for exercise 4.4.12. Prove that 1
t (H ·M)t and Nt

t converge in probability to zero and

one, respectively. Use this to obtain the result. ◦

Hints for exercise 4.4.13. To show that [M,A] ∈ M`, first use Theorem 3.3.1 to argue that

it suffices to consider the two cases M ∈ Mb
` and M ∈ fvM`. In order to prove the result

for M ∈ Mb
`, first consider the case M ∈ Mb and A ∈ Ai with A predictable. Argue that

in this case, ∆M is almost surely integrable on [0,∞) with respect to A, and the result has

finite mean, in particular implying that [M,A] ∈ Vi. Defining Tt = inf{s ≥ 0|As ≥ t}, argue

that Tt is a predictable stopping time and use Lemma 3.1.8 and Lemma A.2.14 to obtain

E[M,A]∞ = 0. Apply Lemma 1.2.8 to obtain that [M,A] ∈Mu in this case.

Extend the result to M ∈Mb
` and A ∈ V by localisation arguments and Lemma 4.2.3. ◦

Hints for exercise 4.4.14. Apply Exercise 4.4.13. ◦

Hints for exercise 4.4.15. Use Theorem 4.2.9 to argue that it suffices to show that (∆H ·M)t =∑
0<s≤t ∆Hs∆Xs. Use Exercise 4.4.4 to argue that ∆H = ∆B for a predictable process

B ∈ V. Use Exercise 4.4.13 to obtain the desired result. ◦

Hints for exercise 4.4.16. First show that it suffices to prove the convergence to zero in

probability of the variables that (Wt+h−Wt)
−1
∫ t+h
t

(Hs−Ht)1[[t,∞[[ dWs, where the indicator

1[[t,∞[[ is included to ensure that the integrand is progressively measurable. To show this, fix
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δ > 0 and show that

1(|Wt+h−Wt|>δ)

Wt+h −Wt

∫ t+h

t

(Hs −Ht)1[[t,∞[[ dWs
P−→ 0,

using Chebychev’s inequality and the results from Lemma 4.4.10. Then apply Lemma A.3.1

to obtain the result. ◦

Hints for exercise 4.4.18. To prove that X has the same distribution as a Brownian motion

for H = 1
2 , let W be a Brownian motion and show that X and W have the same finite-

dimensional distributions.

To show that X is not in cS when H 6= 1
2 , first fix t ≥ 0, put tnk = tk2−n and consider∑2n

k=1 |Xtnk
−Xtnk−1

|p for p ≥ 0. Use the fact that normal distributions are determined by their

mean and covariance structure to argue that the distribution of
∑2n

k=1 |Xtnk
−Xtnk−1

|p is the

same as the distribution of 2−npH
∑2n

k=1 |Xk−Xk−1|p. Show that the process (Xk−Xk−1)k≥1

is stationary. Now recall that the ergodic theorem for discrete-time stationary processes

states that for a stationary process (Yn)n≥1 and a mapping f : R → R such that f(Y1) is

integrable, it holds that 1
n

∑n
k=1 f(Yk) converges almost surely and in L1. Use this to argue

that 1
2n

∑2n

k=1 |Xk −Xk−1|p converges almost surely and in L1 to a variable Zp which is not

almost surely zero.

Finally, use this to prove that X is not in cS when H 6= 1
2 . To do so, first consider the

case H < 1
2 . In this case, assume that X ∈ cS and seek a contradiction. Use the result of

Exercise 4.4.17 to show that
∑2n

k=1 |Xtnk
−Xtnk−1

| 1H converges to zero in probability. Obtain

a contradiction with the results obtained above. In the case where H > 1
2 , use that 1

H < 2

and Exercise 4.4.17 to show that
∑2n

k=1 |Xtnk
−Xtnk−1

|2 converges in probability to zero, and

use this to argue that [X] is evanescent. Conclude that X has paths of finite variation, and

use this to obtain a contradiction with our earlier results. ◦

Hints for exercise 4.4.20. Apply Itô’s formula to the two-dimensional continuous semimartin-

gale (t,Wt). ◦

Hints for exercise 4.4.21. Use Theorem 4.3.2 to show that
∫ t

0
f(s) dWs is the limit in prob-

ability of a sequence of variables whose distribution may be calculated explicitly. Use that

convergence in probability implies weak convergence to obtain the desired result. ◦

Hints for exercise 4.4.23. In the case where i = j, use Itô’s formula with the function

f(x) = x2, and in the case i 6= j, use Itô’s formula with the function f(x, y) = xy. Afterwards,

apply Lemma 4.1.13 and Lemma 4.2.11 to obtain the result. ◦
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Hints for exercise 4.4.24. First note that in order to prove the result, it suffices to prove that

the sequence
∑2n

k=1(Mtk −Mtk−1
)2 is bounded in L2. To do so, write

E

(
2n∑
k=1

(Mtk −Mtk−1
)2

)2

= E

2n∑
k=1

(Mtk −Mtk−1
)4 + E

∑
k 6=i

(Mtk −Mtk−1
)2(Mti −Mti−1

)2.

Let C ≥ 0 be a constant such that |Mt| ≤ C for all t ≥ 0. By repeated use of the martingale

property, prove that the first term is less than 4C2 and that the second term is less than

2C2, thus proving boundedness in L2. ◦
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Appendix C

Solutions for exercises

C.1 Solutions for Chapter 1

Solution to exercise 1.5.1. Fix t ≥ 0 and let n = [t], the largest integer smaller than or equal

to t. We then have n ≤ t < n+ 1, and so Ft = Gn. Fix ε > 0 so small that t+ ε < n+ 1, we

then also have Fs = Gn for t < s ≤ t+ ε, and it follows that

∩s>tFs = ∩t<s≤t+εFs = Gn = Ft,

as desired. �

Solution to exercise 1.5.2. Fix t > 0 and 0 < δ < t. By our assumptions, it holds for any

ε > 0 that the restriction X|[0,t−δ]×Ω of X to [0, t−δ]×Ω is Bt⊗Ft−δ+ε measurable. Picking

ε smaller than δ, we obtain that X|[0,t−δ]×Ω is Bt ⊗Ft measurable. This means that for any

B ∈ B and δ > 0, it holds that

{(t, ω) ∈ R+ × Ω | Xt(ω) ∈ B} ∩ [0, t− δ]× Ω ∈ Bt ⊗Ft ∩ [0, t− δ]× Ω.

As Bt ⊗Ft ∩ [0, t− δ]× Ω ⊆ Bt ⊗Ft, we also obtain that for all B ∈ B and δ > 0,

{(t, ω) ∈ R+ × Ω | Xt(ω) ∈ B} ∩ [0, t− δ]× Ω ∈ Bt ⊗Ft.

As a consequence, we find that

{(t, ω) ∈ R+ × Ω | Xt(ω) ∈ B} ∩ [0, t)× Ω ∈ Bt ⊗Ft.
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Since we have assumed that X is adapted, it holds that Xt is Ft measurable, and the above

therefore shows that the restriction of X to [0, t]×Ω is Bt⊗Ft measurable, so X is progressive

with respect to (Ft)t≥0. �

Solution to exercise 1.5.3. Define Un = {x ∈ R | ∃y ∈ F : |x− y| < 1
n}. We claim that Un is

open, that Un decreases to F and that Un+1 ⊆ Un, where Un+1 denotes the closure of Un+1.

As we have that Un = ∪y∈F {x ∈ R | |x − y| < 1
n}, Un is open as a union of open sets. We

have F ⊆ Un for all n, and conversely, if x ∈ ∩∞n=1Un, we have that there is a sequence (yn)

in F such that |yn − x| ≤ 1
n for all n. In particular, yn tends to x, and as F is closed, we

conclude x ∈ F . Thus, F = ∩∞n=1Un. Furthermore, if x is in the closure Un+1, there is a

sequence (xk) in Un+1 such that |xk − x| ≤ 1
k , and there is a sequence (yk) in F such that

|xk − yk| < 1
n+1 , showing that |x− yk| < 1

k + 1
n+1 . Taking k so large that 1

k + 1
n+1 ≤

1
n , we

see that Un+1 ⊆ Un.

Now note that whenever t > 0, we have

(T < t) = ( ∃ s ∈ R+ : s < t and Xs ∈ F ) = ∪∞n=1( ∃ s ∈ R+ : s ≤ t− 1
n and Xs ∈ F ),

so by Lemma 1.1.9, it suffices to prove that ( ∃ s ∈ R+ : s ≤ t and Xs ∈ F ) is Ft measurable

for all t > 0. We claim that

( ∃ s ∈ R+ : s ≤ t and Xs ∈ F ) = ∩∞k=1( ∃ q ∈ Q+ : q ≤ t and Xq ∈ Uk).

To see this, first consider the inclusion towards the right. If there is s ∈ R+ with s ≤ t and

Xs ∈ F , then we also have Xs ∈ Uk for all k. As Uk is open, there is ε > 0 such that the ball

of size ε around Xs is in Uk. In particular, there is q ∈ Q+ with q ≤ t such that Xq ∈ Uk.

This proves the inclusion towards the right. In order to obtain the inclusion towards the left,

assume that for all k, there is qk ∈ Q+ with qk ≤ t such that Xqk ∈ Uk. As [0, t] is compact,

there exists s ∈ R+ with s ≤ t such that for some subsequence, limm qkm = s. By continuity,

Xs = limmXqkm
. As Xqkm

∈ Ukm , we have for any i that Xqkm
∈ Ui for m large enough.

Therefore, we conclude Xs ∈ ∩∞i=1U i ⊆ ∩∞i=1Ui = F , proving the other inclusion. This shows

the desired result. �

Solution to exercise 1.5.4. First note that whenever t > 0, it holds that

(T < t) = ( ∃ s ∈ R+ : s < t and it holds that Xs ∈ F or Xs− ∈ F )

= ∪∞n=1( ∃ s ∈ R+ : s ≤ t− 1
n and it holds that Xs ∈ F or Xs− ∈ F ).

Therefore, applying Lemma 1.1.9, it suffices to prove that for all t > 0, the set

( ∃ s ∈ R+ : s ≤ t and it holds that Xs ∈ F or Xs− ∈ F )
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is Ft measurable. To this end, fix t > 0. Define Un = {x ∈ R | ∃y ∈ F : |x− y| < 1
n}. As in

1.5.3, we find that each Un is open, the sequence (Un) decreases to F and Un+1 ⊆ Un. We

claim that

( ∃ s ∈ R+ : s ≤ t and it holds that Xs ∈ F or Xs− ∈ F )

= ∩∞k=1( ∃ q ∈ Q+ ∪ {t} : q ≤ t and it holds that Xq ∈ Uk).

To prove this, define

C = ( ∃ s ∈ R+ : s ≤ t and it holds that Xs ∈ F or Xs− ∈ F )

D = ∩∞k=1( ∃ q ∈ Q+ ∪ {t} : q ≤ t and it holds that Xq ∈ Uk).

First assume that ω ∈ C, meaning that there exists s ∈ R+ with s ≤ t such that Xs(ω) ∈ F .

It s = t, ω ∈ D is immediate. Therefore, assume s < t. We then also have Xs(ω) ∈ Uk for

all k ≥ 1, and as X is right-continuous and Uk is open, there is for each k ≥ 1 a q ∈ Q+

with 0 ≤ q < t such that Xq(ω) ∈ Uk, again yielding ω ∈ D. Assume next that there exists

s ∈ R+ with s ≤ t such that Xs−(ω) ∈ F . We then also obtain Xs−(ω) ∈ Uk for all k ≥ 1.

If s = 0, we have s ∈ Q+ and Xs− = Xs, so ω ∈ D. If s > 0, there exists q ∈ Q+ with

0 ≤ q < s ≤ t such that Xs(ω) ∈ Uk, so ω ∈ D. All in all, this shows C ⊆ D.

Next, we consider the other inclusion. Assume that ω ∈ D. For each k, let qk be an

element of Q+ ∪ {t} with qk ≤ t such that Xqk(ω) ∈ Uk. The sequence (qk) has a monotone

subsequence (qki) with limit s ∈ [0, t]. If qki is decreasing, we find that limiXqki
= Xs(ω).

If qki is increasing with qki < s infinitely often, we obtain qki < s eventually and so we

conclude limiXqki
(ω) = Xs−(ω). If qki is increasing with qki ≥ s eventually, we have

limiXqki
(ω) = Xs(ω). In all cases, the sequence Xqki

(ω) is convergent to either Xs(ω) or

Xs−(ω). As Xqki
(ω) ∈ Uki , we also obtain the the limit is in ∩∞i=1U i, which is a subset of F .

Thus, we either have Xs(ω) ∈ F or Xs−(ω) ∈ F , so ω ∈ C and thus D ⊆ C.

This proves C = D. As D ∈ Ft since X is adapted, T is a stopping time. �

Solution to exercise 1.5.5. As one-point sets are closed, we know from Exercise 1.5.3 that T

is a stopping time. When T <∞, it holds that {t ≥ 0|Xt = a} is nonempty, and for any n,

T + 1
n is not a lower bound for the set {t ≥ 0 | Xt = a}. Therefore, there is un < T + 1

n such

that u ∈ {t ≥ 0 | Xt = a}. Furthermore, as T is a lower bound for {t ≥ 0 | Xt = a}, un ≥ T .

Thus, by continuity, XT = limnXun = a. �

Solution to exercise 1.5.6. By Lemma 1.1.9, FS ⊆ FS∨T and FT ⊆ FS∨T , showing that
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σ(FS ,FT ) ⊆ FS∨T . We need to prove the other implication. Let F ∈ FS∨T . We find

F ∩ (S ≤ T ) ∩ (T ≤ t) = F ∩ (S ≤ T ) ∩ (S ∨ T ≤ t)

= (F ∩ (S ∨ T ≤ t)) ∩ ((S ≤ T ) ∩ (S ∨ T ≤ t)).

Here, F ∩ (S ∨ T ≤ t) ∈ Ft as F ∈ FS∨T , and (S ≤ T ) ∩ (S ∨ T ≤ t) ∈ Ft as we have

(S ≤ T ) ∈ FS∧T ⊆ FS∨T by Lemma 1.1.11. We conclude F ∩ (S ≤ T ) ∈ FT . Analogously,

F ∩ (T ≤ S) ∈ FS . From this, we obtain F ∈ σ(FS ,FT ), as desired. �

Solution to exercise 1.5.7. First note that by Lemma 1.1.10, T is a stopping time. In

particular, FT is well-defined. Using Lemma 1.1.9, the relation T ≤ Tn yields FT ⊆ FTn , so

that FT ⊆ ∩∞n=1FTn . Conversely, let F ∈ ∩∞n=1FTn , we want to show F ∈ FT , and to this end,

we have to show F∩(T ≤ t) ∈ Ft for any t ≥ 0. Fixing t ≥ 0, the convergence of Tn to T yields

F ∩ (T ≤ t) = ∩∞n=1 ∪∞m=1 ∩∞k=mF ∩ (Tk ≤ t+ 1
n ). Now, as F ∈ ∩∞n=1FTn , we have F ∈ FTn

for all n. Therefore, F ∩ (Tk ≤ t+ 1
n ) ∈ Ft+ 1

n
, and so ∪∞m=1 ∩∞k=m F ∩ (Tk ≤ t+ 1

n ) ∈ Ft+ 1
n

.

As this sequence of sets is decreasing in n, we find that ∩∞n=1 ∪∞m=1 ∩∞k=mF ∩ (Tk ≤ t + 1
n )

is in ∩∞n=1Ft+ 1
n

. By right-continuity of the filtration, ∩∞n=1Ft+ 1
n

= Ft, and so we finally

conclude F ∩ (T ≤ t) ∈ Ft, proving F ∈ FT . We have now shown ∩∞n=1FTn ⊆ FT , and so

FT = ∩∞n=1FTn . This concludes the proof. �

Solution to exercise 1.5.8. Recall from Theorem 1.2.13 that M is a martingale. In order to

show that M is not uniformly integrable, assume that M is in fact uniformly integrable, we

seek a contradiction. We know by Theorem 1.2.4 that there is M∞ such that Mt converges

almost surely and in L1 to M∞. However, we then obtain

lim
t→∞

E| 1tMt| = lim
t→∞

1
tE|Mt| ≤ lim

t→∞
1
tE|Mt −M∞|+ 1

tE|M∞| = 0,

so 1
tMt converges in L1 to zero. In particular 1

tMt converges in distribution to the Dirac

measure at zero, which is in contradiction to the fact that as 1
tMt = ( 1√

t
Wt)

2 − 1, 1
tMt has

the law of a standard normal distribution transformed by the transformation x 7→ x2 − 1 for

any t ≥ 0. Therefore, Mt cannot be convergent in L1, and then, again by Theorem 1.2.4, M

cannot be uniformly integrable. �

Solution to exercise 1.5.9. By Lemma 1.2.8, it holds that if M ∈Mu, then MT is integrable

with EMT = 0 for all stopping times T . It therefore suffices to prove the converse implication.

Assume that MT is integrable with EMT = 0 for all stopping times T which take at most

two values in [0,∞]. Fix t ≥ 0 and F ∈ Ft. Then tF is a stopping time taking the two values

t and ∞, so |MtF | is integrable and EMtF = 0. As we have EMtF = E1FMt + E1F cM∞

and we also have EM∞ = E1FM∞ +E1F cM∞, we conclude E1FMt = E1FM∞, leading to

Mt = E(M∞|Ft). Thus, M ∈M and so M ∈Mu by Theorem 1.2.4. �
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Solution to exercise 1.5.10. Fix α and let 0 ≤ s ≤ t. We then find

E(Mα
t |Fs) = Mα

s E(exp(α(Wt −Ws)− 1
2α

2(t− s))|Fs)

= Mα
s E(exp(α(Wt −Ws)− 1

2α
2(t− s))) = Mα

s ,

using that Wt −Ws is independent of Fs and normally distributed, and for any variable X

which is standard normally distributed, E exp(tX) = exp( 1
2 t

2) for any t ∈ R. Thus, Mα is a

martingale.

Next, we consider the result on the stopping time T . By symmetry, it suffices to consider

the case where a ≥ 0. By the law of the iterated logarithm, T is almost surely finite.

Therefore, WT is bounded from above by a and WT = a. Fixing some α ≥ 0, we then

find (Mα)Tt = exp(αWT
t − 1

2α
2(T ∧ t)) ≤ exp(αa). Therefore, by Lemma A.3.4 (Mα)T is

uniformly integrable. Now, the almost sure limit of (Mα)T is exp(αa− 1
2α

2T ). By Theorem

1.2.6, we therefore find 1 = E(Mα)T∞ = E exp(αa − 1
2α

2T ) = exp(αa)E exp(− 1
2α

2T ). This

shows E exp(− 1
2α

2T ) = exp(−αa). Thus, if we now fix β ≥ 0, we find

E exp(−βT ) = E exp(− 1
2 (
√

2β)2T ) = exp(−
√

2βa),

as desired. �

Solution to exercise 1.5.11. Fix 0 ≤ s ≤ t. As (Wt −Ws)
3 = W 3

t − 3W 2
t Ws + 3WtW

2
s −W 3

s ,

we obtain

E(W 3
t − 3tWt|Fs) = E((Wt −Ws)

3|Fs) + E(3W 2
t Ws − 3WtW

2
s +W 3

s |Fs)− 3tWs

= E(Wt −Ws)
3 + 3WsE(W 2

t |Fs)− 3W 2
sE(Wt|Fs) +W 3

s − 3tWs

= 3WsE(W 2
t − t|Fs)− 2W 3

s = 3Ws(W
2
s − s)− 2W 3

s = W 3
s − 3sWs.

As regards the second process, we have (Wt−Ws)
4 = W 4

t −4W 3
t Ws+6W 2

t W
2
s −4WtW

3
s +W 4

s ,

and so

E(W 4
t |Fs) = E((Wt −Ws)

4|Fs) + E(4W 3
t Ws − 6W 2

t W
2
s + 4WtW

3
s −W 4

s |Fs)

= 3(t− s)2 + 4WsE(W 3
t |Fs)− 6W 2

sE(W 2
t |Fs) + 4W 3

sE(Wt|Fs)−W 4
s

= 3(t− s)2 + 4WsE(W 3
t − 3tWt|Fs) + 12tW 2

s − 6W 2
sE(W 2

t |Fs) + 3W 4
s

= 3(t− s)2 + 4Ws(W
3
s − 3sWs) + 12tW 2

s − 6W 2
sE(W 2

t |Fs) + 3W 4
s

= 3(t− s)2 + 12(t− s)W 2
s − 6W 2

sE(W 2
t − t|Fs)− 6tW 2

s + 7W 4
s

= 3(t− s)2 + 12(t− s)W 2
s − 6W 2

s (W 2
s − s)− 6tW 2

s + 7W 4
s

= 3(t− s)2 + 6(t− s)W 2
s +W 4

s .
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Therefore, we find

E(W 4
t − 6tW 2

t + 3t2|Fs) = 3(t− s)2 + 6(t− s)W 2
s +W 4

s − 6tE(W 2
t |Fs) + 3t2

= 3(t− s)2 + 6(t− s)W 2
s +W 4

s − 6tE(W 2
t − t|Fs)− 3t2

= 3(t− s)2 + 6(t− s)W 2
s +W 4

s − 6t(W 2
s − s)− 3t2

= W 4
s − 6sW 2

s + 3(t− s)2 + 6st− 3t2

= W 4
s − 6sW 2

s + 3s2,

as desired. �

Solution to exercise 1.5.12. We have T = inf{t ≥ 0 | Wt − a − bt ≥ 0}, where the process

Wt − a− bt is continuous and adapted. Therefore, Exercise 1.5.3 shows that T is a stopping

time. Now consider a > 0 and b > 0. Note that Wt − a− bt has initial value −a 6= 0, so we

always have T > 0. In particular, again using continuity, we have WT = a+ bT whenever T

is finite. Now, by Exercise 1.5.10, we know that for any α ∈ R, the process Mα defined by

Mα
t = exp(αWt − 1

2α
2t) is a martingale. We then find

E1(T<∞)M
α
T = E1(T<∞) exp(αWT − 1

2α
2T )

= E1(T<∞) exp(α(a+ bT )− 1
2α

2T )

= exp(αa)E1(T<∞) exp(T (αb− 1
2α

2)).

Now note that the equation αb = 1
2α

2 has the unique nonzero solution α = 2b. Therefore,

we obtain E1(T<∞)M
2b
T = exp(2ab)P (T < ∞). In order to show the desired equality, it

therefore suffices to prove E1(T<∞)M
2b
T = 1. To this end, note that by the law of the

iterated logarithm, using that b 6= 0, limt→∞ 2bWt− 1
2 (2b)2t = limt→∞ t(2bWt

t − 2b2) = −∞,

so that limt→∞M2b
t = 0. Therefore, 1(T<∞)M

2b
T = M2b

T and it suffices to prove EM2b
T = 1.

To this end, note that

M2b
T∧t = exp

(
2bWT∧t −

1

2
(2b)2(T ∧ t)

)
≤ exp

(
2b(a+ b(T ∧ t))− 1

2
(2b)2(T ∧ t)

)
= exp(2ba).

Therefore, (M2b)T is bounded by the constant exp(2ba), in particular it is uniformly inte-

grable. Thus, Theorem 1.2.6 shows that EM2b
T = E(M2b)T∞ = 1. From this, we finally

conclude P (T <∞) = exp(−2ab). �

Solution to exercise 1.5.13. Since W 2
t − a(1 − t) is a continuous adapted process, Exercise

1.5.3 shows that T is a stopping time. Now let a > 0. As W 2
t − a(1 − t) has initial value

−a 6= 0, we always have T > 0. Furthermore, as a(1 − t) < 0 when t > 1, we must have
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T ≤ 1, so T is a bounded stopping time. In particular, T has moments of all orders, and by

continuity, W 2
T = a(1− T ).

In order to find the mean of T , recall from Theorem 1.2.13 that W 2
t − t is a martingale. As

T is a bounded stopping time, we find 0 = E(W 2
T − T ) = E(a(1− T )− T ) = a− (1 + a)ET

by Theorem 1.2.6, so ET = a
1+a . Next, we consider the second moment. Recall by Exercise

1.5.11 that W 4
t − 6tW 2

t + 3t2 is in cM. Again using Theorem 1.2.6, we obtain

0 = E(W 4
T − 6TW 2

T + 3T 2)

= E(a2(1− T )2 − 6Ta(1− T ) + 3T 2)

= E(a2(1− 2T + T 2) + 6a(T 2 − T ) + 3T 2)

= (a2 + 6a+ 3)ET 2 − (2a2 + 6a)ET + a2.

Recalling that ET = a
1+a , we find

(2a2 + 6a)ET − a2 =
a(2a2 + 6a)

1 + a
− (1 + a)a2

1 + a
=
a3 + 5a2

1 + a
,

from which we conclude

ET 2 =
a3 + 5a2

(1 + a)(a2 + 6a+ 3)
=

a3 + 5a2

a3 + 7a2 + 9a+ 3
,

concluding the solution to the exercise. �

Solution to exercise 1.5.14. As N is a Poisson process, it is immediate that Mt is integrable

for all t ≥ 0. Let 0 ≤ s ≤ t. As Nt − Ns is Poisson distributed with paramter t − s and is

independent of Fs, we obtain, applying Theorem 1.2.15, that

E(Mt|Fs) = E(N2
t |Fs)− 2tE(Nt|Fs) + t2 − t

= E((Nt −Ns)2|Fs) + E(2NtNs −N2
s |Fs)− 2t(t+Ns − s) + t2 − t

= E(Nt −Ns)2 + 2Ns(t+Ns − s)−N2
s − 2t(t+Ns − s) + t2 − t

= (t− s)2 +N2
s + 2Ns(t− s)− 2t(t+Ns − s) + t2 − s

= N2
s +Ns(2(t− s)− 2t) + (t− s)2 + 2ts− t2 − s

= N2
s − 2sNs + s2 − s = Ms,

so M is a martingale, as desired. �

Solution to exercise 1.5.15. Fix α ∈ R. As N is a Poisson process, it is immediate that Mα
t
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is integrable for all t ≥ 0. Let 0 ≤ s ≤ t. As Nt −Ns is independent of Fs, we obtain

E(Mα
t |Fs) = E(exp(αNt − (eα − 1)t)|Fs)

= E(exp(α(Nt −Ns))|Fs) exp(−(eα − 1)(t− s)) exp(αNs − (eα − 1)s)

= E exp(α(Nt −Ns)) exp(−(eα − 1)(t− s))Mα
s ,

and as Nt −Ns is Poisson distributed with paramter t− s, we have

E exp(α(Nt −Ns)) = exp((eα − 1)(t− s)),

which all in all yields E(Mα
t |Fs) = Mα

s , as desired. �

C.2 Solutions for Chapter 2

Solution to exercise 2.4.1. By Lemma 1.1.4, every adapted càglàd process may be approxi-

mated by adapted càdlàg processes. Therefore, Σp ⊆ Σo. And by Lemma 1.1.6, every càdlàg

adapted process is progressive, and therefore Σo ⊆ Σπ. �

Solution to exercise 2.4.2. First note that by Lemma 1.5.3, T is a stopping time. We show

that it is predictable. For each n, define Un = (a − 1/n, a + 1/n). Then Un is an open set

containing a. Define a mapping by putting Sn = inf{t ≥ 0 | Xt ∈ Un}. By Lemma 1.1.13,

Sn is a stopping time. Put Tn = Sn ∧ n, then (Tn) is a sequence of stopping times. we will

argue that (Tn) is an announcing sequence for T .

To this end, first note that as the Un are decreasing, the sequence (Sn) is increasing and

thus the sequence (Tn) is increasing. Also, as a ∈ Un, we have Tn ≤ Sn ≤ T for all n.

Note that as X has initial value zero and a 6= 0, we always have T > 0. Also, for n

large enough, [a − 1/n, a + 1/n] does not contain zero. For such n, 0 < Sn, and therefore

XSn ∈ [a− 1/n, a+ 1/n] for such n.

We first argue that Sn increases to T . Consider the case where T is finite, in particular

Sn is finite for all n. Assume that limn Sn < T . As XSn ∈ [a − 1/n, a + 1/n] for n large

enough, we obtain Xlimn Sn = a by left-continuity, a contradiction with limn Sn < T . Thus,

limn Sn = T . Next, consider the case where T is infinite. If limn Sn is finite, we again have

XSn ∈ [a − 1/n, a + 1/n] from a point onwards and so Xlimn Sn = a. Therefore, T is not

infinite, a contradiction. We conclude that in all cases, Sn increases to T .

As Sn increases to T , so does Tn. Therefore, in order to show that (Tn) is an announcing
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sequence for T , it suffices to show that Tn < T . This is immediate when T is infinite,

therefore, consider the case where T is finite, so that XT = a. For n large enough, 0 < Sn.

As Xt /∈ (a− 1/n, a+ 1/n) for 0 ≤ t < Sn and XSn ∈ [a− 1/n, a+ 1/n], we must either have

XSn = a− 1/n or XSn = a+ 1/n in this case. In particular, Sn 6= T , so Sn < T and we thus

obtain Tn < T .

We conclude that (Tn) is an announcing sequence for T , and so T is predictable. �

Solution to exercise 2.4.3. By Lemma 2.2.2, it is immediate that F(S∧T )− ⊆ FS− ∧FT−. To

prove the converse implication, assume that F ∈ FS− ∧FT−. By Lemma 2.2.4, F ∩ (S ≤ T )

and F ∩ (T ≤ S) are both F(S∧T )− measurable. Therefore, F is F(S∧T )− measurable as well,

proving the result. �

Solution to exercise 2.4.4. It is immediate from Lemma 1.1.10 that T is a stopping time, so

it suffices to show that T is predictable. Define Rn = maxk≤n Tk. By Lemma 1.1.9, (Rn)

is a sequence of stopping times. It is immediate that (Rn) is increasing and that Rn < T

whenever T > 0. Also,

lim
n
Rn = lim

n
max
k≤n

Tk = sup
n≥1

Tn = T,

so Rn is an announcing sequence for T , and thus T is predictable. �

Solution to exercise 2.4.5. Let (qn) be an enumeration of Q+ and define

Sn = S(S+qn≥T ) ∧ (S + qn)(S+qn<T ).

Note that as (S + qn ≥ T ) ∈ FT = FS , the above is a stopping time by Lemma 1.1.9. Put

Tn = n ∧ Sn. We claim that the sequence (Tn) satisfies the requirements of Exercise 2.4.4.

We first show that Tn < T whenever T > 0. Thus, assume that T > 0. If T is infinite, it is

immediate that Tn < T as Tn is finite. If T is finite, then S is finite and thus S < T , so that

S(S+qn≥T ) < T if S + qn ≥ T and (S + qn)(S+qn<T ) < T if S + qn < T . In both cases, we

obtain Tn ≤ Sn < T .

Next, we show that supn Tn = T . It is immediate that Tn ≤ T for all n. In the case where

T is infinite and S is infinite, we have Tn = n and thus supTn = T . In the case where T is

infinite and S is finite, we obtain Sn = S + qn and Tn = n ∧ (S + qn). For any k ≥ 1, we

have qn ≥ k infinitely often and n ≥ k eventually, yielding Tn ≥ k infinitely often and thus

supTn = T in this case as well. Finally, consider the case where T is finite, so that S also is

finite and S < T . Fix ε > 0 and k ≥ T . There exists n ≥ k such that T − ε < S + qn < T ,

and thus T − ε ≤ Tn. This shows supn Tn = T in this case as well.
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The results of Exercise 2.4.4 now shows that T is a predictable stopping time. �

Solution to exercise 2.4.6. By Lemma 2.2.6, it holds that XT is FT− measurable whenever

X is predictable. From this, we obtain that σ({XT | X is predictable }) ⊆ FT−. Conversely,

fix some F ∈ FT− and define X = 1F 1[[T,∞[[. By Lemma 2.2.5, X is predictable, and

XT = 1F . Therefore, F ∈ σ({XT | X is predictable }). This allows us to conclude that

FT− ⊆ σ({XT | X is predictable }), proving the desired result. �

Solution to exercise 2.4.7. By Lemma 2.2.7, XT− is FT− measurable whenever X is càdlàg

adapted. From this, we obtain that σ({XT− | X is càdlàg adapted }) ⊆ FT−. To prove

the other inclusion, let F ∈ FT− and define X = 1F 1[[T,∞[[. Then X is càdlàg adapted,

and XT = 1F . Therefore, F ∈ σ({XT | X is càdlàg adapted }) and thus it holds that

FT− ⊆ σ({XT | X is càdlàg adapted }). This concludes the proof of the exercise. �

Solution to exercise 2.4.8. Assume that T takes its values in the countable set {tn | n ≥ 1}.
By Lemma 2.1.5, tn is a predictable stopping time for each n ≥ 1, and we have [[T ]] ⊆
∪∞n=1[[tn]]. Thus, T is accessible. �

Solution to exercise 2.4.9. If T is predictable, Lemma 2.2.4 yields (T = S) ∈ FS− for all

predictable stopping times S. Assume conversely that T is accessible and that (T = S) ∈ FS−
for all predictable stopping times S. Let (Sn) be a sequence of predictable stopping times

such that [[T ]] ⊆ ∪∞n=1[[Sn]]. Put Tn = (Sn)(T=Sn). By our assumptions, (T = Sn) ∈ FSn−,

so Tn is a predictable stopping time by Lemma 2.2.3, and Tn is either equal to T or infinity.

Let Rn = mink≤n Tk, by Lemma 2.1.5, (Rn) is a sequence of predictable stopping times. It is

immediate that (Rn) is decreasing. If there is some k such that Tk = T , then Rn decreases to

T and is constant from a point onwards. If there is no k such that Tk = T , then T is infinite,

Rn is infinite for all n and thus is equal to T and also constant from a point onwards. By

Lemma 2.1.9, T is a predictable stopping time. �

Solution to exercise 2.4.10. As Lemma 1.2.8 provides that MT is integrable with EMT = 0

for all stopping times T whenever M ∈ Mu, it suffices to prove the converse implication.

However, as all stopping times taking only countably many values are accessible by Exercise

2.4.8, the desired result follows from Exercise 1.5.9. �

Solution to exercise 2.4.11. Let tnk = k2−n for n, k ≥ 0. Fix n ≥ 1 and define a stopping time

Tn by putting Tn =∞ when T =∞ and, for k ≥ 1, Tn = k2−n when tnk−1 < T ≤ tnk . Then

(Tn) is a sequence of stopping times taking values in the dyadic rationals D+ and infinity

and converging downwards to T . By Exercise 2.4.8, each Tn is accessible. This proves the
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result. �

C.3 Solutions for Chapter 3

Solution to exercise 3.5.1. Since XS∧T = (XS)T , we find by Lemma 1.2.7 that XS∧T is in

Mu. As XS∧t +XT∧t = X(S∧T )∧t +X(S∨T )∧t, we find XS∨T = XS +XT −XS∧T , so XS∨T

is in Mu as well, since it is a linear combination of elements in Mu. �

Solution to exercise 3.5.2. If M ∈Mu, we have by Theorem 1.2.6 that MT = E(M∞|FT ) for

all T ∈ C. Therefore, Lemma A.3.6 shows that (MT )T∈C is uniformly integrable. Conversely,

assume that (MT )T∈C is uniformly integrable, we will use Lemma 1.2.8 to show that M ∈M.

Let S be any bounded stopping time, and let (Tn) be a localising sequence with the property

that MTn ∈ Mu. As S is bounded, MTn∧S converges almost surely to MS . As it holds

that (MTn∧S) ⊆ (MT )T∈C , (MTn∧S) is uniformly integrable, and so Lemma A.3.5 shows that

MTn∧S converges in L1 to MS . In particular, EMS = limnEMTn∧S = limnEM
Tn
S = 0

by Theorem 1.2.6. Lemma 1.2.8 then shows that M ∈ M. As (Mt)t≥0 ⊆ (MT )T∈C , M is

uniformly integrable, and so M ∈Mu as well. �

Solution to exercise 3.5.3. Let (Tn) be a localising sequence for M . For t ≥ 0, Fatou’s lemma

yields

EMt = E lim inf
n

MTn
t ≤ lim inf

n
EMTn

t = EM0,

so Mt is integrable for all t ≥ 0. Letting 0 ≤ s ≤ t, we obtain

E(Mt|Fs) = E(lim inf
n

MTn
t |Fs) ≤ lim inf

n
E(MTn

t |Fs) = lim inf
n

MTn
s = Ms,

so M is a supermartingale. �

Solution to exercise 3.5.4. First consider the case where M ∈ Mu. Let Tn = inf{t ≥ 0 |
|Mt| > n}, (Tn) is then a localising sequence. We then obtain

EM∗Tn ≤ n+ E1(Tn<∞)|∆MTn | ≤ n+ E1(Tn<∞)|MTn | ≤ n+ E|MTn |,

which is finite. Thus, (M∗)Tn ∈ Ai and so M∗ ∈ Ai` in this case. Consider the case of a

general element M ∈ M`. Let (Tn) be a localising sequence. From what we already have

shown, there exists for each n ≥ 1 a localising sequence (Tnk)k≥1 such that (M∗)Tnk ∈ Ai.
Let Sn = maxk≤n maxi≤n Tki, then Sn is a localising sequence and (M∗)Sn ∈ Ai, so M∗ ∈ Ai`,
as was to be shown. �
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Solution to exercise 3.5.5. First consider the case where M ∈ Mu. Let T be a predictable

stopping time. By Lemma 3.1.8, it holds that ∆MT is integrable and E(∆MT |FT−) = 0. As

∆Mt ≥ 0, this implies that ∆MT is almost surely zero.

Now consider the case of a general M ∈ M`. Fix a predictable stopping time T . Let (Tn)

be a localising sequence such that MTn ∈ Mu for n ≥ 1. By what we already have shown,

∆MTn
T is almost surely zero. However, ∆MTn

T = 1(T≤Tn)∆MT . Letting n tend to infinity,

this shows that 1(T<∞)∆MT and thus ∆MT is almost surely zero, as desired. �

Solution to exercise 3.5.6. Define Mt = Nt − t. By Theorem 1.2.15, M ∈ M`. Also,

∆M = ∆N ≥ 0. Therefore, by Exercise 3.5.5, ∆MT = 0 almost surely for all predictable

stopping times T . As ∆MTn = 1, we therefore obtain for any predictable stopping time T

that P (T = Tn <∞) ≤ P (∆MT = ∆MTn) = 0, so Tn is totally inaccessible. �

Solution to exercise 3.5.7. Let Tn be the n’th jump time of N , (Tn) is then a localising

sequence and NTn is bounded, therefore NTn ∈ Ai and so N ∈ Ai`. As Nt − t is in M` by

Theorem 1.2.15 and the process (t, ω) 7→ t is predictable as it is continuous, it follows that

Π∗pNt = t. �

Solution to exercise 3.5.8. First consider the case where A ∈ Ai. By Lemma 3.2.4, Π∗pA

is then in Ai as well and A − Π∗pA is in Mu. Letting T be any predictable stopping time,

Lemma 3.1.8 then shows that ∆MT is integrable with E(∆MT |FT−) = 0. As Π∗pA is almost

surely continuous, ∆Mt = ∆AT almost surely. Thus, E(∆AT |FT−) = 0 almost surely, which

implies that ∆AT is almost surely zero.

Now consider the case A ∈ Ai`. Letting (Tn) be a localising sequence, we then find that for

any predictable stopping time T , ∆ATnT is almost surely zero. Letting n tend to infinity, this

implies that ∆AT is almost surely zero. �

Solution to exercise 3.5.9. First consider the case where A ∈ A. Define for n ≥ 1 a mapping

Tn by putting Tn = inf{t ≥ 0 | At ≥ n}, then Tn is a predictable stopping time by Lemma

3.2.6, and it is positive as A has initial value zero. Let (Tnk)k≥1 be a localising sequence, it

then always holds that Tnk < Tn and thus ATnk is bounded by n. Therefore, ATnk ∈ Ai. As

supn supk Tnk = supn Tn =∞, this shows that A ∈ Ai`.

Next, consider the case where A ∈ V. We then have A = A+ − A−, where A+ = 1
2 (VA + A)

and A− = 1
2 (VA − A). By Lemma 1.4.1, A+ and A− are in A. And as VA is càdlàg with

∆VA = |∆A|, Theorem 2.3.9 shows that VA is predictable. Therefore, A+ and A− are both
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predictable, and therefore in Ai`. As a consequence, A is in Vi`, as desired. �

Solution to exercise 3.5.10. We first note that with Tn denoting the n’th jump time of

N , both NTn
− and NTn are bounded, so both

∫ t
0
Ns− dMs and

∫ t
0
Ns dMs are well-defined.

Furthermore, as N− is adapted and left-continuous, it is predictable. Therefore, Lemma 3.3.2

shows that
∫ t

0
Ns− dMs is in M`. It remains to argue that the process

∫ t
0
Ns dMs is not in

M`. To this end, assume that
∫ t

0
Ns dMs in fact is in M`, we seek a contradiction. First

note that for all stopping times S, it holds that∣∣∣∣∣
∫ S∧Tn

0

Ns dMs

∣∣∣∣∣ ≤
∫ S∧Tn

0

|Ns|d(VM )s ≤ NTn(NTn + Tn) = n(n+ Tn),

and similarly, |
∫ S∧Tn

0
Ns− dMs| ≤ n(n+ Tn). As Tn is integrable, Exercise 3.5.2 shows that∫ t∧Tn

0
Ns dNs and

∫ t∧Tn
0

Ns− dNs are in Mu. However, we have∫ Tn

0

Ns dMs =

∫ Tn

0

Ns− dMs +

∫ Tn

0

∆Ns dMs

=

∫ Tn

0

Ns− dMs +
∑

0<s≤Tn

∆Ns∆Ms

=

∫ Tn

0

Ns− dMs + n,

which by the uniformly integrable martingale property implies E
∫ Tn

0
Ns dMs = n, a contra-

diction. We conclude that the process
∫ t

0
Ns dMs is not in M`. �

Solution to exercise 3.5.11. Fix λ > 0. As A has a single jump of size one at T , we have

E exp(−λΠ∗pAT ) = E

∫ ∞
0

exp(−λΠ∗pAs) dAs.

Next, note that by Lemma 3.2.10, Π∗pA is almost surely continuous and has initial value

zero. Therefore, exp(−λΠ∗pAs) is almost surely integrable with respect to any finite variation

process and so, by Lemma 3.3.2,
∫ t

0
exp(−λΠ∗pAs) d(A − Π∗pA)s is in M`. As Π∗pA ∈ Ai,

we have exp(−λΠ∗pAs) ≤ 1, and so the proof of Lemma 3.3.2 demonstrates that the integral

process is in Mu, yielding

E

∫ ∞
0

exp(−λΠ∗pAs) dAs = E

∫ ∞
0

exp(−λΠ∗pAs) dΠ∗pAs.

Next, note that as AT = A, it holds that A−Π∗pA
T is inMu, and from this we conclude that

EΠ∗pAT = EA∞ = EΠ∗pA∞. As Π∗pAT ≤ Π∗pA∞, this implies Π∗pA∞ = Π∗pAT almost surely.
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Putting βs = inf{t ≥ 0 | Π∗pAt ≥ s}, we then obtain (βs < ∞) = (s ≤ Π∗pAT ). Applying

Lemma A.2.14 and continuity of Π∗pA, we then obtain∫ ∞
0

exp(−λΠ∗pAs) dΠ∗pAs =

∫ ∞
0

exp(−λΠ∗pAβs)1(βs<∞) ds

=

∫ Π∗pAT

0

exp(−λs) ds =

[
− 1

λ
exp(−λs)

]s=Π∗pAT

s=0

=
1

λ
− 1

λ
E exp(−λΠ∗pAT ).

Collecting our conclusions and rearranging, this yields

E exp(−λΠ∗pAT ) =
1

λ

(
1 +

1

λ

)−1

=
1

1 + λ
,

which is the Laplace transform of the exponential distribution. �

Solution to exercise 3.5.12. By Lemma 3.3.8, we have

[MT −MS ] = [MT ]− 2[MT ,MS ] + [MS ] = [M ]T − 2[M ]S + [MS ] = [M ]T − [M ]S .

Therefore, if [M ]S = [M ]T almost surely, we obtain that [MT −MS ]∞ is almost surely zero.

As [MT −MS ] is increasing, this implies that [MT −MS ] is evanescent, and so by Lemma

3.3.8, MT = MS almost surely. �

Solution to exercise 3.5.13. Put Un =
∑2n

k=1(Wtnk
−Wtnk−1

)2, we need to show that Un
P−→ t.

By the properties of the Brownian motion W , the variables Wtnk
−Wtnk−1

are independent and

normally distributed with mean zero and variance t2−n. Defining the variables Znk by putting

Znk = ( 1√
t2−n

(Wtnk
−Wtnk−1

))2, we find that Znk , k = 1, . . . , 2n are independent and distributed

as an χ2 distribution with one degree of freedom, and we have Un = t2−n
∑2n

k=1 Z
n
k . As

EZnk = 1 and V Znk = 2, we then obtain EUn = t and V Un = (t2−n)2
∑2n

k=1 2 = 2t22−n. In

particular, Chebychev’s inequality yields for any ε > 0 that

lim
n→∞

P (|Un − t| > ε) ≤ 1
ε2 lim
n→∞

E(Un − t)2 = 1
ε2 lim
n→∞

V Un = 1
ε2 2t2 lim

n→∞
2−n = 0,

which proves that Un
P−→ t, as desired. The two convergences in probability then follow from

the equalities

W 2
t = 2

2n∑
k=1

Wtnk−1
(Wtnk

−Wtnk−1
) +

2n∑
k=1

(Wtnk
−Wtnk−1

)2

= 2

2n∑
k=1

Wtnk
(Wtnk

−Wtnk−1
)−

2n∑
k=1

(Wtnk
−Wtnk−1

)2,



C.4 Solutions for Chapter 4 195

by rearrangement and letting n tend to infinity. �

Solution to exercise 3.5.14. First assume that M ∈ M2
` . Let Tn be a localising sequence

such that MTn ∈ M2. By Theorem 3.3.10, [MTn ] ∈ Ai and therefore, by Lemma 3.3.8,

[M ]Tn ∈ Ai. Therefore, [M ] ∈ Ai`.

Conversely, assume that [M ] ∈ Ai` and let (Tn) be a localising sequence such that [M ]Tn ∈ Ai.
As [MTn ] = [M ]Tn by Lemma 3.3.8, we obtain [MTn ] ∈ Ai and thus MTn ∈M2 by Theorem

3.3.10. This yields M ∈M2
` , as desired. �

Solution to exercise 3.5.15. Let (Tn) be a localising sequence such that MTn ∈ M2 and

NTn ∈ M2. By Theorem 3.3.10, [MTn , NTn ] ∈ Vi. By Lemma 3.3.8, this implies that

[M,N ]Tn ∈ Vi, so that [M,N ] ∈ Vi`. �

Solution to exercise 3.5.16. If M is evanescent, Lemma 3.3.8 shows that [M ] is evanescent,

so 〈M〉 is evanescent as well. Conversely, assume that 〈M〉 is evanescent. This implies that

[M ] ∈ M`. Let (Tn) be a localising sequence such that [M ]Tn is in Mu, we then obtain

E[M ]Tn = 0 and thus [M ]Tn is almost surely zero. Letting n tend to infinity, this implies

that [M ] is evanescent and thus M is evanescent by Lemma 3.3.8. �

Solution to exercise 3.5.17. By Lemma 3.4.4, we have

[M ]t =
∑

0<s≤t

(∆Ms)
2 =

∑
0<s≤t

(∆Ns)
2 =

∑
0<s≤t

∆Ns = Nt,

as desired. �

Solution to exercise 3.5.18. By Lemma 3.4.6, there exists Md ∈ dM2 with ∆Md = ∆M

almost surely. Letting M c be a continuous modification of M −Md, it is immediate that

M c ∈ cM2 and M = M c +Md almost surely. �

C.4 Solutions for Chapter 4

Solution to exercise 4.4.1. Assume given two decompositions X = X0 + M + A and X =

X0 + N + B, where M,N ∈ M` and A,B ∈ V with A and B predictable. Then M −N =

B − A, where M − N ∈ M` and B − A ∈ V and B − A is predictable. Thus, M − N is a

predictable element of M`, thus evanescent by Theorem 3.1.9. It follows that M and N are

indistinguishable and A and B are indistinguishable, as desired. �
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Solution to exercise 4.4.2. First assume that X ∈ Sp, such that X = M +A where M ∈M`

and A ∈ V is predictable. By Exercise 3.5.4, M∗ ∈ Ai`, and by Lemma 4.2.3, A∗ ∈ Ai`. As

X∗ ≤M∗ +A∗, it follows that X∗ ∈ Ai` as well.

Conversely, assume that X∗ ∈ Ai`. Let X = M + A where M ∈ M` and A ∈ V. As

M∗ ∈ Ai` by Exercise 3.5.4, we conclude that A∗ ∈ Ai` as well. Therefore, A ∈ Vi`, and so the

compensator of A is well-defined. We may then write X = M + (A − Π∗pA) + Π∗pA, where

M + (A−Π∗pA) ∈M` and Π∗pA is a predictable element of V, proving that X ∈ Sp. �

Solution to exercise 4.4.3. If X ∈ Sp, we have X = X0 + M + A where M ∈ M` and A is

predictable in V. Then XT = X0 +MT +AT for any stopping time T , where MT ∈M` by

Lemma 3.1.3 and A is predictable by Lemma 2.2.8. Therefore, taking for example Tn = n,

we obtain that (Tn) is a localising sequence such that XTn ∈ Sp for all n ≥ 1.

Conversely, assume that (Tn) is a localising sequence with XTn ∈ Sp for all n ≥ 1. We

then obtain XTn = X0 + Mn + An, where Mn ∈ M` and An ∈ V with An predictable. By

Exercise 4.4.1, we obtain that (An+1)Tn = An almost surely. Therefore, we may paste the

processes An together to a process A which is a predictable element of V such that for all

n ≥ 1, ATn = An almost surely. Likewise, the processes Mn may be pasted together to a

process M ∈M` satisfying MTn = Mn. We now have X = X0 +M+A almost surely, where

M ∈ M` and A ∈ V with A predictable. Letting N = X − X0 −M − A, we obtain that

N ∈M`, so X = X0 + (M +N) +A and we conclude X ∈ Sp. �

Solution to exercise 4.4.4. If X = X0 + M + A with M ∈ cM` and A ∈ V, it is immediate

that X is predictable. Assume conversely that X is predictable. Put Y = X −X0, Y is then

predictable as well. By Lemma 4.2.3, Y ∗ ∈ Ai`, and so Exercise 4.4.2 shows that Y ∈ Sp.
This yields Y = M +A where A is predictable, and so M is predictable. By Theorem 3.1.9,

M is then almost surely continuous. Thus, we obtain X = X0 + M + A where M ∈ M` is

almost surely continuous and A ∈ V with A predictable. �

Solution to exercise 4.4.5. First assume that X = X0 +M +A with M ∈M` almost surely

continuous. Then ∆X = ∆A almost surely. As A ∈ V, it almost surely holds for all t ≥ 0

that
∑

0<s≤t |∆As| and thus
∑

0<s≤t |∆Xs| is almost surely convergent.

Conversely, assume that for all t ≥ 0,
∑

0<s≤t |∆Xs| is almost surely convergent. As A ∈ V,

we also have that for all t ≥ 0,
∑

0<s≤t |∆Xs| is almost surely convergent. Therefore, for all

t ≥ 0,
∑

0<s≤t |∆Ms| is almost surely convergent, yielding ∆M ∈ V. Recall by Theorem 3.4.7

that M = M c +Md almosts surely for some M c ∈ cM` and Md ∈ dM`. As ∆Md = ∆M c,
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Theorem 3.4.11 shows that Md ∈ fvM` ⊆ V. We may thus decompose

X = X0 +M c + (Md +A)

almost surely, where Md +A ∈ V. Modifying M c on a null set, we obtain the result. �

Solution to exercise 4.4.6. It is immediate that if X = X0 +M+A with M and A continuous,

then X is continuous as well. Conversely, assume that X is continuous. We then obtain

∆M = −∆A, so Theorem 3.4.11 yieldsMd ∈ fvM`. We then obtainX = X0+M c+(Md+A)

almost surely, where Md + A ∈ V. Modifying M c and Md + A on a null set, we obtain the

result. �

Solution to exercise 4.4.7. First consider the case where M ∈ Mu. We always have the

relationship MT− = MT −∆MT 1[[T,∞[[. Here, MT ∈M` by Lemma 3.1.3 and ∆MT 1[[T,∞[[ ∈
M` by Lemma 3.1.8 and Lemma 3.2.10. This proves the result in the case where M ∈ Mu.

Now consider the case M ∈ M`. Let (Tn) be a localising sequence such that MTn ∈ Mu.

We then obtain

(MT−)Tnt = MT
t∧Tn −∆MT 1(t∧Tn≥T )

= (MTn)Tt −∆MT 1(t≥T )1(Tn≥T )

= (MTn)Tt −∆MTn
T 1(t≥T ) = (MTn)T−,

and so, by what we already have shown, (MT−)Tn ∈M`, yielding MT− ∈M`. �

Solution to exercise 4.4.8. By Theorem 4.2.8 and Lemma 4.2.11, we find that H ·M ∈ M`

and [H ·M ] = H2 · [M ]. Therefore, Theorem 3.3.10 yields the result. �

Solution to exercise 4.4.9. By Exercise 4.4.8, we have that (H ·M)t is inM2 for all t ≥ 0 and

that E(H ·M)2
t = E

∫ t
0
H2
s d[M ]s for all t ≥ 0. In particular, this shows that H ·M ∈M. �

Solution to exercise 4.4.10. As [W ]t = t by Theorem 3.3.6, this is immediate from Exercise

4.4.8 and Exercise 4.4.9. �

Solution to exercise 4.4.11. As A−Π∗pA is inM` by Theorem 3.2.3, H · (A−Π∗pA) is inM`

by Theorem 4.2.8, so the result follows by Theorem 3.2.3. �

Solution to exercise 4.4.12. Put Mt = Nt − t, then M ∈ M` by Theorem 1.2.15, and so by

Theorem 4.2.8, H ·M ∈M`. Using Lemma 4.2.11 and Theorem 4.2.9, we have

(H ·M)t =

∫ t

0

Hs dNs −
∫ t

0

Hs ds =

Nt∑
k=1

HTk −
∫ t

0

Hs ds,
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and thus,

1

t

∫ t

0

Hs ds =
1

t
(H ·M)t +

Nt
t

1

Nt

Nt∑
k=1

HTk .

Now let c > 0 be a bound for H and note that [H ·M ]t =
∫ t

0
H2
s d[M ]s ≤ c2Nt. Therefore,

E[H ·M ]t is finite for all t > 0 and so, by Exercise 4.4.9, E(H ·M)2
t = E[H ·M ]t ≤ c2Nt,

and so

E

(
1

t
(H ·M)t

)2

=
1

t2
E(H ·M)2

t ≤
c2

t2
ENt =

c2

t
,

proving that 1
t (H ·M)t converges in probability to zero as t tends to infinity. As we also have

E

(
Nt
t
− 1

)2

=
1

t2
E(Nt − t)2 =

1

t2
E[M ]t =

1

t
,

we conclude that Nt/t
P−→ 1. Collecting our conclusions, the result follows. �

Solution to exercise 4.4.13. As A has zero continuous martingale part, it is immediate that

almost surely for all t ≥ 0, [M,A]t =
∑

0<s≤t ∆Ms∆As.

It remains to show that [M,A] ∈ M`. By Theorem 3.3.1, it suffices to prove this in the

cases M ∈ Mb
` and M ∈ fvM`. If M ∈ fvM`, we have [M,A]t =

∫ t
0

∆As dMs. Note that

∆A is predictable, and by arguments similar to those employed in the solution of Exercise

3.5.9, locally bounded. Therefore, Lemma 3.3.2 yields the result in this case. It remains to

consider the case M ∈Mb
`.

To this end, we first consider the case where M ∈ Mb and A ∈ Ai with A predictable.

In this case, ∆M is almost surely integrable on [0,∞) with respect to A, and as it holds

that
∑

0<s≤t |∆Ms∆As| =
∫ t

0
|∆Ms|dAs, this implies [M,A] ∈ Vi. For each t ≥ 0, define

Tt = inf{s ≥ 0|As ≥ t}. By Lemma 3.2.6, Tt is a predictable stopping time. In particular, as

(Tt < ∞) is in FTt , Lemma 3.1.8 shows that E∆MTt1(Tt<∞) = 0 and so, applying Lemma

A.2.14, we obtain

E[M,A]∞ = E

∫ ∞
0

∆Mt dAt = E

∫ ∞
0

∆MTt1(Tt<∞) dt =

∫ ∞
0

E∆MTt1(Tt<∞) dt = 0.

By Lemma 2.2.8, AT is also predictable for any stopping time T , so the above yields

E[M,A]T = E[M,AT ]∞ = 0 for all stopping times T , and so Lemma 1.2.8 shows that

[M,A] is in Mu in this case.

Next, consider the case where M ∈ Mb
` and A ∈ A with A predictable. By Lemma 4.2.3,

there is a localising sequence (Tn) such that MTn ∈Mb and ATn ∈ Ai. We then obtain that

[M,A]Tn = [MTn , ATn ] ∈M`, so [M,A] ∈M` as well.
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Finally, consider the case where M ∈Mb
` and A ∈ V with A predictable. Then A = A+−A−

with A+ = 1
2 (VA + A) and A− = 1

2 (VA − A) where A+, A− ∈ A and both processes are

predictable. We thus have [M,A+], [M,A−] ∈M` and so [M,A] = [M,A+]− [M,A−] ∈M`,

as desired. �

Solution to exercise 4.4.14. Note that as A ∈ Vi and M ∈ Mb, it holds that M · A is in Vi,
so the compensator of

∫ t
0
Ms dAs is well-defined. Furthermore,

∫ t

0

Ms dAs −
∫ t

0

Ms− dAs =

∫ t

0

∆Ms dAs =
∑

0<s≤t

∆Ms∆As,

and the latter is in M` by Exercise 4.4.13. Therefore, Theorem 3.2.3 yields the result. �

Solution to exercise 4.4.15. Note that as X and H are semimartingales, it holds that the

sum
∑

0<s≤t ∆Hs∆Xs almost surely is absolutely convergent for all t ≥ 0 by Lemma 4.1.11.

Let X = X0 +M + A be a decomposition of X, where M ∈ M` and A ∈ V. Lemma 4.2.11

and Theorem 4.2.9 then yields

∫ t

0

∆Hs dXs =

∫ t

0

∆Hs dMs +

∫ t

0

∆Hs dAs

=

∫ t

0

∆Hs dMs +
∑

0<s≤t

∆Hs∆As.

Also, by Exercise 4.4.4, H = X0 + N + B almost surely where N ∈ cM` and B ∈ V with

B predictable. We then obtain
∫ t

0
∆Hs dMs =

∫ t
0

∆Bs dMs. Note that for any N ∈ cM`,

[∆B ·M,N ] = ∆B · [M,N ] = 0 as [M,N ] is continuous. Thus, ∆B ·M ∈ dM`. Next, put

Lt =
∑

0<s≤t ∆Bs∆Ms. By Exercise 4.4.13, L ∈ M`. Furthermore, as L has paths of finite

variation, L ∈ dM` as well by Lemma 3.4.5. Finally, note that ∆(∆B ·M) = ∆M∆M = ∆L.

Combining our conclusions, Lemma 3.4.3 shows that L − ∆B · M is evanescent so that

∆B ·M = L. Recalling our earlier observations, we may now conclude

∫ t

0

∆Hs dXs =
∑

0<s≤t

∆Bs∆Ms +
∑

0<s≤t

∆Hs∆As =
∑

0<s≤t

∆Hs∆Xs,

as desired. �

Solution to exercise 4.4.16. Note that the conclusion is well-defined, as Wt+h−Wt is almost

surely never zero. To show the result, first note that Lemma 4.2.11 yields, up to indistin-
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guishability,∫ t+h

t

Hs dWs =

∫ t+h

t

Hs1[[t,∞[[ dWs =

∫ t+h

t

Ht1[[t,∞[[ dWs +

∫ t+h

t

(Hs −Ht)1[[t,∞[[ dWs

= Ht(Wt+h −Wt) +

∫ t+h

t

(Hs −Ht)1[[t,∞[[ dWs,

where the indicators [[t,∞[[ are included as a formality to ensure that the integrals are well-

defined. Therefore, it suffices to show that (Wt+h−Wt)
−1
∫ t+h
t

(Hs−Ht)1[[t,∞[[ dWs converges

in probability to zero as h tends to zero. To this end, let c be a bound for H and note that

by Exercise 4.4.10, we have

E

(
1√
h

∫ t+h

t

(Hs −Ht)1[[t,∞[[ dWs

)2

=
1

h
E

∫ t+h

t

(Hs −Ht)
2 ds.

As H is bounded and continuous, the dominated convergence theorem shows that the above

tends to zero as h tends to zero. Thus, 1√
h

∫ t+h
t

(Hs − Ht)1[[t,∞[[ dWs tends to zero in L2.

Now fix δ,M > 0. With Yh = 1√
h

∫ t+h
t

(Hs −Ht)1[[t,∞[[ dWs, we have

P

(∣∣∣∣∣(Wt+h −Wt)
−1

∫ t+h

t

(Hs −Ht)1[[t,∞[[ dWs

∣∣∣∣∣ > δ

)

≤ P

(∣∣∣∣∣
√
h

Wt+h −Wt
Yh

∣∣∣∣∣ > δ,

∣∣∣∣∣
√
h

Wt+h −Wt

∣∣∣∣∣ ≤M
)

+ P

(∣∣∣∣∣
√
h

Wt+h −Wt

∣∣∣∣∣ > M

)

≤ P

(
|Yh| >

δ

M

)
+ P

(∣∣∣∣∣
√
h

Wt+h −Wt

∣∣∣∣∣ > M

)
.

Here, P (
√
h(Wt+h−Wt)

−1 > M) does not depend on h, as (Wt+h−Wt)(
√
h)−1 is a standard

normal distribution. For definiteness, we define ϕ(M) = P (
√
h(Wt+h −Wt)

−1 > M). The

above then allows us to conclude

lim sup
h→∞

P

(∣∣∣∣∣(Wt+h −Wt)
−1

∫ t+h

t

(Hs −Ht)1[[t,∞[[ dWs

∣∣∣∣∣ > δ

)
≤ ϕ(M),

and letting M tend to infinity, we obtain the desired result. �

Solution to exercise 4.4.17. For q > p, we have

2n∑
k=1

|Xtnk
−Xtnk−1

|q ≤
(

max
k≤2n

|Xtnk
−Xtnk−1

|q−p
) 2n∑
k=1

|Xtnk
−Xtnk−1

|p.

As X has continuous paths, the paths of X are uniformly continuous on [0, t]. In particular,

maxk≤2n |Xtnk
− Xtnk−1

|q−p converges almost surely to zero. Therefore, this variable also
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converges to zero in probability, and so
∑2n

k=1 |Xtnk
−Xtnk−1

|q converges in probability to zero,

as was to be proven. �

Solution to exercise 4.4.18. First, consider the case where H = 1
2 . In this case, X is a process

whose finite-dimensional distributions are normally distributed with mean zero and with the

property that for any s, t ≥ 0, EXsXt = 1
2 (t+s−|t−s|). For a Brownian motion W , we have

that when 0 ≤ s ≤ t, EWsWt = EWs(Wt −Ws) +EW 2
s = EWsE(Wt −Ws) +EW 2

s = s. In

this case, |t − s| = t − s, and so EWsWt = 1
2 (t + s − |t − s|). In the case where 0 ≤ t ≤ s,

EWsWt = t = 1
2 (t + s + (t − s)) = 1

2 (t + s − |t − s|) as well. Thus, X and W are processes

whose finite-dimensional distributions are normally distributed and have the same mean

and covariance structure. Therefore, their distributions are the same, and so X has the

distribution of a Brownian motion.

In order to show that X is not in cS when H 6= 1
2 , we first fix t ≥ 0 and consider the sum∑2n

k=1 |Xtnk
− Xtnk−1

|p for p ≥ 0. Understanding the convergence of such sums will allow us

to prove our desired result. We know that the collection of variables Xtnk
− Xtnk−1

follows

a multivariate normal distribution with E(Xtnk
− Xtnk−1

) = 0 and, using the property that

EXsXt = 1
2 (t2H + s2H − |t− s|2H), we obtain

E(Xtnk
−Xtnk−1

)(Xtni
−Xtni−1

) = EXtnk
Xtni
− EXtnk

Xtni−1
− EXtnk−1

Xtni
+ EXtnk−1

Xtni−1

= 2−2nH 1
2 (|k − i+ 1|2H + |k − 1− i|2H − 2|k − i|2H).

Here, the parameter n only enters the expression through the constant multiplicative factor

2−2nH . Therefore, as normal distributions are determined by their covariance structure, it

follows that the distribution of the variables (Xtnk
− Xtnk−1

) for k ≤ 2n is the same as the

distribution of the variables 2−nH(Xk −Xk−1) for k ≤ 2n. In particular, it follows that the

distributions of
∑2n

k=1 |Xtnk
−Xtnk−1

|p and 2−npH
∑2n

k=1 |Xk −Xk−1|p are the same. We wish

to apply the ergodic theorem for stationary processes to the sequence (Xk −Xk−1)k≥1. To

this end, we first check that this sequence is in fact stationary. To do so, we need to check

for any m ≥ 1 that the variables Xk − Xk−1 for k ≤ n have the same distribution as the

variables Xm+k −Xm+k−1 for k ≤ n. As both families of variables are normally distributed

with mean zero, it suffices to check that the covariance structure is the same. However, by

what we already have shown,

E(Xk −Xk−1)(Xtni
−Xi−1)

= 1
2 (|k − i+ 1|2H + |k − 1− i|2H − 2|k − i|2H)

= E(Xm+k −Xm+k−1)(Xtnm+i
−Xm+i−1).

This allows us to conclude that the sequence (Xk−Xk−1)k≥1 is stationary. As E|Xk−Xk−1|p

is finite, the ergodic theorem shows that 1
n

∑n
k=1 |Xk −Xk−1|p converges almost surely and
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in L1 to some variable Zp, where Zp is integrable and EZp = E|X1 − X0|p = E|X1|p > 0.

This property ensures that Zp is not almost surely zero. Next, we observe that we have

2−npH
∑2n

k=1 |Xk −Xk−1|p = 2n(1−pH)( 1
2n

∑2n

k=1 |Xk −Xk−1|p), where we have just checked

that the latter factor always converges almost surely and in L1 to Zp. Having this result at

hand, we are ready to prove that X is not in cS when H 6= 1
2 .

First consider the case where H < 1
2 . In this case, 1

H > 2. If X ∈ cS, we have that∑2n

k=1 |Xtnk
−Xtnk−1

|2 converges in probability to [X]t. Therefore, by Exercise, 4.4.17, we find

that
∑2n

k=1 |Xtnk
− Xtnk−1

| 1H converges to zero in probability. As
∑2n

k=1 |Xtnk
− Xtnk−1

| 1H has

the same distribution as 1
2n

∑2n

k=1 |Xk −Xk−1|
1
H , we conclude that this sequence converges

to zero in probability. However, this is in contradiction with what we have already shown,

namely that this sequence converges in probability to a variable Z 1
H

which is not almost

surely zero. We conclude that in the case H < 1
2 , X cannot be in cS.

Next, consider the case H > 1
2 . Again, we assume that X ∈ cS and hope for a contradiction.

In this case, 1 − 2H < 0, so 2n(1−2H) converges to zero and so, by our previous results,

2n(1−2H)( 1
2n

∑2n

k=1 |Xk − Xk−1|2) converges to zero in probability. Therefore, we find that∑2n

k=1 |Xtnk
− Xtnk−1

|2 converges to zero in probability as well, since this sequence has the

same distribution as the previously considered sequence. By Theorem 4.3.3, this implies

[X]t = 0 almost surely. As t ≥ 0 was arbitrary, we conclude that [X] is evanescent. With

X = M + A being the decomposition of X into its continuous local martingale part and its

continuous finite variation part, we have [X] = [M ], so [M ] is evanescent and so by Lemma

3.3.8, M is evanescent. Therefore, X almost surely has paths of finite variation. In particular,∑2n

k=1 |Xtnk
−Xtnk−1

| is almost surely convergent, in particular convergent in probability. As

H < 1, we have 1
H > 1, so by Exercise 4.4.17,

∑2n

k=1 |Xtnk
−Xtnk−1

| 1H converges in probability

to zero. Therefore, 1
2n

∑2n

k=1 |Xk − Xk−1|
1
H converges to zero in probability as well. As in

the previous case, this is in contradiction with the fact that that this sequence converges in

probability to a variable Z 1
H

which is not almost surely zero. We conclude that in the case

H < 1
2 , X cannot be in cS either. �

Solution to exercise 4.4.19. By Itô’s formula of Theorem 4.3.5 and Theorem 3.3.6, we have

f(Wt)− f(0) =

p∑
i=1

∫ t

0

∂f

∂xi
(Ws) dW i

s +
1

2

p∑
i=1

p∑
j=1

∫ t

0

∂2f

∂xi∂xj
(Ws) d[W i,W j ]s

=

p∑
i=1

∫ t

0

∂f

∂xi
(Ws) dW i

s +
1

2

p∑
i=1

∫ t

0

∂2f

∂xi∂xj
(Ws) ds,

and by our assumptions on f , this is equal to
∑p
i=1

∫ t
0
∂f
∂xi

(Ws) dW i
s , since the second term
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vanishes. Here,
∑p
i=1

∫ t
0
∂f
∂xi

(Ws) dW i
s is in cM`. Therefore, f(Wt)− f(0) is in cM` and so

f(Wt) is a continuous local martingale. �

Solution to exercise 4.4.20. Define the two-dimensional process X by putting Xt = (t,Wt).

With At = t, we have [A,W ]t = 0, so Itô’s formula of Theorem 4.3.5 shows

f(t,Wt)− f(0, 0) =

∫ t

0

∂f

∂t
(s,Ws) ds+

∫ t

0

∂f

∂x
(s,Ws) dWs +

1

2

∫ t

0

∂2f

∂x2
(s,Ws) ds

=

∫ t

0

∂f

∂t
(s,Ws) +

1

2

∂2f

∂x2
(s,Ws) ds+

∫ t

0

∂f

∂x
(s,Ws) dWs,

which is equal to
∫ t

0
∂f
∂x (s,Ws) dWs by our assumptions on f , and this is in cM`. Therefore,

f(t,Wt) is a continuous local martingale, and f(t,Wt) = f(0, 0) +
∫ t

0
∂f
∂x (s,Ws) dWs. �

Solution to exercise 4.4.21. As f is adapted and continuous, f ∈ I by Lemma 4.2.4.

Put tnk = kt2−n. By Theorem 4.3.2, we find that
∑2n

k=1 f(tnk−1)(Wtnk
− Wtnk−1

) converges

in probability to
∫ t

0
f(s) dWs. However, the finite sequence of variables Wtnk

− Wtnk−1
for

k = 1, . . . , 2n are independent and normally distributed with mean zero and variance t2−n.

Therefore, we find that
∑2n

k=1 f(tnk−1)(Wtnk
−Wtnk−1

) is normally distributed with mean zero

and variance t2−n
∑2n

k=1 f(tnk−1)2. As f is continuous, this converges to
∫ t

0
f(s)2 ds. There-

fore,
∑2n

k=1 f(tnk−1)(Wtnk
− Wtnk−1

) converges weakly to a normal distribution with mean

zero and variance
∫ t

0
f(s)2 ds. As this sequence of variables also converges in probability

to
∫ t

0
f(s) dWs, and convergence in probability implies weak convergence, we conclude by

uniqueness of limits that
∫ t

0
f(s) dWs follows a normal distribution with mean zero and vari-

ance
∫ t

0
f(s)2 ds. �

Solution to exercise 4.4.22. First note that by Theorem 4.3.5, f(X) and g(Y ) are semi-

martingales, so the quadratic covariation is well-defined. By construction, we have

[f(X), g(Y )]t = [f(X)c, g(Y )c]t +
∑

0<s≤t

∆f(Xs)∆g(Ys).

Furthermore, by Theorem 4.3.5, we obtain

f(Xt) = f(X0) +

∫ t

0

f ′(Xs−) dXs +
1

2

∫ t

0

f ′′(Xs−) d[X]s + ηt,

up to indistinguishability, where η is in V. From this, we see that the continuous martingale

part of f(X) is f ′(X−) ·Xc. Similarly, the continuous martingale part of g(Y ) is g′(Y−) ·Y c.
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Applying Lemma 4.2.11, we thus obtain

[f(X), g(Y )]t = [f ′(X−) ·Xc, g′(Y−) · Y c]t +
∑

0<s≤t

∆f(Xs)∆g(Ys)

=

∫ t

0

f ′(Xs−)g′(Ys−) d[Xc, Y c]s +
∑

0<s≤t

∆f(Xs)∆g(Ys)

=

∫ t

0

f ′(Xs)g
′(Ys) d[Xc, Y c]s +

∑
0<s≤t

∆f(Xs)∆g(Ys),

where we also have used that [Xc, Y c] is continuous, so changing the integrand in countably

many points does not change the value of the integral. This shows in particular that with W

an Ft Brownian motion, [W p]t =
∫ t

0
(pW p−1

s )2 d[W ]s = p2
∫ t

0
W

2(p−1)
s ds. �

Solution to exercise 4.4.23. In the case where i = j, we may apply Itô’s formula with the

function f : R → R defined by f(x) = x2 and obtain (W i)2
t = 2

∫ t
0
W i
s dW i

s + t. Lemma

4.1.13 then shows that [(W i)2]t = 4[W i ·W i]t = 4
∫ t

0
(W i

s)
2 ds. Next, consider the case where

i 6= j. Applying Itô’s formula with the function f : R2 → R defined by f(x, y) = xy, we have

W i
tW

j
t =

∫ t

0

W i
s dW j

s +

∫ t

0

W j
s dW i

s .

Using Lemma 4.1.13 and Lemma 4.2.11, we then obtain

[W iW j ]t = [W i ·W j ]t + 2[W i ·W j ,W j ·W i]t + [W j ·W i]t

=

∫ t

0

(W i
s)

2 ds+ 2

∫ t

0

W i
sW

j
s d[W i,W j ]s +

∫ t

0

(W j
s )2 ds

=

∫ t

0

(W i
s)

2 ds+

∫ t

0

(W j
s )2 ds.

�

Solution to exercise 4.4.24. By Theorem 4.3.3, we know that
∑2n

k=1(Mtk−Mtk−1
)2 converges

to [M ]t in probability. Therefore, by Lemma A.3.5, we have convergence in L1 if and only

if the sequence of variables is uniformly integrable. To show uniform integrability, it suffices

by Lemma A.3.4 to show boundedness in L2. To prove this, we first note the relationship

E(
∑2n

k=1(Mtk−Mtk−1
)2)2 = E

∑2n

k=1(Mtk−Mtk−1
)4 +E

∑
k 6=i(Mtk−Mtk−1

)2(Mti−Mti−1
)2.

With C ≥ 0 being a constant such that |Mt| ≤ C for all t ≥ 0, we may use the martingale
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property to obtain

E

2n∑
k=1

(Mtk −Mtk−1
)4 ≤ 4C2

2n∑
k=1

E(Mtk −Mtk−1
)2

= 4C2
2n∑
k=1

EM2
tk

+ EM2
tk−1
− 2EMtkMtk−1

= 4C2
2n∑
k=1

EM2
tk
− EM2

tk−1
≤ 4C4.

Furthermore, we have by symmetry that

E
∑
k 6=i

(Mtk −Mtk−1
)2(Mti −Mti−1

)2 = 2E

2n−1∑
k=1

2n∑
i=k+1

(Mtk −Mtk−1
)2(Mti −Mti−1

)2,

and this is equal to 2E
∑2n−1
k=1 (Mtk − Mtk−1

)2
∑2n

i=k+1E((Mti − Mti−1
)2|Ftk), since M is

adapted. Here, we may apply the martingale property to obtain

2n∑
i=k+1

E((Mti −Mti−1
)2|Ftk) =

2n∑
i=k+1

E(M2
ti − 2MtiMti−1

+M2
ti−1
|Ftk)

=

2n∑
i=k+1

E(M2
ti −M

2
ti−1
|Ftk) = E(M2

t −M2
tnk
|Ftk) ≤ C2,

which finally yields

E
∑
k 6=i

(Mtk −Mtk−1
)2(Mti −Mti−1

)2 ≤ 2C2E

2n−1∑
k=1

(Mtk −Mtk−1
)2

= 2C2
2n−1∑
k=1

E(M2
tk
− 2MtkMtk−1

+M2
tk−1

)

= 2C2
2n−1∑
k=1

EM2
tk
− EM2

tk−1
≤ 2C4.

Thus, we conclude E(
∑2n

k=1(Mtk −Mtk−1
)2)2 ≤ 6C4, and so the sequence is bounded in L2.

From our previous deliberations, we may now conclude that
∑2n

k=1(Mtk −Mtk−1
)2 converges

in L1 to [M ]t. �
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Stoch. Anal. and Appl, 2005, Vol 22, number 4, pages 843-866.

O. Kallenberg: Foundations of Modern Probability, Springer-Verlag, 2002.

I. Karatzas & S. E. Shreve: Brownian Motion and Stochastic Calculus, 2nd edtion, Springer,

1991.

D. Pollard: A User’s Guide to Measure Theoretic Probability, Cambridge University Press,

2002.

P. Protter: Stochastic integration and differential equations, 2nd edition, Springer-Verlag,

2005.

L. C. G. Rogers & D. Williams: Diffusions, Markov processes and Martingales, Volume 1:

Foundations, 2nd edition, Cambridge University Press, 2000.

L. C. G. Rogers & D. Williams: Diffusions, Markov processes and Martingales, Volume 2:
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Fubini’s theorem, 143

Fundamental theorem of local martingales, 77
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Itô’s formula, 122

Jordan-Hahn decomposition, 136

Kernel, 141

Komatsu’s lemma, 20
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Local martingale, 64
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decomposition of, 91
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purely discontinuous, 88

Martingale, 12

convergence, 15, 25
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local, 64

optional sampling, 17

square-integrable, 24

stopped, 19
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Poisson process, 23
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usual conditions, 2
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existence, 29, 81
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properties, 84, 102

semimartingale, 101

structure of, 93

Riesz’ representation theorem, 27

Semimartingale, 98

continuous martingale part, 100

quadratic variation, 101

Signed measure, 136

Stochastic integral

and the Lebesgue integral, 111

approximation, 118

existence, 108, 111

properties, 112

Stochastic process, 2

adapted, 3

càdlàg, 3

càglàd, 3

continuous, 3
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finite variation, 33
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sample paths, 2

versions, 2

Stopping time, 6

accessible, 55

decomposition, 56

first entrance, 7

predictable, 42

properties, 6, 7

regular sequence of, 58

totally inaccessible, 55

Submartingale, 12

Supermartingale, 12

convergence, 15

Supermartingale convergence theorem, 15

Taylor’s formula, 145
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