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Chapter 1

Introduction

This thesis is about stochastic integration, the Malliavin calculus and mathematical
finance. The final form of the thesis has developed very gradually, and was certainly
not planned in detail from the beginning.

A short history of the development of the thesis. I started out with a vague
idea about developing the stochastic integral with respect to what in Øksendal (2005)
is known as an Itô process, only to a higher level of rigor than seen in, say, Øksendal
(2005) or Steele (2000), and in a self-contained manner, and furthermore showing
that this theory rigourously could be used to obtain the fundamental results of math-
ematical finance. The novelty of this is that ordinary accounts of this type almost
always either has some heuristic points or apply more advanced results, such as the
Lévy characterisation theorem, which are left unproved in the context of the account.

I also wanted the thesis to contain some practical aspects, and I knew that the calcula-
tion of risk numbers is a very important issue for practicioners. I had heard about the
results of Fournié et al. (1999), concisely introduced by Benhamou (2001), applying
the Malliavin calculus to the problem of calculating risk numbers such as the delta
or gamma. When investigating this, I obtained two conclusions. First, the litterature
pertaining the Malliavin calculus is rather difficult, with proofs containing very little
detail. Second, the numerical investigations of the applications of the Malliavin cal-
culus to the calculation of risk numbers have mostly been constrained to the context
of the Black-Scholes model. My idea was to attempt to amend these two issues, first
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off by developing the fundamentals of the Malliavin calculus in higher detail, and sec-
ondly by applying the results to a more advanced model than the Black-Scholes model,
namely the Heston model.

In the first few months of work, I developed the hope that I could find the time
and ability not only to construct the stochastic integral for Brownian motion and
continuous finite variation procesess, but also consider discontinuous finite variation
processes. Furthermore, I expected to be able to develop the entire fundament of
the Malliavin calculus, including the Skorohod integral, the result on the Malliavin
derivative of the solution to a stochastic differential equation and detailed proofs of
the results of Fournié et al. (1999). I also vainly expected to find time to consider
PDE methods for pricing in finance and to investigate calculation of risk numbers for
path-dependent options. In retrospect, all this was very optimistic, and I have ended
up restricting myself to stochastic integration for continuous processes, discussing only
the fundamental results of the Malliavin derivative operator and not even going as far
as to introduce the Skorohod integral. This means that the theory of the Malliavin
calculus presented here is not even strong enough to be used to prove the results of
Fournié et al. (1999). On the other hand, it is indisputably very rigorous and detailed,
and thus constitutes a firm foundation for further theory. Finally, I also had to forget
about the idea of PDE methods and path-dependent options in finance.

The final content of the thesis, then, is this: A development of the stochastic integral
for Brownian motion and continuous finite variation processes, applied to set up some
simple financial models and to produce sufficient conditions for the absence of arbi-
trage. The Malliavin deriative operator is also developed, but it is necessary to refer
to the litterature for the results applicable to finance. Some Monte Carlo methods for
evaluating expectations and sensitivities are reviewed, and finally we apply all of this
to pricing and calculating risk numbers in the Black-Scholes and Heston models.

It can be sometimes difficult to distinguish between well-known and original work.
Many of the results in this thesis are well-known, but formulated in a considerably
different manner, often opting for the most pedagogical approach available. There are
also many minor original results. The highlights of the original contributions in the
thesis are these:

• In Theorem 3.8.3, a proof of the Girsanov theorem not invoking the Lévy char-
acterisation theorem, building on the ideas presented in Steele (2000).
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• In Theorem 4.3.5, an extension of the chain rule of the Malliavin calculus, re-
moving the condition of boundedness of the partial derivatives.

• In Section 5.6, identification of an erroneous expression of the Malliavin estimator
in Benhamou (2001) for the Heston model and correction of this.

Other significant results are of course all of the numerical results for the Black-Scholes
and Heston models in Section 5.5 and Section 5.6. Also, the proof of agreement of the
integrals in Theorem 3.8.4 is new. Furthermore, in Appendix C there can be found a
new proof of the existence of the quadratic variation for continuous local martingales
not using stochastic integration at all. Also, a version of Urysohn’s Lemma is proved
yielding an expression for the Lipschitz constant of the bump function.

Structure of the thesis. Overall, the thesis first develops the stochastic integral,
secondly develops some of the basic results of the Malliavin calculus and finally applies
all of this to mathematical finance.

In Chapter 2, we develop some preliminary results which will be essential to the rest
of the thesis. We review some results on Brownian motion and the usual conditions,
martingales and the like. Furthermore, we develop a general localisation concept which
will be essential to the smooth development of the stochastic integral.

Chapter 3 develops the Itô integral. We begin with some results on the space of
elementary processes, rigorously proving that the usual definition of the stochastic
integral is independent of the representation of the elementary process. Furthermore,
we prove a general density result for elementary processes. These preparations make
the development of the integral for Brownian motion very easy. We then extend
the integral to integrate with respect to integral proceses and continuous processes
of finite variation. After having constructed the stochastic integral in the level of
generality necessary, we define the quadratic variation and use it to prove Itô’s formula,
Itô’s representation theorem and Girsanov’s theorem. We also prove Kazamaki’s and
Novikov’s conditions for an exponental martingale to be a true martingale. Finally,
we discuss the pros and cons of the usual conditions.

We then proceed to Chapter 4, containing the basic results on the Malliavin calculus.
We define the Malliavin derivative slightly differently than in Nualart (2006), initially
using coordinates of the Brownian motion instead of stochastic integrals with deter-
ministic integrands. We then extend the operator by the usual closedness argument.



8 Introduction

Next, we prove the chain rule and the integration-by-parts formula. We use the gener-
alized chain rule to show that our definition of the Malliavin derivative coincides with
that in Nualart (2006). Finally, we develop the Hilbert space theory of the Malliavin
derivative and use it to obtain a chain rule for Lipschitz transformations.

Chapter 5 contains the applications to mathematical finance. We first define a sim-
ple class of financial market models and develop sufficent criteria for the absence of
arbitrage, and we discuss what a proper price for a contingent claim is. After this,
we take a quick detour to introduce some fundamental concepts from the theory of
SDEs, and we go through some Monte Carlo methods for evaulation of expectations
and sensitivities. Finally, we begin the numerical experiments. We first consider the
Black-Scholes model, where we evaluate call prices, call deltas and digital deltas. The
purpose of this is mainly a preliminary evaluation of the methods in a simple context,
allowing us to gain an idea of their effectiveness and applicability. After this, we try
our luck at the Heston model. We prove absence of arbitrage building on some ideas
found in Cheridito et al. (2005). We then consider some discretisation schemes for
simulating from the Heston model, and apply these to calculation of the digital delta.
We compare different methods and conclude that the localised Malliavin method is
the superior one. Finally, we outline the difference between our Malliavin estimator
and the one found in Benhamou (2001), illustrating the resulting discrepancy.

Finally, in Chapter 6, we discuss our results and opportunities for further work.

The appendices also contain several important results, with original proofs. Appendix
A mostly contains well-known results, but the sections on Hermite polynomials and
Hilbert spaces contain proofs of results which are hard to find in the litterature. Ap-
pendix B contains basic results from measure theory, but also has in Section B.3 an
original result on convergence of normal distributions which is essential to our develop-
ment of the Hilbert space theory of the Malliavin calculus. Furthermore, in Appendix
C, we prove some novel results which ultimately turned out not to be necessary for the
main parts of the thesis: An existence proof for the quadratic variation and a Lipschitz
version of Urysohn’s lemma.

Prerequisites. The thesis is written with a reader in mind who has a good grasp of
the fundamentals of real analysis, measure theory, probability theory such as can be
found in Carothers (2000), Hansen (2004a), Dudley (2002), Jacobsen (2003) and
Rogers & Williams (2000a). Some Hilbert space theory and functional analysis is also
applied, for introductions to this, see for example Hansen (2006) and Meise & Vogt
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(1997).
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Chapter 2

Preliminaries

This chapter contains results which are fundamental to the theory that follows, in
particular the stochastic calculus, which relies heavily on the machinery of stopping
times, martingales and localisation. Many of the basic results in this chapter are
assumed to be well-known, and we therefore often refer to the litterature for proofs
of the results. Other results, such as the results on progressive measurability and the
Brownian filtration, are more esoteric, and we give full proofs.

The first chapter of Karatzas & Shreve (1988) and the second chapter of Rogers &
Williams (2000a) are excellent sources for most of the results in this section.

2.1 The Usual Conditions and Brownian motion

Let (Ω,F , P,Ft) be a filtered probability space. Recall that the usual conditions for a
filtered probability space are the conditions:

1. The σ-algebra F is complete.

2. The filtration is right-continuous, Ft = ∩s>tFs.

3. For t ≥ 0, Ft contains all null sets in F .
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In every section of this thesis except this one, we are going to assume the usual
conditions. We are also going to work with Brownian motion throughout this thesis.
We therefore need to spend some time making sure that we can make our Brownian
motion work together with the usual conditions. This is the subject matter of this
section.

The reasons for assuming the usual conditions and ways to avoid assuming the usual
conditions will be discussed in Section 3.9. Many of our results also hold without the
usual conditions, but to avoid clutter, we will consistently assume the usual conditions
throughout the thesis.

Our first aim is to understand how to augment a filtered probability space so that it
fulfills the usual conditions. In the following, N denotes the null sets of F . Before we
can construct the desired augmentation of a filtered probability space, we need a few
lemmas.

Lemma 2.1.1. Letting G = σ(F ,N ), it holds that

G = {F ∪N |F ∈ F , N ∈ N},

and P can be uniquely extended from F to a probability measure P ′ on G by putting
P ′(F ∪N) = P (F ). The space (Ω,G, P ′) is called the completion of (Ω,F , P ).

Proof. We first prove the equality for G. Define H = {F ∪ N |F ∈ F , N ∈ N}. It is
clear that H ⊆ G. We need to prove the opposite inclusion. To do so, we prove directly
that H is a σ-algebra containing F and N , the inclusion follows from this. It is clear
that Ω ∈ H. If H ∈ H with H = F ∪N , we obtain, with B ∈ F such that P (B) = 0
and N ⊆ B,

Hc = (F ∪N)c

= (Bc ∩ (F ∪N)c) ∪ (B ∩ (F ∪N)c)

= (B ∪ F ∪N)c ∪ (B ∩ (F ∪N)c)

= (B ∪ F )c ∪ (B ∩ (F ∪N)c),

so since (B ∪ F )c ∈ F and B ∩ (F ∪ N)c ∈ N , we find Hc ∈ H. If (Hn) ⊆ H with
Hn = Fn ∪Nn, we find

n⋃
n=1

Hn =

( ∞⋃
n=1

Fn

)
∪

( ∞⋃
n=1

Nn

)
,
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showing ∪∞n=1Hn ∈ H. We have now proven that H is a σ-algebra. Since it contains
F and N , we conclude G ⊆ H.

It remains to show that P can be uniquely extended from F to G. We begin by proving
that the proposed extension is well-defined. Let G ∈ G with two decompositions
G = F1 ∪ N1 and G = F2 ∪ N2. We then have Gc = F c

2 ∩ N c
2 . Thus, if ω ∈ F c

2 and
ω ∈ G, then ω ∈ N2, showing F c

2 ⊆ Gc ∪N2 and therefore

F1 ∩ F c
2 ⊆ F1 ∩ (Gc ∪N2) = F1 ∩N2 ⊆ N2,

and analogously F2∩F c
1 ⊆ N1. We can therefore conclude P (F1∩F c

2 ) = P (F2∩F c
1 ) = 0

and as a consequence,

P (F1) = P (F1 ∩ F2) + P (F1 ∩ F c
2 ) = P (F2 ∩ F1) + P (F2 ∩ F c

1 ) = P (F2).

This means that putting P ′(G) = P (F ) for G = F ∪N is a definition independent of
the representation of G, therefore well-defined. That P ′ is a probability measure on G
extending P is obvious.

In the following, we let (Ω,G, P ) be the completion of (Ω,F , P ). In particular, we use
the same symbol for the measure on F and its completion. This will not cause any
problems.

Lemma 2.1.2. Let H be a sub-σ-algebra of G. Then

σ(H,N ) = {G ∈ G|G∆H ∈ N for some H ∈ H},

where ∆ is the symmetric difference, G∆H = (G \H) ∪ (H \G).

Proof. Define K = {G ∈ G|G∆H ∈ N for some H ∈ H}. We begin by arguing that
K ⊆ σ(H,N ). Let G ∈ K and let H ∈ H be such that G∆H ∈ N . We then find

G = (H ∩G) ∪ (G \H)

= (H ∩ (H ∩Gc)c) ∪ (G \H)

= (H ∩ (H \G)c) ∪ (G \H).

Since P (G∆H) = 0, H \ G and G \ H are both null sets, and we conclude that
G ∈ σ(H,N ). Thus K ⊆ σ(H,N ).

To show the other inclusion, we will show that K is a σ-algebra containing H and
N . If G ∈ H, we have G∆G = ∅ ∈ N and therefore G ∈ K. If N ∈ N , we have
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N∆∅ = N ∈ N , so N ∈ K. We have now shown H,N ⊆ K. It remains to show that
K is a σ-algebra.

Clearly, Ω ∈ K. Assume that G ∈ K and H ∈ H with G∆H ∈ N . We then find

Gc∆Hc = (Gc \Hc) ∪ (Hc \Gc) = (H \G) ∪ (G \H) ∈ N ,

so Gc ∈ K as well. Now assume that (Gn) ⊆ K, and let Hn ∈ H be such that
Gn∆Hn ∈ N . Then

( ∞⋃
n=1

Gn

)
∆

( ∞⋃
n=1

Hn

)
=

( ∞⋃
n=1

Gn \
∞⋃

n=1

Hn

)
∪

( ∞⋃
n=1

Hn \
∞⋃

n=1

Gn

)

⊆
∞⋃

n=1

Gn \Hn ∪
∞⋃

n=1

Hn \Gn

=
∞⋃

n=1

Gn∆Hn,

so ∪∞n=1Gn ∈ K. We can now conclude that K is a σ-algebra. Since it contains H and
N , σ(H,N ) ⊆ K.

Comment 2.1.3 We cannot obtain the same simple representation of σ(H,N ) as we
did for σ(F ,N ) in Lemma 2.1.1. This is because the null sets N under consideration
here are not null sets of H, only of F , and therefore {H∪N |H ∈ H, N ∈ N} would not
even be a σ-algebra: The choice of null sets available is too broad to retain stability
under complements.

To see an example of what goes wrong, consider the set-up (Ω,G, P ) = ([0, 1],L[0, 1], λ),
where L[0, 1] is the Lebesgue σ-algebra on [0, 1], the completion of B[0, 1]. λ is the
Lebesgue measure on [0, 1]. Let H = σ({[0, 1

4 ]}) and let N be the null sets of L[0, 1].
We will argue that {H ∪N |H ∈ H, N ∈ N} is not a σ-algebra.

To do so, consider N = { 3
4}. If {H ∪ N |H ∈ H, N ∈ N} were a σ-algebra, we

would have ([0, 1
4 ] ∪N)c = B ∪M for some B ∈ H and M ∈ N . Then in particular,

λ([0, 1
4 ]c) = λ(([0, 1

4 ] ∪ N)c) = λ(B ∪M) = λ(B). Because H = {∅, Ω, [0, 1
4 ], [0, 1

4 ]c},
it is clear that B = [0, 1

4 ]c is necessary. Thus, we need to find M ∈ N such that
([0, 1

4 ] ∪N)c = [0, 1
4 ]c ∪M , or, in other words

(
1
4
, 1

]
∩N c =

(
1
4
, 1

]
∪M,
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which is clearly impossible, since ( 1
4 , 1]∩N c is strictly smaller than ( 1

4 , 1] and ( 1
4 , 1]∪M

is at least as large as ( 1
4 , 1]. ◦

Theorem 2.1.4. With Ft+ = ∩s>tFs, we have
⋂
s>t

σ(Fs,N ) = σ(Ft+,N ),

and the filtration Gt = σ(Ft+,N ) is the smallest filtration satisfying the usual con-
ditions such that Ft ⊆ Gt. We call (Gt) the usual augmentation of (Ft). We call
(Ω,G, P,Gt) the usual augmentation of the filtered probability space (Ω,F , P,Ft).

Proof. We need to prove three things. First, we need to prove the equality stated in
the lemma. Second, we need to prove that Gt satisfies the usual conditions. And third,
we need to prove that Gt is the smallest filtration containing Ft satisfying the usual
conditions.

Step 1: The equality. We need to prove ∩s>tσ(Fs,N ) = σ(Ft+,N ). Since we have
Ft+ ⊆ Fs for any s > t, it is clear that σ(Ft+,N ) ⊆ ∩s>tσ(Fs,N ). Now consider
F ∈ ∩s>tσ(Fs,N ). By Lemma 2.1.2, for any s > t there is Fs ∈ Fs such that
F∆Fs ∈ N . Put Gn = ∪k≥nFt+ 1

k
. Much like in the proof of Lemma 2.1.2, we obtain

F∆Gn ⊆
∞⋃

k=n

F∆Fn+ 1
k
∈ N .

Put G = ∩∞n=1Gn. Since Gn is decreasing and Gn ∈ Ft+ 1
n
, G ∈ Ft+. We find

F∆G =

(
F \

∞⋂
n=1

Gn

)
∪

( ∞⋂
n=1

Gn \ F

)

=

( ∞⋃
n=1

F \Gn

)
∪

∞⋂
n=1

(Gn \ F )

⊆
( ∞⋃

n=1

F \Gn

)
∪

∞⋃
n=1

(Gn \ F )

=
∞⋃

n=1

F∆Gn ∈ N ,

showing F ∈ σ(Ft+,N ) and thereby the inclusion ∩s>tσ(Fs,N ) ⊆ σ(Ft+,N ).

Step 2: Gt satisfies the usual conditions. It is clear that Gt contains the null
sets for all t ≥ 0. To prove right-continuity of the filtration, we merely note

⋂
s>t

Gs =
⋂
s>t

⋂
u>s

σ(Fu,N ) =
⋂
u>t

σ(Fu,N ) = Gt.
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Step 3: Gt satisfies the minimality criterion. Finally, we prove that Gt is the
smallest filtration satisfying the usual conditions such that Ft ⊆ Gt. To do so, assume
that Ht is another filtration satisfying the usual conditions with Ft ⊆ Ht. We need
to prove Gt ⊆ Ht. To do so, merely note that since Ht satisfies the usual conditions,
Ft+ ⊆ Ht+ = Ht, and N ⊆ Ht. Thus, Gt = σ(Ft+,N ) ⊆ Ht.

Theorem 2.1.4 shows that for any filtered probability space, there exists a minimal
augmentation satisfying the usual conditions, and the theorem also shows how to
construct this augmentation.

Next, we consider a n-dimensional Brownian motion W on our basic, still uncompleted,
probability space (Ω,F , P,Ft). We will define a criterion to ensure that the Brownian
motion interacts properly with the filtration, and we will show that when augmenting
the filtration induced by the Brownian motion, we still obtain a proper interaction
between the Brownian motion and the filtration.

Definition 2.1.5. An n-dimensional Ft Brownian motion is a continuous process W

adapted to Ft such that for any t, the distribution of s 7→ Wt+s−Wt is a n-dimensional
Brownian motion independent of Ft.

In what follows, we will assume that the filtration Ft is the one induced by the Brow-
nian motion W . W is then trivially a Ft Brownian motion. Letting (Ω,G, P,Gt) be
the usual augmentation of (Ω,F , P,Ft) as given in Theorem 2.1.4, we want to show
that W is a Gt Brownian motion. We will do this through a few lemmas. We are
led by the results of Rogers & Williams (2000a), Section II.68. By C([0,∞),Rn), we
denote the set of continuous mappings from [0,∞) to Rn. By C([0,∞),Rn), we denote
the σ-algebra on the space C([0,∞),Rn) induced by the coordinate projections. By
Cb(Rn), we denote the bounded continuous mappings from Rn to R.

Lemma 2.1.6. W is also a Brownian motion with respect to the filtration Ft+.

Proof. It is clear that W is adapted to Ft+. We need to show that for any t ≥ 0,
s 7→ Wt+s−Wt is independent of Ft+. Let t ≥ 0 be given and define Xs = Wt+s−Wt.
It will be sufficient to prove that for every bounded, real C([0,∞),Rn) measurable
mapping f and A ∈ Ft+,

E1Af(X) = P (A)Ef(X).
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To do so, we first prove the result in the case where f(x) =
∏n

k=1 fk(xtk
) and

f1, . . . , fn ∈ Cb(Rn). We will then use monotone-class arguments to obtain the general
case.

Therefore, let 0 ≤ t1 ≤ · · · ≤ tn and f1, . . . , fn ∈ Cb(Rn) be given, and let A ∈ Ft+.
Note that for any ε > 0 and s ≥ 0, Wt+s+ε−Wt+ε is independent of Ft+ε. Therefore,
Wt+s+ε −Wt+ε is in particular independent of Ft+. We then have, using continuity
of W , fk and dominated convergence,

E1A

n∏

k=1

fk(Xtk
) = E1A

n∏

k=1

fk(Wt+tk
−Wt)

= lim
ε→0+

E1A

n∏

k=1

fk(Wt+tk+ε −Wt+ε)

= lim
ε→0+

P (A)E
n∏

k=1

fk(Wt+tk+ε −Wt+ε)

= P (A)E
n∏

k=1

fk(Wt+tk
−Wt)

= P (A)E
n∏

k=1

fk(Xtk
).

as desired. By the Monotone Class Theorem of Corollary B.1.4, we then conclude
E1Af(X) = P (A)Ef(X) for all f ∈ bC([0,∞),Rn). in particular we obtain the
desired independence result.

Comment 2.1.7 Clearly, the method of proof above can be generalized to show
analogous results for all right-continuous processes with independent increments. The
extension of properties from Ft to Ft+ is a general feature of Markov processes, se for
example Ethier & Kurtz (1986), Chapter 4, Jacobsen (1972) or Sokol (2007). ◦
Theorem 2.1.8. W is a Gt Brownian motion.

Proof. It is clear that W is adapted to Gt. We therefore merely need to show that for
any t ≥ 0, s 7→ Wt+s−Wt is independent of Gt. Let t ≥ 0 and define Xs = Xt+s−Xt.
With N the null sets of F , we have Gt = σ(Ft+,N ). Thus, since both Ft+ and the
complements of N contain Ω, the sets of the form C ∩D, where C ∈ Ft+ and Dc ∈ N ,
form a generating system for Gt, stable under intersections. It will suffice to show
E1C∩Df(X) = P (C ∩D)Ef(X) for any f ∈ bC([0,∞),Rn). Lemma 2.1.6 yields

E1C∩Df(X) = E1Cf(X) = P (C)Ef(X) = P (C ∩D)Ef(X).
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The conclusion follows.

Theorem 2.1.8 is the result that will allow us to assume the usual conditions in what
follows. Next, we prove Blumenthal’s zero-one law.

Lemma 2.1.9. It holds that Ft+ = σ(Ft,Nt+), where Nt+ are the null sets of Ft+.

Proof. It is clear that σ(Ft,Nt+) ⊆ Ft+, so it will suffice to show the other inclusion.
Let A ∈ Ft+, and put ξ = 1A − E(1A|Ft). Our first step will be to prove that ξ

is almost surely zero, and to do so, we first prove E(ξ1B) = 0 for B ∈ F∞, where
F∞ = σ(∪t≥0Ft).

To this end, note that with Ut = σ(Wt+s −Wt)s≥0, F∞ = σ(Ft,Ut). The sets of the
form C ∩D, where C ∈ Ft and D ∈ Ut, are then a generating system for F∞, stable
under intersections. Using Lemma 2.1.6, we see that Ut and Ft+ are independent.
Since ξ is Ft+ measurable, we conclude, with C ∈ Ft and D ∈ Ut,

E(ξ1C∩D) = P (D)E(ξ1C)

= P (D)E((1A − E(1A|Ft))1C).

Now, by the definition of conditional expectation, EE(1A|Ft)1C) = E1A1C , and we
conclude E(ξ1C∩D) = 0. Then, by the Dynkin Lemma, E(ξ1B) = 0 for all B ∈ F∞,
and therefore ξ is zero almost surely. Since ξ is Ft+ measurable, this means that there
exists N ∈ Ft+ with P (N) = 0 such that ξ = 0 on N c, and therefore

1A = 1A1N + 1A1Nc

= 1A∩N + ξ1Nc + E(1A|Ft)1Nc

= 1A∩N + E(1A|Ft)1Nc .

Because A ∩ N ∈ Nt+, the right-hand side is measurable with respect to σ(Ft,Nt+)
and therefore A ∈ σ(Ft,Nt+).

Lemma 2.1.10 (Blumenthal’s 0-1 law). For any A ∈ G0, P (A) is either zero or
one.

Proof. Let H be the sets of G0 where the lemma holds. It is clear that H is a Dynkin
system. Using Lemma 2.1.9, we obtain

G0 = σ(F0+,N ) = σ(F0,N0+,N ) = σ(F0,N ).
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With A denoting the complements of the sets in N , we then also have G=σ(F0,A).
Because both F0 andA contains Ω, the sets of the form C∩D where C ∈ F0 and D ∈ A
form a generating system for G0, stable under intersections. By Dynkin’s Lemma, it
will suffice to show that P (C∩D) is zero or one for any C ∈ F0 and D ∈ A. Obviously,
P (C ∩D) = P (C). Since F0 = σ(W0) = {Ω, ∅}, the result follows.

Before proceeding to the next section, let us review what we have obtained in this
somewhat technical section. Our object was to ensure that we can assume that our
filtrations in the following satisfy the usual conditions. We began by proving Theorem
2.1.4, showing that any filtered probability space admits a minimal augmentation
satisfying the usual conditions.

Next, we considered a Brownian motion and its induced filtration Ft, and in Theorem
2.1.8, we showed that with Gt the usual augmentation, W is a Gt Brownian Motion.
If this was not the case, we could not assume the usual conditions in our work with
stochastic integration, since we would not have any probability space satisfying the
usual conditions and at the same time containing a Brownian motion with respect to
the filtration. Finally, we proved Blumenthals zero-one law. This result will be of
importance to us later in this chapter, when proving the Girsanov Theorem.

2.2 Stochastic processes

We will now review some basic results on stochastic processes. We work in the context
of a filtered probability space (Ω,F ,Ft, P ) satisfying the usual conditions. A stochastic
process with values in a measure space (E, E) is a family (Xt)t≥0 of (E, E)-valued
stochastic variables. The sample paths of the stochastic process X are the functions
X(ω) for ω ∈ Ω.

We will in this section review some fundamental concepts pertaining stochastic pro-
cesses. Many of these results were first investigated systematically in Chung & Doob
(1965).

We say that two processes X and Y are versions if P (Xt = Yt) = 1 for all t ≥ 0. In
this case, we say that Y is a version of X and vice versa. We say that two processes
X and Y are indistinguishable if their sample paths are almost surely equal. We then
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say that Y is a modification of Y and vice versa. We call a process evanescent if it is
indistinguishable from the zero process.

In the following, B denotes the Borel-σ-algebra on R. Bk denotes the k-dimensional
Borel-σ-algebra, and for any pseudometric space (M, d), B(M) denotes the Borel-σ-
algebra on M . λ denotes the Lebesgue measure on R. We have the following three
measurability concepts for stochastic processes.

• A process X is adapted if X(t) is Ft-measurable for all t ≥ 0.

• A process X is measurable if (t, ω) 7→ X(t, ω) is B[0,∞)⊗F measurable.

• A process is progressive if X|[0,t]×Ω is B[0, t]⊗Ft measurable for t ≥ 0.

Furthermore, if a process X has continuous paths in the sense that X(ω) is continuous
for all ω ∈ Ω, we say that X is continuous. We will now show that being measurable
and adapted and being progressive correspond to being measurable with respect to
particular σ-algebras.

Lemma 2.2.1. Let ΣA be the family of sets A ∈ B[0,∞) ⊗ F such that At ∈ Ft for
all t ≥ 0, where At = {ω ∈ Ω|(t, ω) ∈ A}. Then ΣA is a σ-algebra, and a process X is
measurable and adapted if and only if it is ΣA-measurable.

Proof. Clearly, [0,∞) × Ω ∈ ΣA. To show that ΣA is stable under complements, let
A ∈ ΣA. Then Ac ∈ B[0,∞)⊗F and

(Ac)t = {ω ∈ Ω|(t, ω) ∈ Ac} = {ω ∈ Ω|(t, ω) ∈ A}c = (At)c ∈ Ft.

Thus Ac ∈ ΣA. Now let (An) ⊆ ΣA. Then ∪∞n=1An ∈ B[0,∞)⊗F and
( ∞⋃

n=1

An

)

t

=

{
ω ∈ Ω

∣∣∣∣∣(t, ω) ∈
∞⋃

n=1

An

}

=
∞⋃

n=1

{ω ∈ Ω|(t, ω) ∈ An} ∈ Ft,

which shows that ∪∞n=1An ∈ ΣA. We have now shown that ΣA is a σ-algebra. That
measurability and adaptedness is equivalent to ΣA-measurability is clear from the
inclusion ΣA ⊆ B[0,∞)⊗F and the equality, for any process X,

(X ∈ A)t = {ω ∈ Ω|Xt(ω) ∈ A}.
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Lemma 2.2.2. Let Σπ be the familiy of sets A ∈ B[0,∞) ⊗ F such that A satisfies
A ∩ [0, t] × Ω ∈ B[0, t] ⊗ Ft for all t ∈ [0,∞). Then Σπ is a σ-algebra, and a process
X is progressively measurable if and only if it is Σπ-measurable.

Proof. That Σπ is a σ-algebra is clear. The equality

(X ∈ A) ∩ [0, t]× Ω = (X|[0,t]×Ω ∈ A)

shows that progressive measurability is equivalent to Σπ measurability.

Lemma 2.2.1 and Lemma 2.2.2 show that the concepts of being measurable and
adapted and of being progressive correspond to conventional measurability proper-
ties with respect to the σ-algebras ΣA and Σπ, respectively. These results will enable
us to apply the usual machinery of measure theory when dealing when these mea-
surability concepts. The next results demonstrate some of the interplay between the
regularity properties of stochastic processes. In particular, Lemma 2.2.3 shows that
Σπ ⊆ ΣA.

Lemma 2.2.3. Let X be progressive. Then X is measurable and adapted.

Proof. That X is measurable follows from Lemma 2.2.2. To show that X is adapted,
note that when X is progressive, X|[0,t]×Ω is B[0, t] ⊗ Ft-measurable, and therefore
ω 7→ X(t, ω) is Ft-measurable.

Lemma 2.2.4. Let X be adapted and continuous. Then X is progressively measurable.

Proof. Define Xn(t) = X( 1
2n [2nt]). We can then write

Xn(t) =
∞∑

k=0

X

(
k

2n

)
1[ k

2n , k+1
2n )(t).

Since X is adapted, X( k
2n ) is F k

2n
measurable. Therefore, each term in the sum is

progressive. Since Xn converges pointwise to X by the continuity of X, we conclude
that X is progressive as the limit of progressive processes.

Comment 2.2.5 In the proof of the lemma, we actually implicitly employed the result
from Lemma 2.2.2 that progressive measurability is equivalent to measurability with
respect to a σ-algebra Σπ, in the sense that we know that ordinary measurability
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is preserved by pointwise limits. Had we not known that progressive measurability is
measurability with respect to Σπ, we would have to prove manually that it is preserved
by pointwise convergence. Note that the result would also hold if continuity was
weakened to left-continuity or right-continuity. ◦

Lemma 2.2.6. Let X and Y be measurable processes. If X and Y are versions, the
set {(t, ω) ∈ [0,∞)× Ω|Xt(ω) 6= Yt(ω)} is a λ⊗ P null set.

Proof. First note that A = {t, ω) ∈ [0,∞)×Ω|Xt(ω) 6= Yt(ω)} is B[0,∞)⊗F measur-
able since X and Y both are measurable. By the Tonelli Theorem, then

(λ⊗ P )(A) =
∫ ∞

0

P (Xt 6= Yt) dt = 0,

showing the claim.

Comment 2.2.7 Note that the other implication does not hold: We can only conclude
that P (Xt 6= Yt) = 0 almost surely if {(t, ω) ∈ [0,∞)×Ω|Xt 6= Yt} is a λ⊗P null set.
Note also that it is crucial that both X and Y are measurable in the above, otherwise
the set {(t, ω) ∈ [0,∞)× Ω|Xt(ω) 6= Yt(ω)} would not be B[0,∞)⊗F measurable. ◦

2.3 Stopping times

This section contains some basic results on stopping times. A stopping time is a
stochastic variable τ : Ω → [0,∞] such that (τ ≤ t) ∈ Ft for any t ≥ 0. We say that
τ is finite if τ maps into [0,∞). We say that τ is bounded if τ maps into a bounded
subset of [0,∞). If X is a stochastic process and τ is a stopping time, we denote by Xτ

the process Xτ
t = Xτ∧t and call Xτ the process stopped at τ . We denote by X[0, τ ]

the process X[0, τ ]t = Xt1[0,τ ](t) and call X[0, τ ] the process zero-stopped at τ .

Furthermore, we define the stopping-time σ-algebra Fτ of events determined at τ by
Fτ = {A ∈ F|A ∩ (τ ≤ t) ∈ Ft for all t ≥ 0}. Clearly, Fτ is a σ-algebra. Our
first goal is to develop some basic results on stopping times and their interplay with
stopping-time σ-algebras. By B0, we denote the elements A ∈ B with 0 /∈ A.

Lemma 2.3.1. If τ and σ are stopping times, then so is τ ∧ σ, τ ∨ σ and τ + σ.
Furthermore, if σ ≤ τ , then Fσ ⊆ Fτ .
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Proof. See Karatzas & Shreve (1988), Lemma 1.2.9 and Lemma 1.2.15.

Lemma 2.3.2. Let τ be a stopping time. Then (τ < t) ∈ Ft for all t ≥ 0.

Proof. We have (τ < t) = ∪n≥1

(
τ ≤ t− 1

n

) ∈ Ft, since (τ ≤ t− 1
n ) ∈ Ft− 1

n
⊆ Ft.

Lemma 2.3.3. Let X be progressively measurable, and let τ be a stopping time. Then
Xτ is Fτ measurable and Xτ is progressively measurable.

Proof. See Karatzas & Shreve (1988), Proposition 1.2.18.

Lemma 2.3.4. For any stopping time τ , the process (t, ω) 7→ 1[0,τ(ω)](t) is progressive.
In particular, if X is Σπ measurable, then X[0, τ ] is Σπ measurable as well.

Proof. Let t ≥ 0. Our fundamental observation is

{(s, ω) ∈ [0, t]× Ω|1[0,τ(ω)](s) = 0} = {(s, ω) ∈ [0, t]× Ω|τ(ω) < s}.

We need to prove that the latter is B[0, t] ⊗ Ft measurable. Since 1[0,τ ] only takes
the values 0 and 1, this is sufficient to prove progressive measurability. To this end,
define the mapping f : [0, t] × (τ ≤ t) → [0, t]2 by f(s, ω) = (s, τ(ω)). Let τt be the
restriction of τ to (τ ≤ t). We then have (τt ≤ s) ∈ Fs ⊆ Ft for any s ≤ t. Since
the sets of the form [0, s], s ≤ t, form a generating family for B[0, t], we conclude that
τt is Ft − B[0, t] measurable. Therefore, f is B[0, t] ⊗ Ft − B[0, t]2 measurable. With
A = {(x, y) ∈ [0, t]2|x > y}, A ∈ B[0, t]2 and we obtain

{(s, ω) ∈ [0, t]× Ω|τ(ω) < s} = {(s, ω) ∈ [0, t]× Ω|f(s, ω) ∈ A}
= f−1(A),

which is B[0, t]⊗Ft measurable, as desired. The remaining claims of the lemma follows
immediately.

Lemma 2.3.5. Let X be a continuous and adapted process, and let F be closed. Then
the first entrance time τ = inf{t ≥ 0|Xt ∈ F} is a stopping time.

Proof. See Rogers & Williams (2000a), Lemma 74.2.

Lemma 2.3.6. Let τk, k ≤ n be a family of stopping times. Then the i’th ordered
value of (τk)k≤n is also a stopping time.
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Comment 2.3.7 Note that it does not matter how we order the stopping times in
case of ties, since we are only interested in the ordered values of the stopping times,
not the actual ordering. ◦

Proof. Let t ≥ 0, and let τ(i) be the i’th ordered value of (τk)k≤n. Then τ(i) ≤ t

precisely if i or more of the stopping times are less than t. That is,

(τ(i) ≤ t) =
⋃

I⊆{1,...,n},|I|≥i

(τk ≤ t, k ∈ I) ∩ (τk > t, k /∈ I) ∈ Ft.

Lemma 2.3.8. Let τ and σ be stopping times. Assume that Z ∈ Fσ. Then it holds
that both Z1(σ<τ) and Z1(σ≤τ) are Fσ∧τ measurable.

Proof. We first show that (σ < τ) ∈ Fσ∧τ . Fix t ≥ 0, it will suffice to show that
(σ < τ) ∩ (σ ∧ τ ≤ t) ∈ Ft. First note

(σ < τ) ∩ (σ ∧ τ ≤ t) = (σ < τ) ∩ (σ ≤ t).

Now consider some ω ∈ Ω such that σ(ω) < τ(ω) and σ(ω) ≤ t. If t < τ(ω), we have
σ(ω) ≤ t < τ(ω). If τ(ω) ≤ t, there is some q ∈ Q ∩ [0, t] such that σ(ω) ≤ q < τ(ω).
We thus obtain

(σ < τ) ∩ (σ ∧ τ ≤ t) =
⋃

q∈Q∩[0,t]∪{t}
(σ ≤ q) ∩ (q < τ) ∩ (σ ≤ t),

which is in Ft, showing (σ < τ) ∈ Fσ∧τ . We now show that Z1(σ<τ) is Fσ∧τ

measurable. Let B ∈ B0. It will suffice to show that for any t ≥ 0 it holds that
(Z1(σ<τ) ∈ B) ∩ (σ ∧ τ ≤ t) ∈ Ft. To obtain this, we rewrite

(Z1(σ<τ) ∈ B) ∩ (σ ∧ τ ≤ t) = (Z ∈ B) ∩ (σ < τ) ∩ (σ ∧ τ ≤ t)

= (Z ∈ B) ∩ (σ < τ) ∩ (σ ≤ t).

Since Z is Fσ measurable, (Z ∈ B) ∩ (σ ≤ t) ∈ Ft. And by what we have already
shown, (σ < τ) ∈ Fσ, so (σ < τ) ∩ (σ ≤ t) ∈ Ft. Thus, the above is in Ft, as desired.

Next, we show that Z1(σ≤τ) is Fσ∧τ measurable. Let B ∈ B0. As in the proof of
the first part of the lemma, it is sufficient to show that for any t ≥ 0 it holds that
(Z1(σ≤τ) ∈ B) ∩ (σ ∧ τ ≤ t) ∈ Ft. To obtain this, we first write

(Z1(σ≤τ) ∈ B) ∩ (σ ∧ τ ≤ t) = (Z ∈ B) ∩ (σ ≤ τ) ∩ (σ ∧ τ ≤ t)

= (Z ∈ B) ∩ (σ ≤ t) ∩ (σ ≤ τ) ∩ (σ ∧ τ ≤ t).
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Since Z ∈ Fσ, we find (Z ∈ B) ∩ (σ ≤ t) ∈ Ft. And since we know (τ < σ) ∈ Fτ∧σ,
(σ ≤ τ) = (τ < σ)c ∈ Fσ∧τ , so (σ ≤ τ) ∩ (σ ∧ τ ≤ t) ∈ Ft. This demonstrates
(Z1(σ≤τ) ∈ B) ∩ (σ ∧ τ ≤ t) ∈ Ft, as desired.

2.4 Martingales

In this section, we review the basic theory of martingales. As before, we work in a
filtered probability space (Ω,F ,Ft, P ) satisfying the usual conditions. If M is some
process, we put M∗

t = sups≤t |Ms| and M∗ = M∗
∞. A process M is said to be a

martingale if Ms is adapted and E(Mt|Fs) = Ms whenever s ≤ t. We say that M is
square-integrable if M is bounded in L2. As described in Appendix B.5, we say that
M is uniformly integrable if

lim
x→∞

sup
t≥0

E|Mt|1(|Mt|>x) = 0.

In this case, M is also bounded in L1 by Lemma B.5.2. By Lemma B.5.1, if Mt is
bounded in Lp for any p > 1, it is uniformly integrable. We denote the space of
martingales by M. The space of martingales stating at zero is denoted M0.

We will mostly be concerned with continuous martingales. However, at some points
we will be interested in cadlag martingales as well. The following result shows that we
always can find a cadlag version of any martingale.

Theorem 2.4.1. Let M be a martingale. Then M has a cadlag version.

Proof. This follows from Theorem II.67.7 of Rogers & Williams (2000a).

Next, we go on to state some of the classic results of martingale theory.

Theorem 2.4.2 (Doob’s maximal inequality). Let M be a nonnegative cadlag
submartingale. For c > 0 and t ≥ 0, cP (M∗

t ≥ c) ≤ EMt1(M∗
t ≥c).

Proof. See Rogers & Williams (2000a), Theorem 70.1.

Theorem 2.4.3 (Martingale Convergence Theorem). Let M be a continuous
submartingale. If M+ is bounded in L1, then M is almost surely convergent to an
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integrable variable. If M is also uniformly integrable, the limit M∞ exists in L1 as
well, and E(M∞|Ft) = Mt. In this case, we say that M∞ closes the martingale.

Proof. The first part follows from Theorem 1.3.15 in Karatzas & Shreve (1988), and
the rest follows from Theorem II.69.2 in Rogers & Williams (2000a).

Corollary 2.4.4. Let M be a continuous martingale. M is closed by a variable M∞
if and only if M is uniformly integrable, and in this case Mt converges to M∞ almost
surely and in L1.

Proof. From Theorem 2.4.3, we know that if M is uniformly integrable, M is closed
by some variable and we have convergence almost surely and in L1. It will therefore
suffice to show the other implication. Assume that M is closed by a variable M∞, we
need to show that M is uniformly integrable. By Jensen’s inequality, we know that
|Mt| = |E(M∞|Ft)| ≤ E(|M∞||Ft). In particular, M is bounded in L1, and therefore
Mt is convergent almost surely. Therefore, M∗ is almost surely finite. We obtain

E|Mt|1(|Mt|>x) ≤ EE(|M∞||Ft)1(|Mt|>x)

= E|M∞|1(|Mt|>x)

≤ E|M∞|1(M∗>x),

and since M∗ is almost surely finite, we conclude

lim sup
x→∞

sup
t≥0

E|Mt|1(|Mt|>x) ≤ lim sup
x→∞

E|M∞|1(M∗>x) = 0,

so M is uniformly integrable.

Theorem 2.4.5 (Doob’s Lp-inequality). Let M be a continuous martingale. For
any t ≥ 0 and p > 1, ‖M∗

t ‖p ≤ q‖Mt‖p, where q is the dual exponent to p.

Proof. See Rogers & Williams (2000a), Theorem 70.2.

Lemma 2.4.6. If M is a martingale bounded in L2, then M is almost surely conver-
gent and the limit M∞ is square integrable. Furthermore, M∞ closes the martingale.

Proof. See Rogers & Williams (2000a), Theorem 70.2.
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Theorem 2.4.7 (Optional Sampling). Let M be a continuous martingale. Let
σ ≤ τ be stopping times. Then E(Mτ |Fσ) = Mσ if either M is uniformly integrable
or σ and τ are bounded.

Proof. Assume first that M is uniformly integrable. By 2.4.3, M is then convergent
almost surely and in L1 with limit M∞, and M∞ closes the martingale. Then Theorem
1.3.22 of Karatzas & Shreve (1988) yields the result.

Next assume that σ and τ are bounded, say by T . Then Mτ = MT
τ and Mσ = MT

σ .
MT is a uniformly integrable martingale by Corollary 2.4.4, so we obtain

E(Mτ |Fσ) = E(MT
τ |Fσ) = MT

σ = Mσ.

Since any square-integrable martingale is uniformly integrable, optional sampling holds
for square-integrable martingales for all stopping times.

Definition 2.4.8. By cM2
0, we denote the space of continuous martingales bounded

in L2. We endow cM2
0 with the the seminorm given by ‖M‖cM2

0
=

√
EM2∞.

It is clear that ‖ · ‖cM2
0

is a well-defined seminorm.

Lemma 2.4.9. Convergence in cM2
0 is equivalent to uniform L2-convergence and

implies almost sure uniform convergence along a subsequence. Also, ‖M −N‖cM2
0

= 0
if and only if M and N are indistinguishable.

Proof. From Doob’s L2-inequality, Lemma 2.4.5, we have for any M, N ∈ cM2
0 that

‖M −N‖cM2
0
≤ ‖(M −N)∗‖2 ≤ 2‖M∞ −N∞‖2 = 2‖M −N‖cM2

0
.

Therefore, it is immediate that convergence in cM2
0 is equivalent to uniform L2-

convergence. Now assume that Mn converges to M in cM2
0. In particular, then

(Mn−M)∗ converges to 0 in L2. Therefore, there is a subsequence converging almost
surely, which means that (Mnk

−M)∗ converges almost surely to 0, and this is precisely
the almost sure uniform convergence proposed.

To se that ‖M−N‖cM2
0

= 0 if and only if M and N are indistinguishable, first note that
if M and N are indistinguishable, then M∞ = lim Mt = lim Nt = N∞ almost surely,



28 Preliminaries

and therefore ‖M − N‖cM2
0

= ‖M∞ − N∞‖2 = 0. Conversely, if ‖M − N‖cM2
0

= 0
then by Doob’s L2-inequality, ‖(M − N)∗‖2 = 0, showing that (M − N)∗ is almost
surely zero, and this implies indistinguishability.

Lemma 2.4.10. The space cM2
0 is complete.

Proof. Let (Mn) be a cauchy sequence in cM2
0. Then (Mn

∞) is a cauchy sequence
in L2(F∞), therefore convergent to some M∞ ∈ L2(F∞). Now define M by putting
Mt = E(M∞|Ft), it is clear from Jensen’s inequality that M is a martingale bounded
in L2. Since

‖(Mn −M)∗∞‖2 ≤ 2‖Mn
∞ −M∞‖2,

we find that Mn converges uniformly in L2 to M . As in the proof of Lemma 2.4.9, we
then find that there is a subsequence such that Mnk converges almost surely uniformly
to M . In particular, since Mnk is continuous, M is almost surely continuous. Since
we have assumed the usual conditions, we can pick be a modification N of M which
is adapted and continuous for all sample paths. We then find that N ∈ cM2

0 and Mn

converges to N in cM2
0, as desired.

Lemma 2.4.11. Let M be a continuous martingale and let τ be a stopping time. Then
the stopped process Mτ is also a continuous martingale.

Proof. Let 0 ≤ s ≤ t. We write

E(Mτ
t |Fs) = 1(τ≤s)E(Mτ

t |Fs) + 1(τ>s)E(Mτ
t |Fs)

and consider the two terms separately. Since 1(τ≤s) is Fs measurable, we find

1(τ≤s)E(Mτ
t |Fs) = E(Mτ

t 1(τ≤s)|Fs)

= E(Mτ
s 1(τ≤s)|Fs)

= Mτ
s 1(τ≤s),

since Mτ
t 1(τ≤s) = Mτ

s 1(τ≤s), which is Fs measurable. For the second term, we find
1(τ>s)E(Mτ

t |Fs) = E(1(τ>s)M
τ
t |Fs), and for F ∈ Fs we have F ∩ (τ > s) ∈ Fτ∧s by

Lemma 2.3.8, yielding

E(1F E(1(τ>s)M
τ
t |Fs)) = E(1F 1(τ>s)M

τ
t )

= E(1F 1(τ>s)E(Mτ
t |Fτ∧s))

= E(1F 1(τ>s)M
τ
s ),
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by optional sampling, so that 1(τ>s)E(Mτ
t |Fs) = 1(τ>s)M

τ
s . All in all, we conclude

E(Mτ
t |Fs) = Mτ

s .

The following lemma will be useful in several of the calculations we are to make when
developing the stochastic integral.

Lemma 2.4.12. Let M ∈ cM2
0, and let (t0, . . . , tn) be a partition of [s, t]. Then

E

(
n∑

k=1

(Mtk
−Mtk−1)

2

∣∣∣∣∣Fs

)
= E((Mt −Ms)2|Fs)

Proof. We see that

E((Mt −Ms)2|Fs)

= E




(
n∑

k=1

Mtk
−Mtk−1

)2
∣∣∣∣∣∣
Fs




=
n∑

k=1

E((Mtk
−Mtk−1)

2|Fs) +
n∑

k 6=i

E((Mtk
−Mtk−1)(Mti −Mti−1)|Fs),

where, for k < i,

E((Mtk
−Mtk−1)(Mti −Mti−1)|Fs)

= E((Mtk
−Mtk−1)E(Mti −Mti−1 |Fti−1)|Fs)

= 0.

This shows the lemma.

We end the section with a very useful criterion for determining when a process is a
martingale or a uniformly integrable martingale.

Lemma 2.4.13. Let M be a progressive process such that the limit exists almost surely.
If EMτ = 0 for any bounded stopping time τ , M is a martingale. If EMτ = 0 for any
stopping time τ , M is a uniformly integrable martingale.

Proof. The statement that M is a uniformly integrable martingale if EMτ = 0 for any
stopping time τ is Theorem II.77.6 of Rogers & Williams (2000a). If we only have
that EMτ = 0 for any bounded stopping time, M t is a uniformly integrable martingale
for any t ≥ 0 and therefore, M is a martingale.
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2.5 Localisation

In our construction of the stochastic integral, we will employ the technique of localisa-
tion, where we extend properties and definitions to processes where a given property
only holds locally in the sense that if we somehow cut off the process from a certain
point onwards, then the property holds.

We will mainly be using two localisation concepts: With H a family of stochastic
processes, we say that a process is locally in H if there exists a sequence of stopping
times increasing to infinity such that Xτn is in H and we say that a process is zero-
locally in H if there exists a sequence of stopping times increasing to infinity such that
X[0, τn] is in H for n ≥ 1. We also write that X is L-locally in H and that X is
L0-locally in H, respectively.

We will need a variety of results about these localisation procedures. To avoid having
to prove the same results twice, we define an abstract concept of localisation and
prove the results for this abstract type of localisation. This also has the convenient
side-effect of demonstrating what is the essential properties of localisation: The ability
to determine a process from its local properties, and the ability to paste together a new
process from localised processes. Our definition of localisation is sufficiently strong to
have these properties, but also sufficiently broad to encompass the two concepts of
localisation that we will need.

In the following, we denote by SP the set of real stochastic processes on a filtered
probability space (Ω,F , P,Ft) satisfying the usual conditions.

Definition 2.5.1. A localisation concept L is a family of mappings fτ : SP → SP,
indexed by the set of stopping times, such that

1. For any stopping times τ and σ, fτ ◦ fσ = fτ∧σ.

2. If fτ (X) = fτ (Y ), then Xt(ω) = Yt(ω) whenever t ≤ τ(ω).

The interpretation of the above is the following. The mappings fτ correspond to
cutoff functions, such that fτ (X) is the restriction of X to {(t, ω)|t ≤ τ(ω)} in some
sense. The first property ensures that the order of cutting off is irrelevant. The second
property clarifies that fτ (X) corresponds to cutting off X to {(t, ω)|t ≤ τ(ω)}. The two
localisation concepts mentioned earlier is covered by our definition. Specifically, define
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the localisation concept of stopping L as the family of mappings fτ (X) = Xτ and the
localisation concept of zero-stopping L0 as the family of mappings fτ (X) = X[0, τ ].
Then L and L0 are both localisation concepts according to Definition 2.5.1.

Our abstract localisation concept does not cover more esoteric localisation concepts
such as the concept of pre-stopping as found in Protter (2005), Chapter IV. If, however,
we exchanged {(t, ω)|t ≤ τ(ω)} with {(t, ω)|t < τ(ω)}, it would cover pre-stopping
as well. This is unnecessary for our purposes, however, and we therefore omit this
extension.

In the following, let L = (fτ ) be a localisation concept. Let H be a subset of SP.

Definition 2.5.2. We say that a sequence τn of stopping times is determining if τn

increases to infinity. Let X be a stochastic process. We say that X is L-locally in H
if there is a determining sequence τn such that fτn

(X) ∈ H for all n ≥ 1. In this case,
we say that τn is a localising sequence for X. The set of elements L-locally in H is
denoted L(H).

Note that in the above, we defined two different labels for sequences of stopping times.
A sequence of stopping times (τn) is determining if it increases to infinity. The same
sequence is localising for X to H if fτn(X) ∈ H for n ≥ 1. The interpretation of Defi-
nition 2.5.2 is that when a process X is locally in H, we can cut off with the localising
sequence τn and then the result fτn(X) will be in H. The reason for using determin-
ing sequences is to ensure that the “localised” versions fτn(X) actually determine the
element, as the following result shows.

Lemma 2.5.3. If τn is a determining sequence and fτn(X) = fτn(Y ) for all n ≥ 1,
then X and Y are equal.

Proof. It follows that Xt(ω) and Yt(ω) are equal whenever t ≤ τn(ω). Since τn tends
to infinity, we obtain X = Y .

We will now introduce the concept of a stable subset and develop some basic results
about localisation and stability. When we have done this, we continue to the main
results about localisation: The ability to paste localised processes together and the
ability to extend mappings H1 → H2 to mappings between localised versions of H1

and H2. In order to make the contents of the following easier to understand, we will
comment on the meaning of the results in the context of our staple example, that of
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the space of martingales. We say that M is a local martingale if M L-locally is a
martingale.

Definition 2.5.4. We say that H is L-stable if fτ (H) ⊆ H for any stopping time τ .
If the localisation concept is clear from the context, we merely say that H is stable.

Lemma 2.5.5. If H is stable, then L(H) is also stable.

Proof. Let X ∈ L(H). We need to show that fτ (X) ∈ L(H) for each stopping time
τ . Let τ be given. Since X ∈ L(H), we know that there is a determining sequence
σn such that fσn

(X) ∈ H. Since H is stable, fσn
(fτ (X)) = fτ (fσn

(X)) ∈ H. Thus,
σn is a localising sequence for fτ (X), so fτ (X) ∈ L(H). We conclude that L(H) is
stable.

Lemma 2.5.6. If H is stable, H ⊆ L(H) and any determining sequence is localising
for any element of H.

Proof. Let X ∈ H and let τn be any determining sequence. Then fτn(X) ∈ H, so
X ∈ L(H) and τn is localising for X.

Lemma 2.5.7. Let H be stable and let X ∈ L(H) with localising sequence τn. Let σ

be any stopping time. Then τn is also a localising sequence for fσ(X).

Proof. Since H is stable, fτn(fσ(X)) = fσ(fτn(X)) ∈ H.

The above lemmas are fundamental workhorses for localisation. Let us see how they
apply to the space of martingales. According to Lemma 2.4.11, the space of continuous
martingales is stable. Therefore, Lemma 2.5.5 tells us that the space of local continous
martingales is also stable. So if M is a local continuous martingale, we know that Mτ

is also a local continuous martingale. Lemma 2.5.6 tells us that whenever M is a
continous martingale, M is also a local continuous martingale, and any determining
sequence is localising for M . This is obviously a very sensible result.

Finally, Lemma 2.5.7 tells us that when we stop a local process, we can use the same
determining process for the stopped local process as for the local process.

Lemma 2.5.8. Let H be stable and assume that X and Y are locally in H with
determining sequences τn and σn, respectively. Then τn ∧ σn is localising for both X

and Y .
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Proof. Since H is stable, it is clear that fτn∧σn
(X) and fτn∧σn

(Y ) are both in H. And
since τn and σn both increase to infinity, so does τn ∧ σn.

Lemma 2.5.9. Assume that H is a linear space which is stable. If each fτ is linear,
L(H) is a stable linear space.

Proof. From Lemma 2.5.5, we know that L(H) is stable. We just have to show that
L(H) is linear. To this end, let X, Y ∈ L(H) and let λ, µ ∈ R, we want to show that
λX + µY ∈ L(H). By Lemma 2.5.8, there exists a common localising sequence τn for
X and Y . Since fτ is linear and H is a linear space, we have

fτn(λX + µY ) = λfτn(X) + µfτn(Y ) ∈ H.

This shows that τn is a localising sequence for λX + µY , so λX + µY ∈ L(H).

Lemma 2.5.9 can be used to tell us that since the space of continous martingales
obviously is linear, then the space of local continuous martingales is linear as well.

Next, we prove the important Pasting Lemma. This is the lemma which will allow us
to construct new processes by local processes which fit together properly.

Lemma 2.5.10 (Pasting Lemma). Let τn be a determining sequence and let Xn be
a sequence of processes such that fτn(Xn+1) = Xn. There exists a unique process X

such that fτn(X) = fτn(Xn) for all n ≥ 1.

Proof. For any stopping time τ , we define Aτ = {(t, ω)|t ≤ τ(ω)}. We first prove
by induction that fτn(Xn+k) = Xn for all k ≥ 1. By assumption, the induction
start holds. Assume that the statement is proven for some k. Since τn is increasing,
τn ∧ τn+1 = τn and therefore

fτn(Xn+k+1) = fτn(fτn+1(Xn+k+1)) = fτn(Xn+1) = Xn.

This completes the induction proof. We find fτn(Xn+k) = fτn(fτn(Xn+k)) = fτn(Xn),
so Xn+k and Xn are equal on Aτn . Defining X by letting X be equal to X1 on Aτ1 and
Xn on Aτn \Aτn−1 , n ≥ 2, X is well-defined since τn is determining and we see that X

has the property that X and Xn are equal on Aτn , and therefore fτn(X) = fτn(Xn).

That X is unique follows from Lemma 2.5.3.
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Theorem 2.5.11. Let L1 = (fτ ) and L2 = (gτ ) be two localisation concepts. Let H1

and H2 be spaces of stochastic processes such that H1 is L1-stable and H2 is L2-stable.
Let α : H1 → H2 be a mapping with gτ (α(X)) = α(fτ (X)). There exists an extension
α : L1(H1) → L2(H2), uniquely defined by the criterion that gτ (α(X)) = α(fτ (X)).

Proof. We proceed by first constructing a candidate mapping α0 from L1(H1) to
L2(H2) and then show that it is an extension of α with the desired properties.

Step 1: Construction of the mapping. Let X ∈ L1(H1) with localising sequence
τn. Then

gτn(α(fτn+1(X))) = α((fτn ◦ fτn+1)(X)) = α(fτn(X)).

The Pasting Lemma 2.5.10 yields the existence of some process Y with the property
that gτn(Y ) = α(fτn(X)). We want to define α0(X) as this process Y . For this to be
meaningful, we need to check that Y does not depend on the localising sequence used.
Therefore, let τ∗n be another localising sequence for X and let Y ∗ be the element such
that gτ∗n(Y ∗) = α(fτ∗n(X)). We want to show that Y = Y ∗. Since τn and τ∗n both are
localising sequences for X, by Lemma 2.5.8, so is τ∗n ∧ τn, and

gτ∗n∧τn(Y ) = (gτ∗n ◦ gτn)(Y )

= gτ∗n(α(fτn(X)))

= α((fτ∗n ◦ fτn)(X))

= α((fτn ◦ fτ∗n)(X))

= gτn(α(fτ∗n(X)))

= (gτn ◦ gτ∗n)(Y ∗)

= gτ∗n∧τn(Y ∗)

Since τ∗n ∧ τn is determining, Y = Y ∗. Therefore, we can define α0 : L1(H1) → L2(H2)
by putting α0(X) = Y . We need to show that α0 is an extension of α and has the
localisation property mentioned in the theorem.

Step 2: α0 is an extension of α. To show that α0 is an extension, let an element
X ∈ H1 be given, and let τn be a determining sequence. Then τn is localising for X,
and therefore gτn(α0(X)) = α(fτn(X)) = gτn(α(X)). Thus α0(X) = α(X).

Step 3: α0 has the localisation property. We show gσ(α0(X)) = α0(fσ(X)) for
any σ. Still letting τn be localising for X, we know by Lemma 2.5.7 that τn is also
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localising for any fσ(X), and therefore

gτn
(gσ(α0(X))) = gσ(gτn

(α0(X)))

= gσ(α(fτn(X)))

= α((fσ ◦ fτn)(X))

= α((fτn
◦ fσ)(X))

= gτn
(α0(fσ(X))).

Since τn is determining, we conclude gσ(α0(X)) = α0(fσ(X)).

Step 4: Uniqueness. Finally, assume that α1 and α2 are two extensions of α

satisfying the criterion in the theorem. We want to show that α1 = α2. Let an
element X ∈ L1(H1) be given and let τn be a localising sequence. We obtain

gτn(α1(X)) = α1(fτn(X))

= α(fτn(X))

= α2(fτn(X))

= gτn(α2(X)).

Since τn is determining, α1(X) = α2(X), as desired.

Corollary 2.5.12. Let H1 and H2 be linear spaces. If the mapping α : H1 → H2 in
Theorem 2.5.11 is linear and each element of the localisation concepts L1 and L2 are
linear, then the extension α : L1(H1) → L2(H2) is linear as well.

Proof. By Lemma 2.5.9, L1(H1) and L2(H2) are linear spaces, so the conclusion of
the corollary is well-defined. The extension satisfies gτ (α(X)) = α(fτ (x)). Let
X, Y ∈ L1(H1) and let λ, µ ∈ R. Let τn be a localising sequence for X and Y ,
then fτn(X), fτn(Y ) ∈ H1. Therefore, by the linearity of α on H1,

gτn(α(λX + µY )) = α(fτn(λX + µY ))

= α(λfτn(X) + µfτn(Y ))

= λα(fτn(X)) + µα(fτn(Y ))

= λgτn(α(X)) + µgτn(α(Y ))

= gτn(λα(X) + µα(Y )).

Since τn is determining, we may conclude that α is linear.
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Lemma 2.5.13. Assume that H is linear and that fτ∨σ + fτ∧σ = fτ + fσ. If H is
L-stable, then L(L(H)) = L(H).

Proof. Since H is L-stable, L(H) is L-stable as well, and therefore L(H) ⊆ L(L(H)).
We need to show the other inclusion. Before doing so, we make an observation. Let τ

and σ be stopping times, and assume that fτ (X), fσ(X) ∈ H. Since H is stable and
linear, we find fτ∨σ(X) = fτ (X) + fσ(X)− fτ∧σ(X) ∈ H.

Now let X ∈ L(L(H)) and let τn be a localising sequence such that fτn(X) ∈ L(H).
For any n, let σn

m be a localising sequence such that fσn
m

(fτn(X) ∈ H. Since σn
m tends

to infinity almost surely, limm P (σn
m ≤ n) = 0 for all n ≥ 1. For any n ≥ 1, pick

m(n) such that P (σn
m(n) ≤ n) ≤ 1

2n . Obviously, then
∑∞

n=1 P (σn
m(n) ≤ n) < ∞, so

the Borel-Cantelli Lemma yields σn
m(n)

a.s.−→∞. Since also τn
a.s.−→∞, we may conclude

σn
m(n) ∧ τn

a.s.−→∞. Now put

ρn = max
k≤n

σk
m(k) ∧ τk.

Then ρ is a sequence of stopping times tending almost surely to infinity, and by our
earlier observation, fρn(X) ∈ H. Therefore X ∈ L(H).

The criterion in Lemma 2.5.13 is satisfied both for stopping and zero-stopping. We
are now done with general results on localisation. We proceed to give a few results
regarding more specific matters of localisation.

Definition 2.5.14. Let H be a class of stochastic proceses. We denote the continuous
elements of H by cH.

Lemma 2.5.15. It always holds that cL(H) = L(cH).

Proof. Let X ∈ cL(H), and let τn be a localizing sequence for X. Since we have
Xτn

t = Xτn∧t and X is continuous, clearly Xτn is continuous as well and therefore
X ∈ L(cH). Contrarily, assume that X ∈ L(cH), and let τn be a localizing sequence
for X. Since Xτn is continuous, X is continuous on [0, τn]. Because τn tends to infinity,
it follows that X is continuous and therefore X ∈ cL(H).

Lemma 2.5.16. Let M be a local martingale. Then M is locally a uniformly integrable
martingale.
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Proof. Let τn be a sequence such that Mτn is a martingale for n ≥ 1. Then Mτn∧n is
uniformly integrable, since it is a martingale closed by Mτn∧n. The result follows.

Lemma 2.5.17. The following are equivalent:

1. M is a continuous local martingale.

2. M is locally a continuous martingale.

3. M is locally a continuous square-integrable martingale.

4. M is locally a continuous bounded martingale.

In particular, cL(M0), L(cM0), L(cM2
0) and L(cbM0) are equal.

Proof. Trivially, (4) implies (3) and (3) implies (2). By Lemma 2.5.15, (2) implies (1).
It will therefore suffice to show that (1) implies (4). Assume that M is a continuous
local martingale. Let τn be a localizing sequence. Define the stopping times σn by
σn = inf{t ≥ 0||M(t)| ≥ n}. Since M is continuous, M is bounded on bounded
intervals, and therefore σn almost surely increases to infinity. Since martingales are
stable under stopping by Lemma 2.4.11, it follows that τn∧σn is a localizing sequence,
and since M is continuous, Mτn∧σn is bounded.

By Lemma 2.5.17, the spaces cL(M0), L(cM0), L(cM2
0) and L(cbM0) are all equal.

We will denote them by the common symbol cML
0 .

Lemma 2.5.18. It holds that L2([0,∞)× Ω,Σπ, µ) is L0-stable for any measure µ.

Proof. Let X ∈ L2([0,∞) × Ω,Σπ, µ) and let τ be any stopping time. We need to
argue that X[0, τ ] is Σπ measurable and integrable. By Lemma 2.3.4, X[0, τ ] is Σπ

measurable. By |X[0, τ ]| ≤ |X|, X[0, τ ] is integrable.

Lemma 2.5.19. Let M be a continuous local martingale starting at zero. Let p > 1
and assume that

sup
τ

E|Mτ |p < ∞,

where the supremum is taken over all bounded stopping times. Then M is a martingale
bounded in Lp.
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Proof. Let τn be a localising sequence for M and let τ be any bounded stopping
time. Then, τn ∧ τ is a bounded stopping time for each n, and Mτn∧τ is bounded in
Lp, therefore uniformly integrable. Since M is continuous, Mτn∧τ converges to Mτ

pointwise. In particular, Mτn∧τ converges in probability to Mτ . By Lemma B.5.3,
Mτn∧τ converges in L1 to Mτ . Therefore, EMτ = lim EMτn∧τ = 0. By Lemma
2.4.13, M is a martingale.



Chapter 3

The Itô Integral

In this chapter, we will develop the theory of integration with respect to a simple
class of stochastic processes, which nevertheless will be rich enough to cover all of
our purposes. Our goal will be to create a relatively self-contained and thorough
presentation of the theory. We will not merely be concerned with results for use in
the later development of the Malliavin calculus and the applications in finance, but
will seek to convey a general understanding of the properties of the integral. Our
construction will mainly follow the methods of Steele (2000), Karatzas & Shreve
(1988), Øksendal (2005) and Rogers & Williams (2000b).

We will work on a filtered probability space (Ω,F ,Ft, P ) with a Ft brownian motion
W satisfying the usual conditions. Such a probability space exists according to our
results from Section 2.1. Our first task will be to define a meaningful stochastic integral
with respect to W . The construction will be done in several steps, first defining the
integral for a simple class of integrands, and then extending the space of integrands in
several steps.

After establishing the basic theory of integration with respect to one-dimensional Brow-
nian motion, we will consider a n-dimensional Brownian motion and extend the integral
to integrators of the form Mt =

∑n
k=1

∫ t

0
Y k

s dW k
s . The development of the integral

for this type of processes will mainly be done by reusing parts of the theory for the
one-dimensional brownian case. We will later see that in a special case, this class of
integrands actually is equal to the class of local martingales. After defining the integral
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for these integrators, we extend the theory to integrators which also have a component
of continuous paths with finite variation. The stochastic integral of a process Y with
respect to a process X will be denoted IX(Y ) or Y · X. We also use the notation
(Y ·X)t =

∫ t

0
Ys dXs.

After the construction of the integral, we will prove some of the fundamental theorems
of the theory: the Itô formula, the Martingale Representation Theorem and Girsanov’s
Theorem.

Before beginning work on the stochastic integral with respect to Brownian motion,
we develop some general results on the space of elementary processes that will prove
very useful. This allows us a separation of concerns: We will be able to see which
elements of the theory essentially only concern the nature of the space of elementary
processes and which elements concern the Brownian motion specifically. We will also
avoid letting the development of the integral be disturbed by the somewhat tedious
results for the space of elementary processes.

The plan for the chapter is thus as follows.

1. Develop some basic results for elementary processes.

2. Construct the integral with respect to Brownian motion.

3. Construct the integral with respect to integrators of type Mt =
∑n

k=1

∫ t

0
Y k

s dW k
s .

4. Construct the integral with respect to integrators with finite variation.

5. Establish the basic results of the theory.

3.1 The space of elementary processes

The purpose of this section is twofold: First, we will show how to define the integral
rigorously on the set bE of elementary processes. Second, we will prove a density result
for bE and use this result to demonstrate how to extend a class of mappings from bE
to certain L2 spaces.

Definition 3.1.1. Let Z be a stochastic variable and let σ and τ be stopping times. We
define the process Z(σ, τ ] by Z(σ, τ ]t = Z1(σ,τ ](t). We define the class of elementary



3.1 The space of elementary processes 41

processes bE by

bE =

{
n∑

k=1

Zk(σk, τk]

∣∣∣∣∣ σk ≤ τk are bounded stopping times and Zk ∈ bFσk

}
.

Clearly, bE is a linear space. Let M be any stochastic process, and let H ∈ bE be given
with H =

∑n
k=1 Zk(σk, τk]. Intuitively, we would like to define the integral IM (H)t of

H with respect to M over [0, t] by the Riemann-sum-like expression

IM (H)t =
n∑

k=1

Zk(Mτk∧t −Mσk∧t).

In order for this definition to work, however, we must make sure that this definition
does not depend on the representation of H. It is clear that if H =

∑n
k=1 Zk(σk, τk], we

also find H =
∑n−1

k=1 Zk(σk, τk]+ 1
2Zk(σk, τk]+ 1

2Zk(σk, τk], or, with bounded stopping
times ρk such that σk ≤ ρk ≤ τk, H =

∑n−1
k=1 Zk(σk, ρk] + Zk(ρk, τk]. In other words,

H can be represented on the form
∑n

k=1 Zk(σk, τk] in many equivalent ways. We
will now check that the definition of the stochastic integral does not depend on the
representation.

Lemma 3.1.2. Let H, K ∈ bE with H =
∑n

k=1 Zk(σk, τk] and K =
∑m

k=1 Z ′k(σ′k, τ ′k].
There exists representations of H and K based on the same stopping times. One
particular such representation can be obtained by putting

H =
2n+2m−1∑

i=1

Yi(Ui, Ui+1] and K =
2n+2m−1∑

i=1

Y ′
i (Ui, Ui+1],

where Ui is the i’th ordered value amongst the 2n + 2m stopping times in the family
{σ1, . . . , σn, τ1, . . . , τn, σ′1, . . . , σ

′
m, τ ′1, . . . , τ

′
m} and

Yi =
n∑

k=1

Zk1(σk≤Ui<τk) and Y ′
i =

m∑

k=1

Z ′k1(σ′k≤Ui<τ ′k).

Proof. We need to show that the representations for H and K are on the form given
for processes in bE , and we need to check that they are in fact equal to H and K,
respectively. As the proofs are the same, we only prove the results for H.

By Lemma 2.3.6, the i’th ordered value Ui is a stopping time. It is clear that Ui is
bounded. We want to show that Yi ∈ bFUi . Boundedness is obvious. Since Zk ∈ Fσk

,
by Lemma 2.3.8, Zk1(σk≤Ui) ∈ Fσk∧Ui ⊆ FUi . Therefore, we may conclude by that
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same lemma that Zk1(σk≤Ui<τk) = Zk1(σk≤Ui)1(Ui<τk) ∈ FUi∧τk
, and then it follows

that Yi is FUi
measurable. Thus,

∑2n+2m−1
i=1 Yi(Ui, Ui+1] is in bE .

It remains to show that this process is equal to H. To this end, note

Ht =
n∑

k=1

Zk1(σk,τk](t)

=
n∑

k=1

Zk1(σk,τk]∩⋃2n+2m−1
i=1 (Ui,Ui+1]

(t)

=
n∑

k=1

Zk1(σk,τk](t)
2n+2m−1∑

i=1

1(Ui,Ui+1](t)

=
2n+2m−1∑

i=1

(
n∑

k=1

Zk1(σk,τk](t)

)
1(Ui,Ui+1](t).

Exploiting the fact that either (Ui, Ui+1] ⊆ (σk, τk] or (Ui, Ui+1] ∩ (σk, τk] = ∅, we
obtain

2n+2m−1∑

i=1

(
n∑

k=1

Zk1(σk,τk](t)

)
1(Ui,Ui+1](t)

=
2n+2m−1∑

i=1

(
n∑

k=1

Zk1((Ui,Ui+1]⊆(σk,τk])(t)

)
1(Ui,Ui+1](t)

=
2n+2m−1∑

i=1

(
n∑

k=1

Zk1(σk≤Ui,Ui+1≤τk)(t)

)
1(Ui,Ui+1](t)

=
2n+2m−1∑

i=1

(
n∑

k=1

Zk1(σk≤Ui<τk)(t)

)
1(Ui,Ui+1](t)

=
2n+2m−1∑

i=1

Yi1(Ui,Ui+1](t),

as desired.

Theorem 3.1.3. For any stochastic process M , there exists a unique mapping IM

on bE, taking its value in the space of stochastic processes, such that for H with
representation

∑n
k=1 Zk(σk, τk], it holds that

IM (H)t =
n∑

k=1

Zk(Mτk∧t −Mσk∧t).

Proof. Uniqueness of the mapping is clear. We need to show that if we have two dif-
ferent representations of an element of bE , then the stochastic integral based on these
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representations yield the same result. Assume that we have two different representa-
tions of H, H =

∑n
k=1 Zk(σk, τk] =

∑m
k=1 Z ′k(σ′k, τ ′k]. We want to show that

n∑

k=1

Zk(Mτk∧t −Mσk∧t) =
m∑

k=1

Z ′k(Mτ ′k∧t −Mσ′k∧t).

By Lemma 3.1.2, we have H =
∑2n+2m−1

i=1 Yi(Ui, Ui+1] =
∑2n+2m−1

i=1 Y ′
i (Ui, Ui+1],

where Ui is the i’the ordered value amongst the 2n + 2m stopping times in the family
{σ1, . . . , σn, τ1, . . . , τn, σ′1, . . . , σ

′
m, τ ′1, . . . , τ

′
m} and

Yi =
n∑

k=1

Zk1(σk≤Ui<τk) and Y ′
i =

m∑

k=1

Z ′k1(σ′k≤Ui<τ ′k).

We will show the two equalities

n∑

k=1

Zk(Mτk∧t −Mσk∧t) =
2n+2m−1∑

i=1

Yi(MUi+1∧t −MUi∧t)

m∑

k=1

Z ′k(Mτ ′k∧t −Mσ′k∧t) =
2n+2m−1∑

i=1

Y ′
i (MUi+1∧t −MUi∧t).

The proof is basically the same for both equalities, so we only show the first one. We
get

2n+2m−1∑

i=1

Yi(MUi+1∧t −MUi∧t)

=
2n+2m−1∑

i=1

(
n∑

k=1

Zk1(σk≤Ui<τk)

)
(MUi+1∧t −MUi∧t)

=
n∑

k=1

Zk

2n+2m−1∑

i=1

1(σk≤Ui<τk)(MUi+1∧t −MUi∧t)

=
n∑

k=1

Zk(Mτk∧t −Mσk∧t),

since the sum in the second to last equation above telescopes. To prove the theorem,
then, it will suffice to show

2n−1∑

i=1

Yi(MUi+1∧t −MUi∧t) =
2n−1∑

i=1

Y ′
i (MUi+1∧t −MUi∧t),

and to do this, it will suffice to show Yi(ω) = Yi(ω)′ whenever Ui(ω) < Ui+1(ω). But in
this case, letting s be some number between Ui(ω) and Ui+1(ω), Yi(ω) = H(s) = Y ′

i (ω),
as desired.



44 The Itô Integral

Theorem 3.1.3 ensures the existence of the stochastic integral IM on bE , taking the
values we would expect no matter what the representation of the bE-element. In the
following, we will interchangeably use the notation IM (H) and H ·M for the integral
of H with respect to M over [0, t]. We will also write IM (H)t =

∫ t

0
Hs dMs. Note that

using the notation from Chapter 2 for stopped processes, we can write the process
IM (H) in compact form, with H =

∑n
k=1 Zk(σk, τk], by

IM (H) =
n∑

k=1

Zk(Mτk −Mσk).

We also want to import meaning to the symbol
∫ t

s
H(u) dM(u). The following lemmas

shows what the proper interpretation is.

Lemma 3.1.4. Let 0 ≤ x ≤ y and 0 ≤ t ≤ s. It holds that

(x, y] ∩ (s, t] = (x ∧ t ∨ s, y ∧ t ∨ s],

understanding that x ∧ t ∨ s = (x ∧ t) ∨ s and y ∧ t ∨ s = (y ∧ t) ∨ s.

Proof. We consider the three possible cases separately.

The case x ≤ y ≤ s ≤ t. We find

(x, y] ∩ (s, y] = ∅
(x ∧ t ∨ s, y ∧ t ∨ s] = (x ∨ s, y ∨ s] = (s, s] = ∅,

so the proposition holds in this case.

The case x ≤ s ≤ y ≤ t. In this case, we see that

(x, y] ∩ (s, y] = (s, y]

(x ∧ t ∨ s, y ∧ t ∨ s] = (x ∨ s, y ∨ s] = (s, y],

which verifies the statement in this case also.

The case s ≤ t ≤ x ≤ y. In the final case, we obtain

(x, y] ∩ (s, y] = ∅
(x ∧ t ∨ s, y ∧ t ∨ s] = (t ∨ s, t ∨ s] = (t, t] = ∅,

and this concludes the proof of the lemma.
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Lemma 3.1.5. Let H ∈ bE with H =
∑n

k=1 Zk(σk, τk]. It holds that

n∑

k=1

Zk(Mτk∧t∨s −Mσk∧t∨s) = IM (H)t − IM (H)s.

Proof. It will suffice to consider the term Zk(Mτk∧t∨s−Mσk∧t∨s) for each of the three
possible configurations of the intervals (σk, τk] and (s, t], and prove it equal to the
corresponding term of IM (H)t − IM (H)s.

The case s ≤ t ≤ σk ≤ τk. We get

Zk(Mτk∧t −Mσk∧t)− Zk(Mτk∧s −Mσk∧s)

= Zk(Mt −Mt)− Zk(Ms −Ms)

= Zk(Mτk∧t∨s −Mσk∧t∨s).

showing the statement in this case.

The case s ≤ σk ≤ t ≤ τk. Here, we find

Zk(Mτk∧t −Mσk∧t)− Zk(Mτk∧s −Mσk∧s)

= Zk(Mt −Mσk
)− Zk(Ms −Ms)

= Zk(Mτk∧t∨s −Mσk∧t∨s).

The case s ≤ t ≤ σk ≤ τk. In the final case, we obtain

Zk(Mτk∧t −Mσk∧t)− Zk(Mτk∧s −Mσk∧s)

= Zk(Mτk
−Mσk

)− Zk(Mτk
−Mσk

)

= Zk(Mτk∧t∨s −Mσk∧t∨s),

as desired.

Conclusion. All in all, we conclude that

n∑

k=1

Zk(Mτk∧t∨s −Mσk∧t∨s)

=
n∑

k=1

Zk(Mτk∧t −Mσk∧t)− Zk(Mτk∧s −Mσk∧s)

= IM (H)t − IM (H)s,

and the lemma is proved.
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Lemma 3.1.5 shows that the natural definition of the integral
∫ t

s
H(u) dM(u) coincides

with IM (H)t−IM (H)s, which is of course not particularly surprising. In the following,
we will by

∫ t

s
H(u) dM(u) denote the variable IM (H)t − IM (H)s.

Lemma 3.1.6. The integral mapping IM on bE is linear.

Proof. Let H and K in bE be given with representations

H =
n∑

k=1

Zk(σk, τk] and K =
m∑

i=1

Yi(Vi,Wi]

and let λ, µ ∈ R. Then

IM (λH + µK)t

= IM

(
n∑

k=1

λZk(σk, τk] +
m∑

i=1

µYi(Vi,Wi]

)

=
n∑

k=1

λZk(Mτk(t)−Mσk(t)) +
m∑

i=1

µYi(MWi(t)−MVi(t))

= λIM (H)t + µIM (K)t,

which was to be shown.

We have now shown how to define the integral on bE for any process M in a sensible
way, and we have checked linearity of the integral. In order to extend the integral to
larger spaces of integrands, we will need to require more structure on M . We will see
how to do this in the following sections.

Next, we will show an extension result which will be crucial to the later development of
the integral. First, we show that there is a large class of L2 spaces on [0,∞)×Ω which
contain bE as a dense subspace. Recall that Σπ denotes the progressive σ-algebra on
[0,∞)× Ω.

Theorem 3.1.7. Let µ be a measure on Σπ which is absolutely continuous with respect
to λ⊗ P , such that µ([0, T ]× Ω) < ∞ for all T > 0. Then bE is a dense subspace of
L2(µ).

Proof. By ‖ · ‖µ, we denote the standard seminorm of L2(µ). We first show that bE is
a subspace of L2(µ). Let H ∈ bE be given with H =

∑n
k=1 Zk(σk, τk]. Using Lemma
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2.3.4, we see that H is progressive. We find

‖H‖2µ =
n∑

k=1

∫
Zk(ω)1(σk(ω),τk(ω)](t) dµ(t, ω)

≤
n∑

k=1

‖Zk‖∞
∫

1[0,‖σk‖∞+‖τk‖∞]×Ω dµ(t, ω)

=
n∑

k=1

‖Zk‖∞µ([0, ‖σk‖∞ + ‖τk‖∞]× Ω) < ∞,

as desired. The proof of the density of bE proceeds in four steps, each consisting of
showing that a particular subset of L2(µ) is dense in L2(µ). The four subsets are:

1. Processes which are zero from a point onwards.

2. Processes which are zero from a point onwards and bounded.

3. Processes which are zero from a point onwards, bounded and continuous.

4. The set bE .

Step 1: Approximation by processes which are zero from a point onwards.
Let X ∈ L2(µ) and define Xn = X1[0,T ]×Ω. Since [0, T ]× Ω ∈ Σπ, Xn is progressive.
Clearly ‖Xn‖µ ≤ ‖X‖µ < ∞, so Xn ∈ L2(µ). And Xn is zero from T onwards. Finally,

lim ‖X −Xn‖2µ = lim
∫

1(T,∞)×ΩX2 dµ = 0

by dominated convergence. This means that in the following, in our work to show
density of bE in L2(µ), we can assume that the process to be approximated is zero
from a point onwards.

Step 2: Approximation by bounded processes. We next show that each element
of L2(µ), zero from a point onwards, can be approximated by bounded processes zero
from a point onwards. Therefore, let X ∈ L2(µ) be zero from T onwards and define
Xn(t) = X(t)1[−n,n](Xt). Then Xn is progressive and bounded. And we clearly have
‖Xn‖µ ≤ ‖X‖µ < ∞, so Xn ∈ L2(µ), and Xn is zero from T onwards. Furthermore,

lim
n
‖X −Xn‖2µ = lim

∫
1(|X|>n)X

2 dµ = 0

by dominated convergence.
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Step 3: Approximation by continuous processes. We now show that each
element of L2(µ), bounded and zero from a point onwards, can be approximated by
continuous processes of the same kind. Let X ∈ L2(µ) be bounded and zero from T

onwards. Put

Xn(t) =
1
1
n

∫ t

(t− 1
n )+

X(s) ds,

where x+ = max{0, x}. Clearly, Xn is continuous and ‖Xn‖∞ ≤ ‖X‖∞ < ∞, so Xn

is bounded. For t ≥ T + 1
n , Xn(t) = 0. We will show that the sequence Xn is in L2(µ)

and approximates X.

Since X is progressive, X|[0,t]×Ω is B[0, t] ⊗ Ft measurable. Therefore, Xn(t) is Ft

measurable. Since Xn is also continuous, Xn is progressive by Lemma 2.2.4. Since Xn

is bounded and zero from a certain point onwards, we conclude Xn ∈ L2(µ).

It remains to show convergence in ‖ · ‖µ of Xn to X. By Theorem A.2.4, Xn(ω)
converges Lebesgue almost surely to X(ω) for all ω ∈ Ω. This means that we have
convergence λ⊗P everywhere. Absolute continuity yields that Xn converges µ-almost
surely to X. Since Xn and X have common support [0, T + 1] × Ω of finite measure
and are bounded by the common constant ‖X‖∞, by dominated convergence we obtain
lim ‖X −Xn‖µ = 0.

Step 4: Approximation by elementary processes. Finally, we show that for each
X ∈ L2(µ) which is continuous, bounded and zero from some point T and onwards,
we can approximate X with elements of bE .

To do this, we define

Xn(t) =
∞∑

k=0

X

(
k

2n

)
1[ k

2n , k+1
2n )(t).

Since Xn is zero from T and onwards, the sum defining Xn is zero from the term
number [2nT ] + 2 and onwards. We therefore conclude Xn ∈ bE . Since k

2n = [2nt]
2n

when k
2n ≤ t < k+1

2n , we can also write Xn(t) = X( [2nt]
2n ). In particular, Xn is zero

from T +1 and onwards. Since lim [2nt]
2n = t for all t ≥ 0, it follows from the continuity

of X that Xn converges pointwise to X. As in the previous step, since Xn and X

has common support of finite measure and are bounded by the common constant
‖X‖∞, dominated convergence yields lim ‖X−Xn‖µ = 0. This shows the claim of the
theorem.

Note that in the proof of Theorem 3.1.7, we actually showed a stronger result than
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just that bE is dense in L2(µ). Our final stage of approximations were with processes
in the set

bS =

{
n∑

k=1

Zk(sk, sk]

∣∣∣∣∣ sk ≤ tk are deterministic times and Zk ∈ bFσk

}

so we have in fact demonstrated that bS is dense in L2(µ), even though we will not
need this stronger fact.

In our coming definition of the integral, we will have at our disposal an integral map-
ping I : bE → cM2

0 which is linear and isometric, when bE is considered as a subspace
of a suitable space L2 space on Σπ. The following theorem shows that such mappings
always can be extended from bE to the L2 space.

Theorem 3.1.8. Let µ be a measure on Σπ, absolutely continuous with respect to
λ⊗P and such that µ([0, T ]×Ω) < ∞ for all T > 0. Let I : bE → cM2

0 be linear and
isometric, considering bE as a subspace of L2(µ). There exists a linear and isometric
extension of I to L2(µ). This mapping is unique up to indistinguishability.

Comment 3.1.9 The linearity stated in the theorem is to be understood as linearity
up to indistinguishability. This kind of “up to indistinguishability” qualifier will be
implicit in much of the following. ◦

Proof. First, we construct the mapping. Let X ∈ L2(µ). By Theorem 3.1.7, bE
is dense in L2(B), so there exists a sequence Hn in bE converging to X in L2(µ).
In particular, Hn is a cauchy sequence in L2(µ). By the isometry property of I on
bE , I(Hn) is then a cauchy sequence in cM2

0. Since cM2
0 is complete by Lemma

2.4.9, there exists Y ∈ cM2
0 such that I(Hn) converges to Y , and Y is unique up to

indistinguishability. We now have a candidate for I(X). However, we need to make
sure that this candidate does not depend on the sequence in bE approximating X.
Assume therefore that Kn is another such sequence, and let Z be a limit of I(Kn).
Then, we have

‖Y − Z‖cM2
0

≤ lim sup ‖Y − I(Hn)‖cM2
0
+ ‖I(Hn)− I(Kn)‖cM2

0
+ ‖I(Kn)− Z‖cM2

0

= lim sup ‖In(Hn −Kn)‖cM2
0

= lim sup ‖Hn −Kn‖cM2
0
,

and since lim sup ‖Hn −Kn‖µ ≤ lim sup ‖Hn −X‖µ + ‖X −Kn‖µ = 0, we conclude
that for each X ∈ L2(µ), there is an element Y of cM2

0, unique up to indistinguisha-
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bility, such that for any sequence (Hn) in bE converging to X in L2(µ), it holds that
lim I(Hn) = Y . We define I(X) as some element in the equivalence class of Y .

Having constructed the mapping I, we need to check the properties of the mapping
given in the theorem. To prove the isometry property, let X ∈ L2(µ) and let (Hn) ⊆ bE
converge to X in L2(µ). Then I(X) = lim I(Hn) in cM2

0, and by the isometry property
on bE ,

‖I(X)‖cM2
0

= lim ‖I(Hn)‖cM2
0

= lim ‖Hn‖µ = lim ‖X‖µ.

Next, we show linearity. We wish to prove that for X, Y ∈ L2(B) and λ, µ ∈ R, it holds
that I(λX +µY ) = λI(X)+µI(Y ) up to indistinguishability. We know that the claim
holds for elements of bE . Letting (Hn) and (Kn) be sequences in bE approximating
X and Y , respectively, we then find

I(λX + µY ) = I(λ limHn + µ limKn)

= lim I(λHn + µKn)

= lim λI(Hn) + µI(Kn)

= λI(X) + µI(Y ),

up to indistinguishability, where the limits are in L2(µ) and cM2
0.

This proves the statements about I. It remains to prove uniqueness of I. Assume
therefore that we have two mappings, I and J , with the properties stated in the
theorem. Obviously, I(H) = J(H) for H ∈ bE . Let X ∈ L2(µ) and let (Hn) be a
sequence in bE approximating H. Then,

‖I(X)− J(X)‖cM2
0

= ‖ lim I(Hn)− limJ(Hn)‖cM2
0

= lim ‖I(Hn)− J(Hn)‖cM2
0

= 0,

showing that I(X) and J(X) are indistinguishable.

Comment 3.1.10 The proof of the existence of the extension in Theorem 3.1.8 was
made without reference to standard theorems. Another, less direct, method of proof,
would be to define the integral modulo equivalence classes making the pseudometric
spaces involved into metric spaces. In this case, results for continuous extensions
from the theory of metric spaces can be applied directly to obtain the extension, see
Theorem 8.16 of Carothers (2000). ◦

We are now ready to begin the development of the stochastic integral proper.
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3.2 Integration with respect to Brownian motion

In this section, we define the stochastic integral with respect to Brownian motion. The
construction takes place in three phases. Our results from Section 2.5 and Section 3.1
have paved much of the way for our work, so we will be able to concentrate on the
important parts of the process, not having to deal with technical details. The three
phases are:

1. Definition of the integral on bE by a Riemann-sum definition.

2. Definition of the integral on the space L2(W ) by a density argument.

3. Definition of the integral on L2(W ) by a localisation argument.

Let W be a one-dimensional Ft Brownian motion. We begin by defining and inves-
tigating the stochastic integral on bE . From Theorem 3.1.3 and Lemma 3.1.6, we
know that the mapping IW from bE to the space of stochastic processes given by, for
H =

∑∞
k=1 Zk(σk, τk],

IW (H) =
n∑

k=1

Zk(W τk −Wσk)

is well-defined and linear. We will now show that IW maps into the space cM2
0 of

continuous square-integrable martingales zero at zero.

Lemma 3.2.1. Wt and W 2
t − t are Ft martingales.

Comment 3.2.2 It is well known that if Wt and W (t)2 − t are martingales with
respect to the filtration generated by the Brownian motion W itself. The important
statement of the lemma is that in our case, where we have an Ft Brownian motion,
the martingales can be taken with respect to Ft. ◦

Proof. We first show that W is an Ft martingale. Let s ≤ t be given, it then holds
that Wt − Ws = Ws+t−s − Ws is independent of Fs and normally distributed. In
particular, E(Wt −Ws|Fs) = E(Wt −Ws) = 0, showing the martingale property.

To show that W 2
t − t is a Ft martingale, we note that for s ≤ t, we have

W 2
t −W 2

s = (Wt −Ws)2 + 2(Wt −Ws)Ws,
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and therefore, since Wt −Ws is independent of Fs,

E(W 2
t −W 2

s |Fs) = E((Wt −Ws)2|Fs) + 2WsE(Wt −Ws|Fs)

= t− s,

showing E(W 2
t − t|Fs) = W 2

s − s.

Theorem 3.2.3. For any H ∈ bE, IW (H) ∈ cM2
0 and EIW (H)2∞ = E

∫∞
0

H2
t dt.

Proof. The process IW (H) is clearly continuous, since W is continuous.

Step 1: The martingale property. We use Lemma 2.4.13. Let H ∈ bE with
H =

∑n
k=1 Zk[σk, τk), we then have limt→∞ IW (H)t =

∑n
k=1 Zk(Wσk

− Wτk
), so

IW (H) has a well-defined almost sure limit. Now let τ be any stopping time. Since τk

and σk are bounded stopping times, optional sampling and Lemma 2.4.11 yields

E(H ·W )τ = E

n∑

k=1

Zk(W τk
τ −Wσk

τ )

=
n∑

k=1

E(ZkE(W τ
τk
−W τ

σk
|Fσk

))

= 0.

By Lemma 2.4.13, then, H ·W is a martingale.

Step 2: Square-integrability. To show that IW (H) is bounded in L2, it will
suffice to show the moment equality for IW (H)∞, since IW (H)2 is a submartin-
gale and its second moments are therefore increasing. As before, let H ∈ bE with
H =

∑n
k=1 Zk[σk, τk). By Lemma 3.1.2, we can assume that the stopping times are

ordered such that τk ≤ σk+1 for all k < n.

We find

EIW (H)2∞

= E

(
n∑

k=1

Zk(Wτk
−Wσk

)

)2

= E

n∑

k=1

n∑

i=1

ZkZi(Wτk
−Wσk

)(Wτi −Wσi)

=
n∑

k=1

EZ2
k(Wτk

−Wσk
)2 +

n∑

k 6=i

EZkZi(Wτk
−Wσk

)(Wτi −Wσi).
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Here we have, applying optional sampling for bounded stopping times and using that
W 2

t − t by Lemma 3.2.1 is a Ft-martingale,

EZ2
k(Wτk

−Wσk
)2

= EZ2
kE((Wτk

−Wσk
)2|Fσk

)

= EZ2
kE(W 2

τk
− τk + W 2

σk
+ σk − 2Wτk

Wσk
|Fσk

) + EZ2
kE(τk − σk|Fσk

)

= EZ2
kE(W 2

τk
− τk − (W 2

σk
− σk)|Fσk

) + EZ2
k(τk − σk)

= EZ2
k(τk − σk).

Furthermore, for i < k we find that, again by optional sampling, using the ordering of
the stopping times,

EZkZi(Wτk
−Wσk

)(Wτi
−Wσi

)

= EZi(Wτi −Wσi)ZkE((Wτk
−Wσk

)|Fσk
)

= 0.

Finally, we conclude

EIW (H)2∞ =
n∑

k=1

EZ2
k(τk − σk) = E

∫ ∞

0

H2
u du,

as desired.

We have now proven that IW maps bE into cM2
0. If we can embed bE into a L2-space

such that IW becomes an isometry, we can use Theorem 3.1.8 to extend IW to this
space.

Definition 3.2.4. By L2(W ) we denote the set of adapted and measurable processes
X such that E

∫∞
0

X2
t dt < ∞. L2(W ) is then equal to the L2 space of square integrable

functions on [0,∞) × Ω with the progressive σ-algebra Σπ under the measure λ ⊗ P .
We denote the L2 seminorm on L2(W ) by ‖ · ‖W .

Theorem 3.2.5. There exists a linear isometric mapping IW : L2(W ) → cM2
0 such

that for H ∈ bE, with H =
∑n

k=1 Zk[σk, τk), IW (H) =
∑n

k=1 Zk(W τk −Wσk). This
mapping is unique up to indistinguishability.

Proof. Considering bE as a subspace of L2(W ), we have by Theorem 3.2.3 for H ∈ bE
that ‖IW (H)‖2

cM2
0

= ‖IW (H)∞‖22 = E
∫∞
0

H(t)2 dt = ‖H‖2W , so IW : bE → cM2
0 is

isometric. Since it is also linear, the conditions of Theorem 3.1.8 are satisfied, and the
conclusion follows.
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Comment 3.2.6 The isometry property of IW is known as Itô’s isometry. ◦

We still need to make a final extension of the stochastic integral with respect to
Brownian motion. This extension is done by the technique of localisation. It is during
this step that the results of Section 2.5 will prove worth their while.

The basic idea of the localisation is that if a process is in L2(W ) when we cut it off
and put it to zero from a certain point onwards, then we can define the integral up to
this time. If the cutoff times tend to infinity, we can paste the integrals together and
obtain a reasonable stochastic integral.

The cutoff procedure will, in order to obtain an appropriate level of generality, be
done at a stopping time. We will need two kinds of localization, described in Section
2.5, namely stopping and zero-stopping. We review the localisation concepts here
for completeness. We say that a process M is locally, or L-locally, in cM2

0 if there
is a sequence of stopping times τn increasing to infinity such that Mτn , defined by
Mτn

t = Mτn∧t, is in cM2
0. We say that a process X is zero-locally, or L0-locally,

in L2(W ) if there is a sequence of stopping times τn increasing to infinity such that
X[0, τn], defined by X[0, τn]t = Xt1[0,τ ](t), is in L2(W ).

We denote the processes L-locally in cM2
0 by cML

0 , and we denote the processes L0-
locally in L2(W ) by L2(W ). We call cML

0 the space of continuous local martingales.
We are going to use Theorem 2.5.11 to prove that there is a unique extension of IW

from L2(W ) → cM2
0 to L2(W ) → cML

0 such that IW (X)τ = IW (X[0, τ ]) for any
stopping time τ . We will therefore need to check the hypotheses of this theorem.

Lemma 3.2.7. The spaces L2(W ) and L2(W ) are linear and L0-stable. The spaces
cM2

0 and cML
0 are linear and L-stable.

Proof. By Lemma 2.5.18, L2(W ) is L0-stable, and it is clearly linear. By Lemma 2.5.9,
L2(W ) is linear and L0-stable. By Lemma 2.4.11, martingales are L-stable. Then cM2

0

is also L-stable. Since cM2
0 is also linear, Lemma 2.5.9 yields that cML

0 is linear.

Theorem 3.2.8. Let X ∈ L2(W ) and let τ be a stopping time. Then it holds that
I(X)τ = I(X[0, τ ]).

Proof. We first show that the result holds for bE , and then extend by a density argu-
ment.
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Step 1: The elementary case. Let H ∈ bE with H =
∑n

k=1 Zk(σk, τk]. We have
that

H[0, τ ](t) =
n∑

k=1

Zk1(σk,τk](t)1[0,τ ](t) =
n∑

k=1

Zk1(σk≤τ)1(σk∧τ,τk∧τ ](t),

and by Lemma 2.3.8, Zk1(σk≤τ) ∈ Fσk∧τ . Therefore, H[0, τ ] ∈ bE , and we have

I(H[0, τ ])t =
n∑

k=1

Zk1(σk≤τ)(Wτk∧τ∧t −Wσk∧τ∧t)

=
n∑

k=1

Zk(Wτk∧τ∧t −Wσk∧τ∧t)

= I(H)τ
t .

Step 2: The general case. Now let X ∈ L2(W ) be arbitrary and let Xn be a
sequence in bE converging to X. We trivially have ‖Xn[0, τ ]−X[0, τ ]‖W ≤ ‖Xn−X‖W ,
so Xn[0, τ ] converges to X[0, τ ] in L2(W ). Since I(Xn[0, τ ]) = I(Xn)τ , the isometry
property of the integral yields

‖I(X[0, τ ])− I(X)τ‖cM2
0

≤ ‖I(X[0, τ ])− I(Xn[0, τ ])‖cM2
0
+ ‖I(Xn)τ − I(X)τ‖cM2

0

≤ ‖I(X[0, τ ])− I(Xn[0, τ ])‖cM2
0
+ ‖I(Xn)− I(X)‖cM2

0

= ‖X[0, τ ]−Xn[0, τ ]‖W + ‖Xn −X‖W

≤ 2‖Xn −X‖W .

Thus, I(Xτ ) = I(X)τ up to indistinguishability, as desired.

With Theorem 3.2.8 in hand, we are ready to extend the integral.

Theorem 3.2.9. There exists an extension of IW : L2(W ) → cM2
0 to a mapping

from L2(W ) to cML
0 . The extension is uniquely determined by the criterion that

(X ·W )τ = X[0, τ ] ·W for any X ∈ L2(W ). The extension is linear.

Proof. We apply Theorem 2.5.11 with the localisation concepts L0 of zero-stopping
and L of stopping. From Lemma 3.2.7, we know that L2(W ) is L0-stable and cM2

0

is L-stable. And by Theorem 3.2.8, the localisation hypothesis of Theorem 2.5.11 is
satisfied. Theorem 2.5.11 therefore immediately yields the desired extension, and by
Corollary 2.5.12, the extension is linear.
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Theorem 3.2.9 yields the “pasting” definition of the integral of processes in L2(W )
discussed earlier. For general X ∈ L2(W ) with localising sequence τn, the property
IW (X)τn = IW (X[0, τn]) relates the values of the integral for general X to the values
of the integral on L2(W ).

We have now defined the stochastic integral with respect to Brownian motion for as
many processes as we will need. Our next goal is to extend the integral to other inte-
grators than Brownian motion. Before this, we summarize our results: Our stochastic
integral IW with respect to Brownian motion is a linear mapping from L2(W ) to cML

0 .
It has the following properties:

1. For X ∈ L2(W ), X ·W is a square-integrable martingale.

2. For H ∈ bE with H =
∑n

k=1 Zk(σk, τk], H ·W =
∑n

k=1 Zk(W τk −Wσk).

3. For any X ∈ L2(W ) and any stopping time τ , (X ·W )τ = X[0, τ ] ·W .

3.3 Integration with respect to integrators in ML
W

We now use the results from Section 3.2 on integration with respect to Brownian
motion to define the stochastic integral for larger classes of integrators and integrands.
We begin with a lemma to set the mood. We still denote by W a one-dimensional Ft

Brownian motion.

Lemma 3.3.1. Let H ∈ bE with H =
∑∞

k=1 Zk(σk, τk] and let Y ∈ L2(W ). Then
HY ∈ L2(W ) and

∑n
k=1 Zk((Y ·W )τk − (Y ·W )σk) = HY ·W .

Proof. Since H is bounded and Σπ-measurable, it is clear that HY ∈ L2(W ). To prove
the other statement, note that by linearity, it will suffice to consider H of the form
H = Z(σ, τ ].

Step 1: The case Y ∈ bE. Assume Y =
∑n

k=1 Xk(σk, τk], we then find

Z(σ, τ ]Y =
n∑

k=1

Z(σ, τ ]Xk(σk, τk]

=
n∑

k=1

ZXk1(σk≤τ)(σk ∧ τ ∨ σ, τk ∧ τ ∨ σ],
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by Lemma 3.1.4, where Xk1(σk≤τ) is Fσk∧τ measurable by Lemma 2.3.8, so ZXk1(σk≤τ)

is Fσk∧τ∨σ measurable. This shows Z(σ, τ ]Y ∈ bE , and we may then conclude

Z((Y ·W )τ − (Y ·W )σ)

= Z

(
n∑

k=1

Xk(W τk∧τ −Wσk∧τ )−
n∑

k=1

Xk(W τk∧σ −Wσk∧σ)

)

=
n∑

k=1

ZXk (W τk∧τ −Wσk∧τ −W τk∧σ + Wσk∧σ)

=
n∑

k=1

ZXk (W τk∧τ∨σ −Wσk∧τ∨σ)

=
n∑

k=1

ZXk1(σk≤τ) (W τk∧τ∨σ −Wσk∧τ∨σ)

= HY ·W.

Step 2: The case Y ∈ L2(W ). Assuming Y ∈ L2(W ), let Hn be a sequence in
bE converging towards Y . Since H is bounded, lim ‖HY − HHn‖W = 0. From the
continuity of the integral, Hn ·W converges to Y ·W . Therefore, (Hn ·W )τ−(Hn ·W )σ

converges to (Y ·W )τ − (Y ·W )σ. Because Z is bounded, we obtain

Z((Y ·W )τ − (Y ·W )σ) = lim
n

Z((Hn ·W )τ − (Hn ·W )σ)

= lim
n

HHn ·W
= lim

n
HY ·W,

where the limits are in L2(W ).

Step 3: The case Y ∈ L2(W ). Let τn be a localising sequence for Y . Then

(Z(Y ·W )τ − (Y ·W )σ)τ = Z((Y [0, τn] ·W )τ − (Y [0, τn] ·W )σ)

= HY [0, τn] ·W
= (HY ·W )τn ,

and letting τn tend to infinity, we obtain the result.

What Lemma 3.3.1 shows is that if we consider Y ·W as an integrator, then the integral
of an element H ∈ bE based on the Riemann-sum definition of Section 3.1 satisfies
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H · (Y ·W ) = HY ·W . We call this property the associativity of the integral. We will
use this as a criterion to generalize the stochastic integrals to integrators of the form
Y · W where Y ∈ L2(W ). The most obvious thing to do would be to define, given
M = Y · W with Y ∈ L2(W ), the integral of a process X with XY ∈ L2(W ) with
respect to M by X ·M = XY ·W . This is what we will do, but with a small twist. Until
now, in this section and the preceeding, we have only considered a one-dimensional
Ft Brownian motion. In our financial applications, we are going to need to work with
multidimensional Brownian motion, and we are going to need integrators that depend
on several coordinates of such a multidimensional Brownian motion at once. Therefore,
we will now consider an n-dimensional Ft Brownian motion W = (W 1, . . . ,Wn), as
described in Definition 2.1.5. Our goal will be to define the stochastic integral with
respect to integrators of the form

Mt =
n∑

k=1

∫ t

0

Y k
s dW k

s

by associativity, as described above. We maintain the definitions of Section 3.2 by
letting L2(W ) denote the Σπ measurable elements of Y ∈ L2(λ ⊗ P ) and letting
L2(W ) denote the processes L0-locally in L2(W ). The next lemma shows that each of
the coordinate processes fall under the category we worked with in the last section.

Lemma 3.3.2. If W = (W 1, . . . , Wn) is an n-dimensional Ft Brownian motion, then
for each k ≤ n, W k is a one-dimensional Ft Brownian motion.

Proof. Let t ≥ 0. We know that s 7→ Wt+s −Wt is a n-dimensional Brownian motion
which is independent of Ft. Therefore s 7→ W k

t+s−W k
t is a one-dimensional Brownian

motion independent of Ft.

In the following, whenever we write Y ∈ L2(W )n, we mean that Y is an n-dimensional
proces, Y = (Y 1, . . . , Y n), such that Y k ∈ L2(W ) for each k. This notation is of
course also extended to other spaces than L2(W ).

Definition 3.3.3. Let cML
W denote the class of processes M such that there exists

Y ∈ L2(W )n with Mt =
∑n

k=1

∫ t

0
Y k

s dW k
s . In this case, we also write M = Y ·W .

In order to define the integral with respect to processes in cML
W by associativity, we

need to check that the integrand processes Y k in the representation of elements of
cML

W are unique. This is our next order of business.
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Lemma 3.3.4. For any i, j ≤ n with i 6= j, W iW j is a martingale.

Proof. Since the conditional distribution of (W i
t − W i

s ,W
j
t − W j

s ) given Fs is two-
dimensional normal with mean zero and zero covariation, we have

E(W i
t W

j
t + W i

sW
j
s |Fs)

= E((W i
t −W i

s)(W
j
t −W j

s )|Fs) + E(W i
t W

j
s |Fs) + E(W i

sW
j
t |Fs)

= W j
s E(W i

t |Fs) + W i
sE(W j

t |Fs)

= 2W j
s W i

s ,

so E(W i
t W

j
t |Fs) = W i

sW
j
s , and W iW j is a martingale.

Lemma 3.3.5. Let i, j ≤ n with i 6= j. For any Y i, Y j ∈ L2(W ), (Y i ·W i)(Y j ·W j)
is a uniformly integrable martingale.

Proof. We use Lemma 2.4.13. Clearly, (Y i ·W i)(Y j ·W j) has an almost sure limit. It
will therefore suffice to show that for any stopping time τ ,

E

∫ τ

0

Y i
s dW i

s

∫ τ

0

Y j
s dW j

s = 0.

Step 1: The elementary case. First consider the case where Y i, Y j ∈ bE with

Y i =
n∑

k=1

Zi
k(σk, τk] and Y j =

n∑

k=1

Zj
k(σk, τk].

We then find

E

∫ τ

0

Y i
s dW i

s

∫ τ

0

Y j
s dW j

s

= E

(
n∑

k=1

Zi
k((W i)τk

τ − (W i)σk
τ )

)(
n∑

k=1

Zj
k((W j)τk

τ − (W j)σk
τ )

)

=
n∑

k=1

n∑
m=1

EZi
kZj

m((W i)τk
τ − (W i)σk

τ )((W j)τm
τ − (W j)σm

τ )

=
n∑

k=1

n∑
m=1

EZi
kZj

m((W i)τk
τ − (W i)σk

τ )((W j)τm
τ − (W j)σm

τ ).

Now, by Lemma 3.3.4, W iW j is a martingale, and therefore (W iW j)τ is also a mar-
tingale. Using the optional stopping theorem, we therefore find that the above is zero.
We may then conclude E

∫ τ

0
Y i

s dW i
s

∫ τ

0
Y j

s dW j
s = 0.
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Step 1: The general case. In the case of general Y i, Y j ∈ L2(W ), there exists
sequences (Hn) and (Kn) in bE converging to Y i and Y j , respectively. By Lemma
3.1.2, we may assume that Hn and Kn are based on the same stopping times, and
therefore, by what we have just shown,

E

∫ τ

0

Hn(s) dW i
s

∫ τ

0

Kn(s) dW j
s = 0.

Now, since
∫ τ

0
Hn(s) dW i

s converges to
∫ τ

0
Y i

s dW i
s and

∫ t

0
Kn(s) dW j

s converges to∫ τ

0
Y j

s dW j
s in L2(W ) by the Itô isometry, Lemma B.2.1 yields that the product con-

verges in L1 and therefore

E

∫ τ

0

Y i
s dW i

s

∫ τ

0

Y j
s dW j

s = 0 = lim
n

E

∫ τ

0

Hn(s) dW i
s

∫ τ

0

Kn(s) dW j
s = 0,

as desired.

Lemma 3.3.6. If Y ∈ L2(W )n, then E(Y ·W )2∞ =
∑n

k=1 ‖Y k‖2W .

Proof. By Lemma 3.3.5, the Itô isometry and optional sampling for uniformly inte-
grable martingales,

E

(
n∑

k=1

∫ ∞

0

Y k
s dW k

s

)2

=
n∑

k=1

n∑

i=1

E

∫ ∞

0

Y k
s dW k

s

∫ ∞

0

Y i
s dW i

s

=
n∑

k=1

E

(∫ ∞

0

Y k
s dW k

s

)2

=
n∑

k=1

‖Y k‖2W .

Lemma 3.3.7. Assume M ∈ cML
W with M =

∑n
k=1 Y k

s dW k
s and M =

∑n
k=1 Zk

s dW k
s .

Then Y k and Zk are equal λ⊗ P almost surely for k ≤ n.

Proof. First consider the case where Y k, Zk ∈ L2(W ) for k ≤ n. We then find, by
Lemma 3.3.6,

E

(
n∑

k=1

∫ ∞

0

Y k
s dW k

s −
n∑

k=1

∫ ∞

0

Zk
s dW k

s

)2

= E

(
n∑

k=1

∫ ∞

0

Y k
s − Zk

s dW k
s

)2

=
n∑

k=1

‖Y k
s − Zk

s ‖2W .
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This shows that Y k and Zk are equal except on a set of λ ⊗ P measure zero. Next,
consider the general case. Let τn be a sequence of stopping times tending to infinity
such that (Y k)τn , (Zk)τn ∈ L2(W ). We then know that (Y k)τn and (Zk)τn are equal
λ⊗ P almost surely, and therefore Y k and Zk are equal λ⊗ P almost surely as well,
as desired.

We can now make the definition of the stochastic integral with respect to processes
in cML

W . As mentioned earlier, whenever we have Y ∈ L2(W )n, we will use the
shorthand (Y ·W )t =

∑n
k=1 Y k

s dW k
s . Also, when X is a one-dimensional process, we

will write XY = (XY 1, . . . , XY n).

Definition 3.3.8. Let M ∈ cML
W with M = Y ·W , Y ∈ L2(W )n. We define L2(M)

as the space of Σπ measurable processes X such that XY ∈ L2(W )n. For X ∈ L2(M),
we define IM (X) = XY ·W . IM is then a mapping from L2(M) to cML

W .

Comment 3.3.9 Since the shorthands we use will be implicit in most of the following,
let us take a moment to see how they figure in the above definition. We defined L2(M)
as the space of processes X such that XY ∈ L2(W )n. Here, Y is a n-dimensional
process such that Y k ∈ L2(W ). Thus, XY = (XY 1, . . . , XY n) and the statement
XY ∈ L2(W )n means that XY k ∈ L2(W ) for all k ≤ n.

We defined IM (X) = XY · W . Again XY is an n-dimensional process in L2(W )n,
and W is a n-dimensional Ft Brownian motion. Thus, the definition really means
IM (X)t =

∑n
k=1

∫ t

0
XsY

k
s dW k

s . This is well-defined up to indistinguishability by
Lemma 3.3.7, since if M = Z · W is another representation, Zk and Y k are equal
λ ⊗ P almost surely, so XZk and ZY k are equal λ ⊗ P almost surely, and therefore
the stochastic integrals XY k ·W k and XZk ·W k agree up to indistinguishability.

It is important to note that even if we are working with n-dimensional Brownian
motions and n-dimensional integrand processes Y ∈ L2(W )n, the space cML

W of inte-
grators is still only a space of one-dimensional processes, as is the space of integrands
L2(M). The multidimensionality appears because we want our integrands to be able
to depend on all the coordinates of the Brownian motion, and this is done by summing
integrals with respect to each coordinate. ◦

Definition 3.3.8 defines the stochastic integral for any M ∈ cML
W and X ∈ L2(M). We

will spend the rest of the section investigating the properties of this integral. First, we
will show linearity, that the integral can be written as a Riemann-sum for elementary
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processes, that it preserves stopping in an appropriate manner, and associativity. After
this, we will work to understand under which conditions the integral is a square-
integrable martingale. We will also develop some approximation results that will be
useful in our work with the integral. In the following, let M ∈ cML

W with M = Y ·W ,
Y ∈ L2(W )n, unless anything else is implied.

It is clear that cML
W and L2(M) are linear spaces, and by IM (X) =

∑n
k=1 IW k(XY k),

it is immediate that IM is linear for any M ∈ cML
W .

Lemma 3.3.10 (Riemann representation). If H ∈ bE with H =
∑m

k=1 Zk(σk, τk],
H ∈ L2(M) and H ·M =

∑m
k=1 Zk(Mτk −Mσk).

Proof. By Lemma 3.3.1, HY k ∈ L2(W k) for all k ≤ n, so H ∈ L2(M), and

(H ·M)t =
n∑

i=1

∫ t

0

HsY
i
s dW i

s

=
n∑

i=1

m∑

k=1

Zk((Y i ·W i)τk − (Y i ·W i)σk)

=
m∑

k=1

Zk

n∑

i=1

(Y i ·W i)τk − (Y i ·W i)σk

=
m∑

k=1

Zk(Mτk −Mσk),

as desired.

For Y ∈ L2(W )n, we write Y [0, τ ] = (Y 1[0, τ ], . . . , Y n[0, τ ]). From Theorem 3.2.9, it
is clear that (Y ·W )τ = Y [0, τ ] ·W .

Lemma 3.3.11 (Localisation properties). The spaces cML
W and L2(M) are stable

under stopping and zero-stopping, respectively, and L2(M) ⊆ L2(Mτ ). It holds that
(X ·M)τ = X[0, τ ] ·M = X ·Mτ .

Proof. cML
W is L-stable since (Y ·W )τ = Y [0, τ ] ·W and Y [0, τ ] ∈ L2(W )n by Lemma

3.2.7. L2(M) is L0-stable because, if X ∈ L2(M), X[0, τ ]Y k = (XY k)[0, τ ], which is
in L2(W ) by Lemma 3.2.7. To show that L2(M) ⊆ L2(Mτ ), consider X ∈ L2(M).
Then XY ∈ L2(W )n, so XY [0, τ ] ∈ L2(W )n. Because Mτ = Y [0, τ ] ·W , X ∈ L2(Mτ )
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follows. We then obtain (X ·M)τ = X[0, τ ] ·M from

(X ·M)τ = (XY ·W )τ

= (XY )[0, τ ] ·W
= X[0, τ ]Y ·W
= X[0, τ ] ·M.

And the equality (X ·M)τ = X ·Mτ follows since

(X ·M)τ = (XY ·W )τ

= XY [0, τ ] ·W
= X ·Mτ .

Lemma 3.3.12 (Associativity). If Z ∈ L2(X ·M), then ZX ∈ L2(M) and it holds
that Z · (X ·M) = ZX ·M .

Proof. We know that X ·M = XY ·W , so Z ∈ L2(X ·M) means ZXY ∈ L2(W )n,
which is equivalent to ZX ∈ L2(M). We then obtain

Z · (X ·M) = Z · (XY ·W )

= ZXY ·W
= ZX ·M

as desired.

The linearity, the localisation properties of Lemma 3.3.11 and the associativity of
Lemma 3.3.12 are the basic rules for manipulating the integral. Our next goal is
to identify classes of integrands such that the integral becomes a square-integrable
martingale. For M ∈ cML

W with M = Y ·W , Y ∈ L2(W )n, let L2(M) be the space
of Σπ measurable processes X such that XY ∈ L2(W )n.

Lemma 3.3.13. L2(M) is L0-stable, and L0(L2(M)) = L2(M).

Proof. We first show that L2(M) is L0-stable. Assume that X ∈ L2(M), such that
XY ∈ L2(W )n, and let τ be a stopping time. Then X[0, τ ]Y = (XY )[0, τ ] ∈ L2(W ),
so X[0, τ ] ∈ L2(M). Therefore, L2(M) is L0-stable.
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To prove the other statement of the lemma, assume X ∈ L0(L2(M)) and let τn be
a localising sequence, X[0, τn] ∈ L2(M). Since X[0, τn] is Σπ measurable, so is X.
By definition, X[0, τn]Y ∈ L2(W )n, so (XY )[0, τn] ∈ L2(W )n, and it follows that
XY ∈ L2(W )n, showing X ∈ L2(M) and therefore L0(L2(M)) ⊆ L2(M). Conversely,
assume X ∈ L2(M). Then XY ∈ L2(W )n, so there is a localising sequence τn yielding
(XY )[0, τn] ∈ L2(W )n. Then X[0, τn]Y ∈ L2(W )n and X[0, τn] ∈ L2(M), showing
X ∈ L0(L2(M)).

Lemma 3.3.14. L2(M) is equal to L2([0,∞)×Ω, Σπ, µM ), where µM is the measure
having density

∑n
k=1(Y

k)2 with respect to λ⊗P . We endow L2(M) with the L2-norm
corresponding to µM and denote this norm by ‖ · ‖M .

Proof. Let X ∈ L2(M). Then X is Σπ measurable and XY ∈ L2(W )n, so X2(Y k)2

is integrable with respect to λ ⊗ P . Thus L2(M) ⊆ L2([0,∞) × Ω,Σπ, µM ). On the
other hand, let X ∈ L2([0,∞)×Ω,Σπ, µM ). Then X is obviously Σπ measurable and

‖XY k‖2W =
∫

X2(Y k)2 d(λ⊗ P ) ≤
∫

X2
n∑

k=1

(Y k)2 d(λ⊗ P ) =
∫

X2 dµM < ∞,

so X ∈ L2(M) and therefore L2([0,∞)× Ω, Σπ, µM ) ⊆ L2(M).

Comment 3.3.15 Note that since we only require Y ∈ L2(W )n and not Y ∈ L2(W )n,
the measure µ may easily turn out to be unbounded. ◦

Lemma 3.3.16. Let M ∈ cML
W and X ∈ L2(M). X · M is a square-integrable

martingale if and only if X ∈ L2(M).

Proof. If X ∈ L2(M), XY ∈ L2(W )n and therefore, by linearity of cM2
0,

X ·M = XY ·W =
n∑

k=1

XY k ·W k ∈ cM2
0.

To prove the other implication, assume that X ·M ∈ cM2
0. Because X ∈ L2(M), we

know that XY ∈ L2(W )n. Let τm be a localising sequence with XY k[0, τm] ∈ L2(W )
for k ≤ n. Since XY · W = X · M ∈ cM2

0, (XY · W )τm ∈ cM2
0 as well. The Itô
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isometry from Lemma 3.3.6 yields

‖(XY k)[0, τm]‖2W ≤
n∑

k=1

‖XY k[0, τm]‖2W

≤
n∑

k=1

‖XY k‖2W

= ‖XY ·W‖2cM2
0

= ‖X ·M‖2cM2
0
,

where the last expression is finite by assumption. Now, monotone convergence yields

‖XY k‖W = lim sup
m

‖(XY k)[0, τm]‖W ≤ ‖X ·X‖cM2
0

< ∞,

so XY k ∈ L2(W ) and thus X ∈ L2(M).

Lemma 3.3.17. IM : L2(M) → cM2
0 is isometric for any M ∈ cML

W .

Proof. The conclusion is well-defined since IM (X) ∈ cM2
0 for X ∈ L2(M) by Lemma

3.3.16. To prove the result, we merely note for X ∈ L2(M) that by Lemma 3.3.6

‖X ·M‖2cM2
0

= ‖XY ·W‖2cM2
0

=
n∑

k=1

‖XY k‖2W

=
n∑

k=1

∫
X2(Y k)2 d(λ⊗ P )

=
∫

X2 dµM

= ‖X‖2M .

Comment 3.3.18 The isometry property of IM is, as the isometry property of IW

given in Theorem 3.2.5, also known as Itô’s isometry. ◦

Lemma 3.3.16 solves the problem of determining when the stochastic integral is a
square-integrable martingale, and Lemma 3.3.17 tells us that for general integrators,
we still have the isometry property that we proved in the case of Brownian motion.
We have yet one more property of the integral that we wish to investigate. We are
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interested in understanding when the integral process X ·M can be approximated by
integrals of the form Hn ·M for Hn ∈ bE . To understand this, we define cM2

W as the
subclass of processes in cML

W of M = Y ·W where Y ∈ L2(W )n.

Lemma 3.3.19. cM2
W is L-stable, and L(cM2

W ) = cML
W .

Proof. That cM2
W is L-stable follows since L2(W ) is L0-stable. To show the other

statement of the lemma, assume M ∈ cML
W , M = Y ·W with Y ∈ L2(W )n. Let τm

be a localising sequence such that Y [0, τm] ∈ L2(W )n. Then Mτm = Y [0, τm] ·W , so
M is locally in cM2

W , showing cML
W ⊆ L(cM2

W ). Conversely, assume M ∈ L(cM2
W )

and let τn be a localising sequence. Then we have Mτn ∈ cM2
W , and there exists

Yn ∈ L2(W ) such that Mτn = Yn ·W . Clearly, then

Yn+1[0, τn] ·W = (Yn+1 ·W )τn

= (Mτn+1)τn

= Mτn

= Yn ·W.

In detail, this means
∑n

k=1 Yn+1[0, τn] · W k =
∑n

k=1 Y k
n · W k. By Lemma 3.3.7,

Yn+1[0, τn] and Yn are then λ ⊗ P almost surely equal. Then the Pasting Lemma
2.5.10 yields processes Y k such that Y k[0, τn] and Y k

n [0, τn] are λ ⊗ P almost surely
equal for all n. In particular, Y ∈ L2(W )n, and clearly

Mτn = Yn[0, τn] ·W = Y [0, τn] ·W = (Y ·W )τn ,

so M = Y ·W and L(cM2
W ) ⊆ cML

W .

Lemma 3.3.20. If M ∈ cM2
W , then bE is dense in L2(M). In particular, for any

X ∈ L2(M), X ·M can be approximated by elements Hn ·M with Hn ∈ bE.

Proof. Since M ∈ cM2
W , M = Y ·W for some Y ∈ L2(W )n. In particular, µM is a

bounded measure, and by Theorem 3.1.7, bE is dense in L2(M). By Lemma 3.3.17,
when X ∈ L2(M) and (Hn) ⊆ bE converges to X, we then obtain that Hn ·M also
converges to X ·M .

We are now done with our preliminary investigation of the stochastic integral for
integrators in cML

W . Our next task will be to extend the integral to integrators with
a component of finite variation. Before doing so, let is review our results so far. We
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have defined the stochastic integral X ·M for integrators M ∈ cML
W and integrands

X ∈ L2(M). We have proven that

• The integral is always a continuous local martingale.

• The interal is in cM2
0 if and only if X ∈ L2(M).

• The integral is linear in the integrand.

• IM is isometric from L2(M) to cM2
0.

• (X ·M)τ = X[0, τ ] ·M = X ·Mτ .

• bE ⊆ L2(M), and the integral takes its natural values on bE .

• If M ∈ cM2
W , µM is bounded and bE is dense in L2(M).

Note that nowhere in the above properties is the Brownian motion W , which our
whole construction rests upon, mentioned. This fact will enable us to manipulate the
stochastic integral without having to keep in mind the underlying definition in terms
of the Brownian motion.

3.4 Integration with respect to standard processes

We now come to the final extension of the stochastic integral, where we extend the
integral to cover integrators of the form A + M , where M ∈ cML

W and A is adapted
with continuous paths of finite variation. Since we already have defined the integral
with respect to M ∈ cML

W , we only have to define the integral with respect to A and
make sure that the integrals with respect to A and M fit properly together.

Because functions of finite variation correspond to measures, as can be seen from
Appendix A.1, we can use ordinary measure theory to define the integral with respect
to A in a pathwise manner. In Appendix A.1 we have listed some fundamental results
regarding functions of finite variation. For any mapping F : [0,∞) → R, we have the
variation function,

VF (t) = sup
n∑

k=1

|F (tk)− F (tk−1)|
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where the supremum is over all partitions of [0, t]. VF is finite for all t if and only
if F is of finite variation. By Lemma A.1.1, if F is continuous, then so is VF . By
Theorem A.1.2, we can associate to F a measure νF such that νF (a, b] = F (b)− F (a)
for 0 ≤ a ≤ b, and as in Definition A.1.4, we can then define L1(F ) = L1(νF ) and
consider the integral with respect to F by putting

∫∞
0

x(s) dFs =
∫∞
0

x(s) dνF (s).

We now transfer these ideas to stochastic processes. In order to make sure that our
stochastic integral with respect to processes of finite variation has sufficient measura-
bility properties, we will need to make the appropriate measurability assumptions on
our integrands. By cFV, we denote the class of adapted stochastic processes with
continuous paths of finite variation. If A ∈ cFV, we denote by L1(A) the space of
progressively measurable processes such that X(ω) ∈ L1(A(ω)) for all ω. By L1(A),
we denote the space of processes locally in L1(A).

We begin with a result which shows that we do not need to consider integrators which
are only locally of finite variation, since this would add nothing new to the theory.

Lemma 3.4.1. cFV is a linear space, stable under stopping, and L(cFV) = cFV.

Proof. It is clear that cFV is a linear space. We first show that cFV is stable under
stopping. Let A ∈ cFV be given, and let τ be any stopping time. Clearly, Aτ has
continuous paths. By Lemma 2.3.3, Aτ is progressive, therefore adapted. Fix ω. Then,
for any partition (t0, . . . , tn) of [0, t],

n∑

k=1

|Aτ
tk

(ω)−Aτ
tk−1

(ω)| =
n∑

k=1

|Atk∧τ (ω)−Atk−1∧τ (ω)| ≤ VA(ω)(t),

so taking supremum over all partitions, we conclude VAτ (ω)(t) ≤ VA(ω), and therefore
Aτ (ω) has finite variation as well, thus Aτ ∈ cFV and cFV is stable under stopping.

In particular, cFV ⊆ L(cFV), so to show equality it will suffice to show the other
inclusion. To this end, let A ∈ L(cFV), and let τn be a localising sequence. Fix ω, let
t > 0 and let n be so large that τn(ω) ≥ t. Then VA(ω)(t) ≤ VA(ω)(τn) = VAτn (ω)(τn),
which is finite, and we conclude that A(ω) has finite variation, showing A ∈ cFV.

Next, we define the stochastic integral with respect to integrators A ∈ cFV and
integrands in L1(A). To show the adaptedness of the integral, we will need the concept
of a Markov kernel and the associated results, see Chapter 20 of Hansen (2004a) for
this.
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Lemma 3.4.2. If X ∈ L1(A), the integral
∫ t

0
Xs(ω) dAs(ω) is well-defined as a path-

wise integral. We write (X ·A)t(ω) =
∫ t

0
Xs(ω) dAs(ω).

Proof. Let τn be a localising sequence for X and let ω ∈ Ω. Let n be so large that
τn(ω) ≥ t, then

∫ t

0

|Xs(ω)| dAs(ω) ≤
∫ t

0

|X[0, τn]s(ω)|dAs(ω) ≤
∫ ∞

0

|X[0, τn]s(ω)| dAs(ω),

which is finite since X[0, τn](ω) ∈ L1(A(ω)). Thus, the integral
∫ t

0
Xs(ω) dAs(ω) is

well-defined for all ω ∈ Ω.

Lemma 3.4.3. Let X ∈ L1(A). The stochastic integral X ·A is in cFV.

Proof. First assume that X ∈ L1(A). We need to show that X · A is adapted, con-
tinuous and of finite variation. By Lemma A.1.3, the measure corresponding to A(ω)
has no atoms, and therefore X ·A is continuous. By Lemma A.1.6, X ·A has paths of
finite variation.

To show that X ·A is adapted, let t > 0 and let µ(t, ω) be the measure on [0, t] induced
by A(ω) on [0, t]. We wish to show that (µ(t, ω))ω∈Ω is a (Ω,Ft) Markov kernel on
([0, t],B[0, t]). We therefore need to show that ω 7→ µ(t, ω)(B) is Ft measurable for
any B ∈ B[0, t]. The family of elements of B[0, t] for which this holds is a Dynkin class,
and it will therefore suffice to show the claim for intervals in [0, t]. Let 0 ≤ a ≤ b ≤ t.
We then find

µ(t, ω)[a, b] = A(b, ω)−A(a, ω),

and by the adaptedness of A, this is Ft measurable. Since X is progressively measur-
able, the extended Fubini Theorem then yields that

(X ·A)t(ω) =
∫ t

0

Xs(ω) dµ(t, ω)(s)

is Ft measurable as a function of ω, so X ·A is adapted.

To extend this to the local case, assume X ∈ L1(A) and let τn be a localising sequence.
Then, by the ordinary properties of the integral, (X ·A)τn = (X[0, τn] ·A). Therefore,
(X ·A)τn is adapted, continuous and of finite variation. Clearly, then X ·A is adapted
as well, and by Lemma 3.4.1 it is also continuous and of finite variation.

Lemma 3.4.4. L1(A) is a linear space, and the integral IA : L1(A) → cFV is linear.
Furthermore, if τ is any stopping time, X[0, τ ] ∈ L1(A) and (X ·A)τ = X[0, τ ] ·A.
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Proof. Since IA is defined as a pathwise Lebesgue integral, this follows from the results
of ordinary integration theory.

We now want to link the definition of the integral with respect to integrators in cFV
together with our construction of the stochastic integral for integrators in cML

W . By S,
we denote the space of processes of the form A+M , where A ∈ cFV and M ∈ cML

W .
We call processes in S standard processes. Before making the obvious definition of
integrals with respect to processes in S, we need to make sure that the decomposition
of such processes into finite variation part and local martingale part is unique.

Lemma 3.4.5. If F has finite variation and is continuous, then VF can be written
as VF (t) = sup

∑n
k=1 |F (tk) − F (tk−1)|, where the supremum is taken over partitions

with rational timepoints.

Proof. It will suffice to prove that for any ε > 0 and any partition (t0, . . . , tn), there
exists another partition (q0, . . . , qn) such that

∣∣∣∣∣
n∑

k=1

|F (tk)− F (tk−1)| −
n∑

k=1

|F (qk)− F (qk−1)|
∣∣∣∣∣ < ε.

To this end, choose δ parrying ε
2n for the continuity of F in t0, . . . , tn, and let, for

k ≤ n, qk be some rational with |qk − tk| ≤ δ. Then

|(F (tk)− F (tk−1))− (F (qk)− F (qk−1))| ≤ ε

n
,

and since | · | is a contraction, this implies

||F (tk)− F (tk−1)| − |F (qk)− F (qk−1)|| ≤ ε

n
,

finally yielding
∣∣∣∣∣

n∑

k=1

|F (tk)− F (tk−1)| −
n∑

k=1

|F (qk)− F (qk−1)|
∣∣∣∣∣

≤
n∑

k=1

||F (tk)− F (tk−1)| − |F (qk)− F (qk−1)||

≤ ε.

Lemma 3.4.6. Let A ∈ cFV. Then VA is continuous and adapted.
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Proof. From Lemma A.1.1, we know that VA is continuous. To show that it is adapted,
note that for any partition of [0, t] we have

∑n
k=1 |Atk

−Atk−1 | ∈ Ft. By Lemma 3.4.5,
VA(t) can be written as the supremum of the above sums for partitions of [0, t] with
rational timepoints. Since there are only countably many of these, it follows that
VA(t) ∈ Ft.

Lemma 3.4.7. Let M ∈ cML
0 . If M has paths of finite variation, then M is evanes-

cent.

Proof. We first prove the lemma in a particularly nice setting and then use localisation
to get the general result.

Step 1: Bounded variation and square-integrability. First assume that VM is
bounded and that M ∈ cM2

0. Then, for any partition (t0, . . . , tn) of [0, t] we obtain
by Lemma 2.4.12,

EM2
t = E

n∑

k=1

(Mtk
−Mtk−1)

2

≤ E sup
k≤n

|Mtk
−Mtk−1 |

n∑

k=1

|Mtk
−Mtk−1 |

≤ ‖VM (t)‖∞E sup
k≤n

|Mtk
−Mtk−1 |.

Now, by the continuity of M , supk≤n |Mtk
−Mtk−1 | converges almost surely to zero as

the partition grows finer. Noting that supk≤n |Mtk
−Mtk−1 | is bounded by ‖VM (t)‖∞,

dominated convergence yields EM2
t = 0, so Mt is almost surely zero. By continuity,

M evanescent.

Step 2: Bounded variation. Now assume only that VM (t) is bounded. Since
we have M ∈ cML

0 , M is locally in cM2
0. Let τn be a localising sequence. Then

VMτn (t) ≤ VM (t), so the previous step yields that Mτn is evanescent. Letting n tend
to infinity, we obtain that M is evanescent.

Step 3: The general case. Finally, merely assume that M ∈ cML
0 with finite

variation. By Lemma 3.4.6, VM is continuous and adapted. Therefore, by Lemma
2.3.5, τn defined by τn = inf{t ≥ 0|VM (t) ≥ n} is a stopping time. Since VM is
bounded on compact intervals, τn tends to infinity. Mτn ∈ cML

0 and VMτn (t) is
bounded for any t ≥ 0. By what was already shown, we find that Mτn is evanescent.
We conclude that M is evanescent.
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Lemma 3.4.8. Assume X = A+M , where A has finite variation and M ∈ cML
0 . The

decomposition of X into a finite variation process and a continuous local martingale
is unique up to indistinguishability.

Proof. Assume that we have another decomposition X = B + N . Then it holds that
A−B = N −M . Therefore, the process N −M is a continuous local martingale with
paths of finite variation. By Lemma 3.4.7, N − M is evanescent. Therefore, A − B

is also evanescent. In other words, A and B are indistinguishable, and so are M and
N .

We are now finally ready to define the integral with respect to integrators in S. Let
X ∈ S with decomposition X = A + M . We put L(X) = L1(A) ∩ L2(M). We then
simply define , for Y ∈ L(X),

Y ·X = Y ·A + Y ·M.

This is well-defined up to indistinguishability, since if X = B +N is another decompo-
sition, then Y ·A and Y ·B are indistinguishable since A and B are indistinguishable,
and Y ·M and Y ·N are indistinguishable since M and N are indistinguishable.

Lemma 3.4.9. Let X ∈ S with X = A + M . If Y ∈ L(X), then Y ·X ∈ S and has
canonical decomposition given by Y ·X = Y ·A + Y ·M .

Proof. This follows immediately from the fact that Y ·A ∈ cFV by Lemma 3.4.3 and
the fact that Y ·M ∈ cML

0 by Definition 3.3.8.

Lemma 3.4.10. L(X) and S are linear spaces. L(X) is L0-stable and S is L-stable.

Proof. By Lemma 3.4.1 and Lemma 3.3.11, cFV and cML
W are both L-stable linear

spaces. Therefore, S is also a L-stable linear space. Likewise, by Lemma 3.4.4 and
Lemma 3.3.11, L1(A) and L2(M) are both L0-stable linear spaces, and therefore L(X)
is a L0-stable linear space.

Lemma 3.4.11. The stochastic integral IX : L(X) → S is linear. If τ is a stopping
time, (Y ·X)τ = Y [0, τ ] ·X = Y ·Xτ .

Proof. The conclusion is well-defined by Lemma 3.4.10. Since we have defined

Y ·X = Y ·A + Y ·M,
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the linearity follows from the linearity of the integration with respect to A and M .
Likewise, the stopping properties follow from the stopping properties with respect to
A and M , shown in Lemma 3.4.4 and Lemma 3.3.11.

Finally, we show that the integral defined for integrators X ∈ S and integrals in L(X)
cannot be extended further by localisation, in other words, we show that we do not
obtain larger classes of integrators and integrands by localising once more.

Lemma 3.4.12. Let X ∈ S with decomposition X = A + M . Then, for the spaces
of integrators it holds that L(cML

W ) = cML
W , L(cFV) = cFV and L(S) = S. Also,

for the spaces of integrands, we have L0(L(X)) = L(X), L0(L2(M)) = L2(M) and
L0(L1(A)) = L1(A).

Proof. This follows from Lemma 2.5.13.

This concludes our construction of the stochastic integral. We have defined the stochas-
tic integral for any X ∈ S and Y ∈ L(X) by putting Y · X = Y · A + Y ·M , where
X = A + M is the canonical decomposition. We have shown that the integral is linear
and interacts properly with stopping times. Further properties of the integral follow by
considering the components Y ·A and Y ·M and using respectively ordinary integration
theory and the results from Section 3.3.

Before proceeding to the next section, we prove a few useful properties of the stochastic
integral.

Lemma 3.4.13. Let X ∈ S. If Y if progressively measurable and locally bounded,
then Y ∈ L(X).

Proof. Let X = A + M be the canonical decomposition, and let τn be a localising
sequence such that Mτn ∈ cM2

W . Let σn be a localising sequence for Y . By ordinary
integration theory, Y [0, σn] ∈ L1(A). Since µMτk is bounded, Y [0, σn] ∈ L2(Mτk).
Therefore, Y [0, σn][0, τk] ∈ L2(M), so Y [0, σn] ∈ L2(M). In other words, Y is locally
in L2(M), so by Lemma 3.4.12, Y ∈ L2(M). We conclude Y ∈ L(X).

Next, we prove a result that shows that in a weak sense, the integral with respect to a
standard process is consistent with the conventional concept of integration as a limit
of Riemann sums. First, we need a lemma.
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Lemma 3.4.14. Let Xn be a sequence of processes and let τk be a sequence of stopping
times tending to infinity. Let X be another process, and let t ≥ 0 be given. Assume
that Xn and X are constant from t and onwards. If for any k ≥ 1, Xn(τk) converges
to X(τk) as n → ∞, either almost surely or in L2, then Xn(t) converges to X(t) in
probability.

Proof. Whether the convergence of Xn(τk) is almost sure or in L2, we have convergence
in probability. To show convergence in probability of Xn(t) to X(t), let ε > 0 and
η > 0 be given. Choose N so large that P (τk ≤ t) ≤ η for k ≥ N . For such k, we find

P (|Xn(t)−X(t)| > ε) ≤ P (|Xn(t)−X(t)| > ε, τk > t) + P (τk ≤ t)

≤ P (|Xn(τk)−X(τk)| > ε) + η.

Therefore,
lim sup

n
P (|Xn(t)−X(t)| > ε) ≤ η,

and since η was arbitrary, this shows the result.

The usefulness of Lemma 3.4.14 may not be clear at present, but we will use it several
times in the following, including the very next result to be proven. To set the scene,
let 0 ≤ s ≤ t, we say that π = (t0, . . . , tn) is a partition of [s, t] if s = t0 < · · · < tn = t.
We define the norm of the norm ‖π‖ of the partition by ‖π‖ = maxk≤n |tk − tk−1|.
Let (Xπ) be a sequence of variables indexed by the set of partitions of [0, t], and let
X be another variable. We say that Xπ converges to X in d as the norm of the
partitions tends to zero, or as the mesh tends to zero, if it holds that for any sequence
of partitions πn with norm tending to zero that Xπn tends to X in d. Here, d represents
some convergence concept, usually L2 convergence or convergence in probability. In
general, we will attept to formulate our results in terms of convergence as the mesh
tends to zero instead of using particular sequences of partitions, as the notation for such
partitions easily becomes cumbersome. An alternative solution would be to consider
nets instead of sequences. See Appendix C.1 for more on this approach.

Lemma 3.4.15. Let X ∈ S and let Y be a bounded, adapted and continuous process.
Then Y ∈ L(X), and the Riemann sums

n∑

k=1

Ytk−1(Xtk
−Xtk−1)

converge in probability to
∫ t

0
Ys dXs as the mesh of the partition tends to zero.
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Proof. Let X = A+M be the canonical decomposition. Y ∈ L1(A) by Lemma 3.4.13.
We need to show that for any sequence of partitions with norm tending to zero, the
Riemann sums converge to the stochastic integral. Clearly, for any partition,

n∑

k=1

Ytk−1(Xtk
−Xtk−1) =

n∑

k=1

Ytk−1(Atk
−Atk−1) +

n∑

k=1

Ytk−1(Mtk
−Mtk−1).

We will show that the first term converges to
∫ t

0
Ys dAs and that the second term

converges to
∫ t

0
Ys dMs. By Lemma A.1.5, the first term converges almost surely

to
∫ t

0
Ys dAs, therefore also in probability, when the norm of the partitions tends

to zero. Next, consider the martingale part. First assume that M ∈ cM2
W . Let

πn = (tn0 , . . . , tnmn
) be given such that ‖πn‖ tends to zero and put

Y n
s =

mn∑

k=1

Ytn
k−1

1(tn
k−1,tk](s).

Then Y n ∈ bE , and by continuity, Y n converges pointwise to Y [0, t]. Since Y is
bounded and µM is bounded, dominated convergence yields that lim ‖Y n− Y ‖M = 0.
By the Itô isometry, we conclude

mn∑

k=1

Ytn
k−1

(Mtn
k
−Mtn

k−1
) =

∫ t

0

Y n
s dMs

L2

−→
∫ t

0

Ys[0, t] dMs =
∫ t

0

Ys dMs.

This shows the claim in the case where M ∈ cM2
W . Now, if M ∈ cML

W , by Lemma
3.3.19 there exists a localising sequence τn such that Mτn ∈ cM2

W . We then have

n∑

k=1

Ytk−1(M
τn
tk
−Mτn

tk−1
) L2

−→
∫ t

0

Ys dMτn
s

as the mesh tends to zero. Lemma 3.4.14 then allows us to conclude
n∑

k=1

Ytk−1(Mtk
−Mtk−1)

P−→
∫ t

0

Ys dMs,

as desired.

Comment 3.4.16 Let us take a moment to see how exactly the somewhat abstract
Lemma 3.4.14 was used in the above proof, as we shall often use it again in the same
manner without further details. Our situation is that we know that M ∈ cML

W with
Mτn ∈ cM2

W , and

n∑

k=1

Ytk−1(M
τn
tk
−Mτn

tk−1
) L2

−→
∫ t

0

Ys dMτn
s
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as the mesh tends to zero. Let πn = (tn0 , . . . , tnmn
) be some sequence of partitions with

norm tending to zero. We want to prove

mn∑

k=1

Ytn
k−1

(Mtn
k
−Mtn

k−1
) P−→

∫ t

0

Ys dMs.

Define Xn(u) =
∑mn

k=1 Ytn
k−1

(Mu
tn
k
−Mu

tn
k−1

) and X(u) =
∫ t

0
Ys dMu

s . Since all partitions
are over [0, t], Xn and X are constant from t onwards. And by what we already have
shown, Xn(τk) converges in L2 to X(τk) for any k ≥ 1. Lemma 3.4.14 may now be
invoked to conclude

mn∑

k=1

Ytn
k−1

(Mtn
k
−Mtn

k−1
) = Xn(t) P−→ X(t) =

∫ t

0

Ys dMs,

as desired. Since the sequence of partitions was arbitrary, we conclude that we have
convergence as the mesh tends to zero.

Obviously, then, the use of Lemma 3.4.14 in the proof of Lemma 3.4.15 included a
good deal of implicit calculations, simple as they may be. It is obvious that if we had
to go through all the details of taking out subsequences, applying Lemma 3.4.14, and
going back to general partitions, our proofs would become very cluttered. We will
therefore not go through all these diversions when using the lemma. All of the implicit
details in such cases, however, are completely analogous to the ones that we have gone
through above. ◦

Now that we have the definition of the integral in place, we begin the task of developing
the basic results of the stochastic integral. We will prove Itô’s formula, the martingale
representation theorem and Girsanov’s theorem. In order to do all this, we need to
develop one of the basic tools of stochastic calculus, the quadratic variation process.
This is the topic of the next section.

3.5 The Quadratic Variation

if F and G are two mappings from [0,∞) to R, we say that F and G has quadratic
covariation Q : [0,∞) → R if

lim
n∑

k=1

(F (tk)− F (tk−1))(G(tk)−G(tk−1)) = Q(t)
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for all t ≥ 0 as the mesh of the partitions tend to zero. The quadratic covariation of
F with itself is called the quadratic variation of F . We will now investigate a concept
much like this, but instead of real mappings, we will use standard processes. Thus,
the basic point of this subsection is to understand the nature of sums of the form

n∑

k=1

(Xtk
−Xtk−1)(X

′
tk
−X ′

tk−1
)

where X and X ′ are standard processes, when the mesh of the partition tends to zero.
Apart from being precisely the kind of variables that are necessary to consider in the
proof of Itô’s formula, it also turns out that the resulting quadratic covariation process
is a tool of general applicability in the theory of stochastic calculus. We will show that
if X, X ′ ∈ S with decompositions X = A + M and X ′ = A′ + M ′, where M = Y ·W
and M ′ = Y ′ ·W , Y, Y ′ ∈ L2(W )n, then

n∑

k=1

(Xtk
−Xtk−1)(X

′
tk
−X ′

tk
) P−→

n∑

k=1

∫ t

0

Y k
s (Y ′

s )k ds

as the mesh becomes finer and finer. For this reason, we will already from now on
call

∑n
k=1

∫ t

0
Y k

s (Y ′
s )k ds the quadratic covariation of X and X ′, and we will use the

notation [X, X ′]t =
∑n

k=1

∫ t

0
Y k

s (Y ′
s )k ds. Note that the quadratic covariation does

not depend on the finite variation components of X and X ′ at all. In particular,
[X, X ′] = [M, M ′]. Also note that we always have [X, X ′] ∈ cFV0.

We write [X] = [X, X] and call [X] the quadratic variation of X. Our strategy for
developing the results of this section is first to develop all the necessary results for
the quadratic variation process and then use a concept from Hilbert space theory,
polarization, to obtain the corresponding results for the quadratic covariation.

Thus, at first, we will forget all about the quadratic covariation and consider only the
quadratic variation. We begin by demonstrating some fundamental properties of the
quadratic variation process. Our first lemma shows how to calculate the quadratic
variation of a stochastic integral with respect to a martingale integrator. Note that
we are here using that the quadratic variation is a standard process and can therefore
by used as an integrator.

Lemma 3.5.1. Let M ∈ cML
W . Then X ∈ L2(M) if and only if X ∈ L2([M ]).

Likewise, X ∈ L2(M) if and only if X ∈ L2([M ]). In the affirmative case, the equality
[X ·M ] = X2 · [M ] holds.



78 The Itô Integral

Proof. Let M = Y ·W , where Y ∈ L2(W )n. We then have

n∑

k=1

E

∫ ∞

0

X2
s (Y k

s )2 ds = E

∫ ∞

0

X2
s

n∑

k=1

(Y k
s )2 ds

= E

∫ ∞

0

X2
s d[M ]s.

The first expression is finite if and only if X ∈ L2(M), and the final expression is finite
if and only if X ∈ L2([M ]). Therefore, X ∈ L2(M) if and only if X ∈ L2([M ]). From
localisation, it follows that X ∈ L2(M) if and only if X ∈ L2([M ]).

In order to show the integral equality, assume that X ∈ L2(M). X ·M = XY ·W ,
and therefore the definition of the quadratic variation yields

[X ·M ]t =
n∑

k=1

∫ t

0

(XsY
k
s )2 ds

=
∫ t

0

X2
s

n∑

k=1

(Y k
s )2 ds

=
∫ t

0

X2
s d[M ]s

= (X2 · [M ])t.

This shows the lemma.

Our next two lemmas gives a martingale characterization of the quadratic variation
and shows that the quadratic variation interacts properly with stopping.

Lemma 3.5.2. Let X be a standard process, and let τ be a stopping time. Then
[X]τ = [Xτ ].

Proof. Let X = A + M with M = Y ·W , Y ∈ L2(W )n. Xτ then has decomposition
Xτ = B + N , where B = Aτ and N = Y [0, τ ] ·W , and

[X]τt =
n∑

k=1

∫ t∧τ

0

(Y k
s )2 ds =

n∑

k=1

∫ t

0

(Y k[0, τ ]s)2 ds = [Xτ ]t,

as desired.

Lemma 3.5.3. If M ∈ cML
W , [M ] is the unique process in cFV0, up to indistin-

guishability, that makes M2
t − [M ]t a local martingale. Also, if M ∈ cM2

W , M2
t − [M ]t

is a uniformly integrable martingale.
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Proof. We first prove that M2
t − [M ]t is a uniformly integrable martingale when we

have M ∈ cM2
W . Assume M = Y ·W , Y ∈ L2(W )n. First note that M has an almost

sure limit. Letting τ be any stopping time, we obtain

E
(
M2

τ − [M ]τ
)

= E

(
n∑

k=1

∫ ∞

0

Y [0, τ ]s dWs

)2

−
n∑

k=1

E

∫ ∞

0

(Y k[0, τ ])2s ds = 0

by Itô’s isometry, Lemma 3.3.6. Lemma 2.4.13 now yields that M2
t −[M ]t is a uniformly

integrable martingale. In the case M ∈ cML
W , letting τn be a localising sequence, by

Lemma 3.5.2, [M ]τn = [Mτn ] and therefore (M2 − [M ])τn
t = (Mτn)2t − [Mτn ]t is a

martingale, showing that M2
t − [M ]t is a local martingale.

It remains to show uniqueness. Let A and B be two processes in cFV0 such that
NA

t = M2
t −At and NB

t = M2
t −Bt both are local martingales. Then NA−NB = B−A,

so B −A is a continuous local martingale of finite variation. By Lemma 3.4.7, A and
B are indistinguishable.

As we will experience in the following, Lemma 3.5.3 is a very important result in the
sense that the fact that M2

t − [M ]t is a uniformly integrable martingale whenever
M ∈ cM2

W is the only fact we will need to identify [M ]t as the quadratic variation.
In particular, we can in the following completely forget about the specific form of M

as an integral with respect to W . Our next goal will be to show that [X] really can
be interpreted as a quadratic variation, we will show the result

n∑

k=1

(Xtk
−Xtk−1)

2 P−→ [X]t.

For any partition π and stochastic processes X and X ′ we define the quadratic covari-
ation of X and X ′ over π by Qπ(X,X ′) =

∑n
k=1(Xtk

−Xtk−1)(X
′
tk
−X ′

tk−1
). We write

Qπ(X) = Qπ(X,X). The next two lemmas are technical results that pave the road
for the result on the convergence of the squared increments Qπ(X) to the quadratic
variation.

Lemma 3.5.4. If M ∈ cM2
W and Y is a bounded and adapted process, it holds that

E

(
n∑

k=1

Ytk−1((Mtk
−Mtk−1)

2 − ([M ]tk
− [M ]tk−1))

)2

= E

n∑

k=1

(
Ytk−1((Mtk

−Mtk−1)
2 − ([M ]tk

− [M ]tk−1))
2
)2

,

in other words, the cross-terms equal zero.
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Proof. Consider i < j with i ≤ n, j ≤ n. Let Xi = (Mti
−Mti−1)

2− ([M ]ti
− [M ]ti−1).

Then Xi ∈ Fti
⊆ Ftj−1 , so we obtain

EYti−1XiYtj−1Xj = E(Yti−1XiYtj−1E(Xj |Ftj−1).

Now note

E(Xj |Ftj−1) = E((Mtj
−Mtj−1)

2 − ([M ]tj
− [M ]tj−1)|Ftj−1)

= E(M2
tj
− [M ]tj

+ M2
tj−1

+ [M ]tj−1 − 2Mtj
Mtj−1 |Ftj−1)

= E(M2
tj
− [M ]tj − (M2

tj−1
− [M ]tj−1)|Ftj−1)

= 0,

by Lemma 3.5.3. Therefore, we find

E

(
n∑

k=1

Ytk−1((Mtk
−Mtk−1)

2 − ([M ]tk
− [M ]tk−1))

2

)2

= E

(
n∑

k=1

Ytk−1Xk

)2

=
n∑

k=1

n∑

i=1

EYtk−1XkYti−1Xi

= E

n∑

k=1

Y 2
tk−1

X2
k

= E

n∑

k=1

(
Ytk−1((Mtk

−Mtk−1)
2 − ([M ]tk

− [M ]tk−1))
2
)2

,

as desired.

Lemma 3.5.5. Let M be a continous bounded martingale, zero at zero. Then

E

n∑

k=1

(Mtk
−Mtk−1)

4

tends to zero as the norm of the partition tends to zero.

Proof. We first employ the Cauchy-Schwartz inequality to obtain

n∑

k=1

E(Mtk
−Mtk−1)

4 ≤ E sup
k≤n

(Mtk
−Mtk−1)

2
n∑

k=1

(Mtk
−Mtk−1)

2

≤
(

E sup
k≤n

(Mtk
−Mtk−1)

4

) 1
2 (

EQπ(M)2
) 1

2 .



3.5 The Quadratic Variation 81

The first factor converges to zero by dominated convergence as ‖π‖ tends to zero, since
M is continuous and bounded. It is therefore sufficient for our needs to show that the
second factor is bounded. We rewrite as

EQπ(M)2

= E

(
n∑

k=1

(Mtk
−Mtk−1)

2

)2

=
n∑

k=1

E(Mtk
−Mtk−1)

4 + 2
n−1∑

i=1

n∑

j=i+1

E(Mti
−Mti−1)

2(Mtj
−Mtj−1)

2.

The last term can be computed using Lemma 2.4.12 twice,

2
n−1∑

i=1

n∑

j=i+1

E(Mti −Mti−1)
2(Mtj −Mtj−1)

2

= 2
n−1∑

i=1

E


(Mti −Mti−1)

2E




n∑

j=i+1

(Mtj −Mtj−1)
2

∣∣∣∣∣∣
Fti







= 2
n−1∑

i=1

E
(
(Mti −Mti−1)

2E((Mt −Mti)
2|Fti)

)

≤ 8‖M∗‖2∞
n−1∑

i=1

E(Mti −Mti−1)
2

≤ 8‖M∗‖2∞EM2
t .

We then find, again using Lemma 2.4.12,

EQπ(M)2 ≤
n∑

k=1

E(Mtk
−Mtk−1)

4 + 8‖M∗‖2∞EM2
t

≤ 4‖M∗‖2∞
n∑

k=1

E(Mtk
−Mtk−1)

2 + 8‖M∗‖2∞EM2
t

≤ 4‖M∗‖2∞EM2
t + 8‖M∗‖2∞EM2

t

= 12‖M∗‖2∞EM2
t ,

showing the desired boundedness.

Finally, we are ready to show that the quadratic variation can actually be interpreted
as a quadratic variation. We begin with the martingale case.

Theorem 3.5.6. Let M ∈ cM2
W . Assume that M and [M ] are bounded. With π a

partition of [0, t], Qπ(M) tends to [M ]t in L2 as ‖π‖ tends to zero.
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Proof. By Lemma 3.5.4, using (x− y)2 ≤ 2x2 + 2y2,

E (Qπ(M)− [M ]t)
2 = E

(
n∑

k=1

(Mtk
−Mtk−1)

2 − ([M ]tk
− [M ]tk−1)

)2

=
n∑

k=1

E((Mtk
−Mtk−1)

2 − ([M ]tk
− [M ]tk−1))

2

≤ 2
n∑

k=1

E(Mtk
−Mtk−1)

4 + 2
n∑

k=1

E([M ]tk
− [M ]tk−1)

2.

To show the result of the theorem, it therefore suffices to show that each of the two
sums above converges to zero as ‖π‖ tends to zero. Now, the first sum converges to
zero by 3.5.5. Concerning the second sum, we have, since [M ] is increasing,

n∑

k=1

E
(
[M ]tk

− [M ]tk−1

)2 ≤ E sup
k≤n

∣∣[M ]tk
− [M ]tk−1

∣∣
n∑

k=1

∣∣[M ]tk
− [M ]tk−1

∣∣

≤ E sup
k≤n

∣∣[M ]tk
− [M ]tk−1

∣∣
n∑

k=1

[M ]tk
− [M ]tk−1

= E[M ]t sup
k≤n

∣∣[M ]tk
− [M ]tk−1

∣∣ ,

which tends to zero by dominated convergence as ‖π‖ tends to zero, since [M ] is
continuous and bounded.

Corollary 3.5.7. Let M ∈ cML
0 . Then Qπ(M) converges in probability to [M ]t as

‖π‖ tends to zero.

Proof. Let τn = inf{t ≥ 0|Mt > n or [M ]t > n}. Then τn is a stopping time, and τn

tends to infinity because M and [M ] are continuous. Furthermore, Mτn and [Mτn ] are
bounded. Thus, the hypotheses of Theorem 3.5.6 are satisfied and Qπ(Mτn) converges
in L2 to

∫ t

0
Y [0, τn]2s ds as ‖π‖ tends to zero. Since we know Qπ(Mτn) = Qπ(M)τn

and [M ]τn = [Mτn ], the result now follows from Lemma 3.4.14.

Theorem 3.5.8. Let X ∈ S. With π a partition of [0, t], Qπ(X) tends to [X]t in
probability as ‖π‖ tends to zero.
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Proof. Letting X = A + M , we first note

n∑

k=1

(Xtk
−Xtk−1)

2 =
n∑

k=1

(Atk
−Atk−1 + Mtk

−Mtk−1)
2

=
n∑

k=1

(Atk
−Atk−1)

2

+ 2
n∑

k=1

(Atk
−Atk−1)(Mtk

−Mtk−1)

+
n∑

k=1

(Mtk
−Mtk−1)

2.

For the first term, we obtain
∣∣∣∣∣

n∑

k=1

(Atk
−Atk−1)

2

∣∣∣∣∣ ≤ max
k≤n

|Atk
−Atk−1 |VA(t),

and since A is continuous, the above tends to zero almost surely. For the second term,
we find ∣∣∣∣∣

n∑

k=1

(Atk
−Atk−1)(Mtk

−Mtk−1)

∣∣∣∣∣ ≤ max
k≤n

|Mtk
−Mtk−1 |VA(t),

and again conclude that this tends to zero almost surely, by the continuity of M . And
from Corollary 3.5.7, we know that the last term tends to [M ]t, which is equal to
[X]t.

Theorem 3.5.8 shows that the process [X] really is a quadratic variation in the sense
that it is a limit of quadratic increments. It remains to show that [X,X ′] has the
analogous interpretation of a quadratic covariation. Before this, we show a simple
generalisation of Theorem 3.5.8 which will be useful to us in the proof of Itô’s formula.
It is the analogue to Lemma 3.4.15, using quadratic Riemann sums instead of ordinary
Riemann sums.

Corollary 3.5.9. Let X ∈ S. Let Y be a bounded, adapted and continuous process.
Then the quadratic Riemann sums

n∑

k=1

Ytk−1(Xtk
−Xtk−1)

2

converge in probability to
∫ t

0
Ys d[X]s as the mesh of the partition tends to zero.
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Proof. Letting X = A + M , we have

n∑

k=1

Ytk−1(Xtk
−Xtk−1)

2 =
n∑

k=1

Ytk−1(Atk
−Atk−1 + Mtk

−Mtk−1)
2

=
n∑

k=1

Ytk−1(Atk
−Atk−1)

2

+ 2
n∑

k=1

Ytk−1(Atk
−Atk−1)(Mtk

−Mtk−1)

+
n∑

k=1

Ytk−1(Mtk
−Mtk−1)

2.

For the first term, we obtain

∣∣∣∣∣
n∑

k=1

Ytk−1(Atk
−Atk−1)

2

∣∣∣∣∣ ≤ ‖Y ‖∞max
k≤n

|Atk
−Atk−1 |VA(t),

and since A is continuous, the above tends to zero almost surely. For the second term,
we find

∣∣∣∣∣
n∑

k=1

Ytk−1(Atk
−Atk−1)(Mtk

−Mtk−1)

∣∣∣∣∣ ≤ ‖Y ‖∞max
k≤n

|Mtk
−Mtk−1 |VA(t),

and again conclude that this tends to zero almost surely, by the continuity of M . There-
fore, it will suffice to show that the final term converges in probability to

∫ t

0
Ys d[X]s.

Recall here that [X] = [M ], so we really have to show convergence to
∫ t

0
Ys d[M ]s.

We first consider the case where M and [M ] are bounded. By Lemma 3.4.15,

n∑

k=1

Ys([M ]tk
− [M ]tk−1)

P−→
∫ t

0

Ys d[M ]s,

so it will suffice to show that
∑n

k=1 Ys((Mtk
−Mtk−1)

2 − ([M ]tk
− [M ]tk−1)) tends to
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zero in probability. But we have, by Lemma 3.5.4,

E

(
n∑

k=1

Ys((Mtk
−Mtk−1)

2 − ([M ]tk
− [M ]tk−1))

)2

= E

n∑

k=1

(Ys((Mtk
−Mtk−1)

2 − ([M ]tk
− [M ]tk−1)))

2

≤ ‖Y ∗‖2∞E

n∑

k=1

((Mtk
−Mtk−1)

2 − ([M ]tk
− [M ]tk−1))

2

= ‖Y ∗‖2∞E

(
n∑

k=1

((Mtk
−Mtk−1)

2 − ([M ]tk
− [M ]tk−1))

)2

= ‖Y ∗‖2∞E (Qπ(M)− [M ]t)
2
,

which converges to zero by Theorem 3.5.6. Now consider the general case where
M ∈ cML

W . Let τn be a localising sequence such that Mτn and [M ]τn are bounded, this
can be done since [M ] and M both are continuous. By Lemma 3.5.2, [M ]τn = [Mτn ],
and we then obtain

n∑

k=1

Ytk−1(M
τn
tk
−Mτn

tk−1
)2 P−→

∫ t∧τn

0

Ys d[X]s.

The result then follows from Lemma 3.4.14.

We now transfer the results on the quadratic variation to the setting of the quadratic
covariation. Recall that we defined [X,X ′]t =

∫ t

0
YsY

′
s ds. As mentioned earlier, the

method to do so is called polarization. The name originates from the polarization
identity for inner product spaces,

〈x, y〉 =
1
4

(‖x + y‖2 − ‖x− y‖2) ,

see Lemma 11.2 of Meise & Vogt (1997). The polarization identity allows one to
recover the inner product from the norm. Thinking of the quadratic variation as the
square norm and of the quadratic covariation as the inner product, we will show that
the two satisfies a relation analogous to the above, and we will use this relation to
obtain results on the quadratic covariation from the quadratic variation.

Lemma 3.5.10. Let X, X ′ ∈ S. Then

[X, X ′] =
1
4

([X + X ′]− [X −X ′]) .
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Proof. Assume that X = A+M and X ′ = A′+M ′, where M = Y ·W and M ′ = Y ′ ·W .
Therefore,

1
4

([X + X ′]t − [X −X ′]t) =
1
4

(∫ t

0

(Ys + Y ′
s )2 ds−

∫ t

0

(Ys − Y ′
s )2 ds

)

=
1
4

∫ t

0

4YsY
′
s ds

= [X, X ′].

Lemma 3.5.11. Let M, N ∈ cML
W . Then [M, N ] is the unique process in cFV0 such

that MN − [M, N ] is a local martingale.

Proof. That MN − [M,N ] is a local martingale follows from Lemma 3.5.3, since

MN − [M, N ] =
1
4
((M + N)2 − (M −N)2)− 1

4
([M + N ]− [M −N ])

=
1
4
((M + N)2 − [M + N ])− 1

4
((M −N)2 − [M −N ]).

Uniqueness follows as in Lemma 3.5.3 from Lemma 3.4.7.

Theorem 3.5.12. Let X, X ′ ∈ S and let Y be a bounded, adapted and continuous
process. The quadratic Riemann sums

n∑

k=1

Ytk−1(Xtk
−Xtk−1)(X

′
tk
−X ′

tk−1
)

tend to
∫ t

0
Ys d[X, X ′]s as the mesh of the partitions tend to zero.

Proof. We find that

n∑

k=1

Ytk−1(Xtk
−Xtk−1)(X

′
tk
−X ′

tk−1
)

=
1
4

n∑

k=1

Ytk−1(Xtk
+ X ′

tk
− (Xtk−1 + X ′

tk−1
))2

− 1
4

n∑

k=1

Ytk−1(Xtk
−X ′

tk
− (Xtk−1 −X ′

tk−1
))2.

By Corollary 3.5.9, the first term converges in probability to 1
4

∫ t

0
Ys d[X + X ′]s and

the second term converges in probability to 1
4

∫ t

0
Ys d[X − X ′]s, as the mesh of the
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partitions tend to zero. Therefore,
∑n

k=1 Ytk−1(Xtk
−Xtk−1)(X

′
tk
−X ′

tk−1
) converges

in probability to

1
4

∫ t

0

Ys d[X + X ′]s +
1
4

∫ t

0

Ys d[X −X ′]s =
∫ t

0

Ys d
(

1
4
[X + X ′]s +

1
4
[X −X ′]s

)

=
∫ t

0

Ys d[X,X ′]s

by Lemma 3.5.10.

The main results on the quadratic covariation of this section are Lemma 3.5.11 and
Theorem 3.5.12. Putting Y = 1 in Theorem 3.5.12 shows that our definition of the
quadratic covariation of two standard processes really can be interpreted as a quadratic
covariation, although the convergence is only in probability.

Before concluding, we note an important consequence of the definition of the quadratic
variation. Since the quadratic variation is a continuous and adapted process of finite
variation, it is a standard process, and we can therefore integrate with respect to it.
The following lemma exploits this feature.

Lemma 3.5.13. Let X, X ′ ∈ S and assume that Y ∈ L1(X) and Y ′ ∈ L1(X ′). Then
Y Y ′ ∈ L1([X, X ′]) and

[Y ·X, Y ′ ·X ′] = Y Y ′ · [X, X ′].

Proof. Let the canonical decompositions be X = A + M and X ′ = A′ + M ′. Then
[Y ·X, Y ′ ·X ′] = [Y ·M,Y ′ ·M ′] and [X, X ′] = Y Y ′ · [M,M ′], so it will suffice to show
the result in the case where the finite variation components are zero. The integrability
result follows from the definition of the quadratic covariation and results from measure
theory. For the second statement of the lemma, we calculate

[Y ·M, Y ′ ·M ′]t =
n∑

k=1

∫ t

0

YsZ
k
s Y ′

s (Z ′s)
k ds =

∫ t

0

YsY
′
s d[M, M ′]s = (Y Y ′ · [M, M ′])s.

Lemma 3.5.11 provides a characterisation of the quadratic covariation only in terms
of martingales. This result shows that quadratic covariation is essentially a purely
martingale concept, even though we here have developed it in the context of stochastic
integration. This observation is the key to extending the stochastic integral to using
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general continuous local martingales as integrators. The price of this generality is that
in a purely martingale setting, we do not have any obvious candidate for the quadratic
covariation. In our setting, the existence of the quadratic variation was a triviality
once the correct idea had been identified. In general, the proof of the existence of
the quadratic covariation is quite difficult. In Rogers & Williams (2000b), Theorem
30.1, a direct construction of the quadratic variation of a continuous square-integrable
martingale is carried out. Alternatively, one can obtain the existence in a more abstract
manner by invoking the Doob-Meyer decomposition theorem, as is done in Karatzas
& Shreve (1988). Another alternative is presented in Appendix C.1, where we give a
general existence result on the quadratic variation in the continuous case based only
on relatively elementary martingale theory.

3.6 Itô’s Formula

In this section, we will prove the multidimensional Itô formula. We say that X is an
n-dimensional standard process if each of X’s coordinates is a standard process. The
Itô formula states that if X is a n-dimensional standard process and f ∈ C2(Rn), then

f(Xt) = f(X0) +
n∑

i=1

∫ t

0

∂f

∂xi
(Xs) dXi

s +
1
2

n∑

i=1

n∑

j=1

∫ t

0

∂2f

∂xi∂xj
(Xs) d[Xi, Xj ]s.

This important result in particular shows that a C2 transformation of a standard pro-
cess is again a standard process, and allows us to identify the canonical decomposition.
To prove this result, we will first localise to a particularly nice setting, use a Taylor
expansion of f and take limits. Before starting the proof, we prepare ourselves with
the right version of the Taylor expansion theorem and a result that will help us when
localising in the proof.

Theorem 3.6.1. Let f ∈ C2(Rn), and let x, y ∈ Rn. There exists a point ξ ∈ Rn on
the line segment between x and y such that

f(y) = f(x) +
n∑

i=1

∂f

∂xi
(x)(yi − xi) +

1
2

n∑

i=1

n∑

j=1

∂2f

∂xi∂xj
(ξ)(yi − xi)(yj − xj).

Proof. Define g : R → R by g(t) = f(x + t(y − x)). Note that g(1) = f(y) and
g(0) = f(x). We will prove the theorem by applying the one-dimensional Taylor
formula, see Apostol (1964) Theorem 7.6, to g. Clearly, g ∈ C2(R), and we obtain



3.6 Itô’s Formula 89

g(1) = g(0) + g′(0) + 1
2g′′(s), where 0 ≤ s ≤ 1. Applying the chain rule, we find

g′(t) =
n∑

i=1

∂f

∂xi
(x + t(y − x))(yi − xi)

and

g′′(t) =
n∑

i=1

n∑

j=1

∂2f

∂xi∂xj
(x + t(y − x))(yi − xi)(yj − xj).

Substituting and writing ξ = x + s(y − x), we may conclude

f(y) = f(x) +
n∑

i=1

∂f

∂xi
(x)(yi − xi) +

1
2

n∑

i=1

n∑

j=1

∂2f

∂xi∂xj
(ξ)(yi − xi)(yj − xj).

Lemma 3.6.2. Let f ∈ C2(Rn). For any compact set K, There exists g ∈ C2
c (Rn)

such that f and g are equal on K.

Proof. By Urysohn’s Lemma, Theorem A.3.4, there exists ψ ∈ C∞c (Rn) with K ≺ ψ.
Defining g(x) = ψ(x)f(x), g ∈ C2

c (Rn) and f and g are clearly equal on K.

Theorem 3.6.3. Let X be a n-dimensional standard process, and let f ∈ C2(Rn).
Then

f(Xt) = f(X0) +
n∑

i=1

∫ t

0

∂f

∂xi
(Xs) dXi

s +
1
2

n∑

i=1

n∑

j=1

∫ t

0

∂2f

∂xi∂xj
(Xs) d[Xi, Xj ]s,

up to indistinguishability.

Proof. First note that all of the integrands are continous, therefore locally bounded
and therefore, by Lemma 3.4.13 the stochastic integrals are well-defined.

Our plan is first to reduce by localization to a particularly nice setting, apply the
Taylor formula to obtain an expression for f(Xt) − f(X0) in terms of Riemann-like
sums and then use Lemma 3.4.15 and Theorem 3.5.12 on convergence of Riemann and
quadratic Riemann sums.

Step 1: The localized case. We first consider the case where X is bounded. The
variables f(Xt), ∂f

∂xi
(Xt) and ∂2f

∂xi∂xj
(Xt) does not depend on the values of f outside the

range of X. Therefore, we can by Lemma 3.6.2 assume that f has compact support. In
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that case, all of f , ∂f
∂xi

and ∂2f
∂xi∂xj

are bounded. Consider a partition π = (t0, . . . , tn)
of [0, t]. The Taylor Formula 3.6.1 with Lagrange’s remainder term then yields

f(Xt)− f(X0)

=
n∑

k=1

f(Xtk
)− f(xtk−1)

=
n∑

i=1

n∑

k=1

∂f

∂xi
(Xtk−1)(X

i
tk
−Xi

tk−1
)

+
1
2

n∑

i=1

n∑

j=1

n∑

k=1

∂2f

∂xi∂xj
(ξk)(Xi

tk
−Xi

tk−1
)(Xj

tk
−Xj

tk−1
).

We will investigate the limit of the sums as the mesh of the partition tends to zero.
By Lemma 3.4.15, since ∂f

∂xi
is bounded,

∑n
k=1

∂f
∂xi

(Xtk−1)(X
i
tk
−Xi

tk−1
) converges in

probability to
∫ t

0
∂f
∂xi

(Xs) dXi
s as the mesh of the partitions tend to zero. Therefore,

n∑

i=1

n∑

k=1

∂f

∂xi
(Xtk−1)(X

i
tk
−Xi

tk−1
) P−→

n∑

i=1

∫ t

0

∂f

∂xi
(Xs) dXi

s.

It remains to consider the second-order terms. Fix i, j ≤ n. We first note that the
difference between the sums given by

∑n
k=1

∂2f
∂xi∂xj

(ξk)(Xi
tk
−Xi

tk−1
)(Xj

tk
−Xj

tk−1
) and

∑n
k=1

∂2f
∂xi∂xj

(Xtk−1)(X
i
tk
−Xi

tk−1
)(Xj

tk
−Xj

tk−1
) is bounded by

max
k≤n

∣∣∣∣
∂2f

∂xi∂xj
(ξk)− ∂2f

∂xi∂xj
(Xtk−1)

∣∣∣∣
n∑

k=1

(Xi
tk
−Xi

tk−1
)(Xj

tk
−Xj

tk−1
).

By continuity of X and f ′′, the maximum tends to zero almost surely. By Theorem
3.5.12,

∑n
k=1(Xtk

−Xtk−1)
2 tends to [X]t in probability. Therefore, the above tends

to zero in probability as the mesh tends to zero. It will therefore suffice to prove that

n∑

k=1

∂2f

∂xi∂xj
(Xtk−1)(X

i
tk
−Xi

tk−1
)(Xj

tk
−Xj

tk−1
) P−→

∫ t

0

∂2f

∂xi∂xj
(Xs) d[Xi, Xj ]s,

as the mesh tends to zero, but this follows immediately from Theorem 3.5.12. We may
now conclude that for each t ≥ 0,

f(Xt) = f(X0) +
n∑

i=1

∫ t

0

∂f

∂xi
(Xs) dXi

s +
1
2

n∑

i=1

n∑

j=1

∫ t

0

∂2f

∂xi∂xj
(Xs) d[Xi, Xj ]s,

almost surely. Since both sides are continuous, we have equality up to indistinguisha-
bility.
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Step 2: The general case. Since each Xi is continuous, there exists a sequence
of stopping times τn tending to infinity such that Xτn is bounded. By what we have
already shown, we then have

f(Xt)τn = f(Xτn
t )

= f(X0) +
n∑

i=1

∫ t

0

∂f

∂xi
(Xτn

s ) d(Xτn)i
s

+
1
2

n∑

i=1

n∑

j=1

∫ t

0

∂2f

∂xi∂xj
(Xτn

s ) d[(Xτn)i, (Xτn)j ]s

= f(X0) +
n∑

i=1

∫ t∧τn

0

∂f

∂xi
(Xs) d(X)i

s

+
1
2

n∑

i=1

n∑

j=1

∫ t∧τn

0

∂2f

∂xi∂xj
(Xs) d[Xi, Xj ]s.

The Itô formula therefore holds whenever t ≤ τn. Since τn tends to infinity, the
theorem is proven.

We have now proven Itô’s formula. This result is more or less the center of the theory
of stochastic integration. We will sometimes need to apply Itô’s formula to mappings
which are not defined on all of Rn. The following corollary shows that this is possible.

Corollary 3.6.4. Let X be a n-dimensional standard process taking its values in an
open set U . Let f ∈ C2(U). Then

f(Xt) = f(X0) +
n∑

i=1

∫ t

0

∂f

∂xi
(Xs) dXi

s +
1
2

n∑

i=1

n∑

j=1

∫ t

0

∂2f

∂xi∂xj
(Xs) d[Xi, Xj ]s,

up to indistinguishability.

Proof. Define Fn = {x ∈ Rn|d(x,U c) ≥ 1
n}. Our plan is to in some sense localise to

Fn and prove the result there. Fn is a closed set with Fn ⊆ U . Let gn ∈ C∞(Rn)
be such that Fn ≺ gn ≺ F c

n+1, such a mapping exists by Lemma A.3.5. Define
fn(x) = gn(x)f(x) when x ∈ U and zero otherwise. Clearly, fn and f agree on Fn.
We will argue that fn ∈ C2(Rn). To this end, note that since f and gn are both C2 on
U , it is clear that fn is C2 on U . Since fn is zero on F c

n+1, fn is C2 on F c
n+1. Because

Rn = U c ∪ U ⊆ F c
n+1 ∪ U , this shows fn ∈ C2(Rn). Itô’s Lemma then yields

fn(Xt) = fn(X0) +
n∑

i=1

∫ t

0

∂fn

∂xi
(Xs) dXi

s +
1
2

n∑

i=1

n∑

j=1

∫ t

0

∂2fn

∂xi∂xj
(Xs) d[Xi, Xj ]s.
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Now define τn = inf{t ≥ 0|d(Xt, U
c) ≤ 1

n}. τn is a stopping time, and since d(Xt, U
c)

is a positive continuous process, τn tends to infinity. When t ≤ τn, d(Xt, U
c) < 1

n , so
Xt ∈ Fn. Since fn and f agree on Fn, we conclude

f(Xt)τn

= fn(X0) +
n∑

i=1

∫ t∧τn

0

∂fn

∂xi
(Xs) dXi

s +
1
2

n∑

i=1

n∑

j=1

∫ t∧τn

0

∂2fn

∂xi∂xj
(Xs) d[Xi, Xj ]s

= f(X0) +
n∑

i=1

∫ t∧τn

0

∂f

∂xi
(Xs) dXi

s +
1
2

n∑

i=1

n∑

j=1

∫ t∧τn

0

∂2f

∂xi∂xj
(Xs) d[Xi, Xj ]s.

Letting τn tend to infinity, we obtain the result.

3.7 Itô’s Representation Theorem

In this section and the following, we develop some results specifically for the context
where we have a n-dimensional Brownian motion W on (Ω,F , P ) and let the filtration
Ft be the one induced by W , augmented in the usual manner as described in Section
2.1. We will need to work with processes on [0, T ] and integration on [0, T ]. We will
therefore make some notation for this situation. By L2

T (W ), we denote the space
L2([0, T ] × Ω, Σπ[0, T ], λ ⊗ P ), understanding that Σπ[0, T ] is the restriction of Σπ

to [0, T ] × Ω. The norm on L2
T (W ) is denoted ‖ · ‖W T . The integral of a process

Y ∈ L2
T (W )n is then considered a process on [0, T ], defined as the integral of the

process Y [0, T ].

Our goal of this section is to prove Itô’s representation theorem, which yields a rep-
resentation of all cadlag Ft local martingales. To prove the result, we will need some
preparation. We begin with a few lemmas.

Lemma 3.7.1. Assume that X ∈ S with X0 = 0 and let Y0 be a constant. There
exists precisely one solution to the equation Yt = Y0 +

∫ t

0
Ys dXs in Y , unique up to

indistinguishability, and the solution is given by Yt = Y0 exp(Xt − 1
2 [X]t).

Proof. We first check that Y as given in the lemma in fact solves the equation. The
case Y0 = 0 is trivial, so we assume Y0 6= 0. We note that Yt = f(Xt, [X]t) with
f(x, y) = Y0 exp(x − 1

2y). Itô’s formula then yields, using that X0 = 0 and therefore
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exp(X0 − 1
2 [X]0) = 1,

Yt = Y0 +
∫ t

0

Ys dXs − 1
2

∫ t

0

Ys d[X]s +
1
2

∫ t

0

Ys d[X]s

= Y0 +
∫ t

0

Ys dXs,

as desired. Now consider uniqueness. Let Y be any solution of the equation, and
define Y ′ by Y ′ = exp(−Xt + 1

2 [X]t). Itô’s formula yields

Y ′
t = Y0 −

∫ t

0

Y ′
s dXs +

1
2

∫ t

0

Y ′
s d[X]s +

1
2

∫ t

0

Y ′
s d[X]s

= Y0 −
∫ t

0

Y ′
s dXs +

∫ t

0

Y ′
s d[X]s.

Therefore, again by Itô’s formula, using Lemma 3.5.13,

YtY
′
t = Y0 +

∫ t

0

Ys dY ′
s +

∫ t

0

Y ′
s dYs + [Y, Y ′]t

= Y0 −
∫ t

0

YsY
′
s dXs +

∫ t

0

YsY
′
s d[X]s +

∫ t

0

Y ′
sYs dXs −

∫ t

0

YsY
′
s d[X]s

= Y0,

up to indistinguishability. Inserting the expression for Y ′, we conclude

Yt = Y0 exp
(

Xt − 1
2
[X]t

)
,

demonstrating uniqueness.

The equation Yt = Y0 +
∫ t

0
dXs of Lemma 3.7.1 is called a stochastic differential

equation, or a SDE. This equation is one of the few SDEs where an explicit solution
is available. This type of equation will play an important role in the following, and
we therefore introduce some special notation for the solution. For any X ∈ S with
X0 = 0, we define the stochastic exponential of X by E(X)t = exp(Xt − 1

2 [X]t).
The stochastic exponential is also known as the Doléans-Dade exponential. If M is
a local martingale with M0 = 0, we see from E(M)t = 1 +

∫ t

0
E(M)t dMt that E(M)

also is a local martingale. We will now give a criterion to check when E(M) is a
square-integrable martingale.

Lemma 3.7.2. Let M be a nonnegative continuous local martingale. Then M is a
supermartingale.
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Proof. Let 0 ≤ s ≤ t, and let τn be a localising sequence. By Fatou’s Lemma for
conditional expectations and continuity of M ,

E(Mt|Fs) = E(lim inf Mτn
t |Fs)

≥ lim inf E(Mτn
t |Fs)

= lim inf Mτn
s

= Ms.

Lemma 3.7.3. Assume that Y ∈ L2(W )n and that there exists fk ∈ L2[0,∞) such
that |Y k

t | ≤ fk(t) for k ≤ n. Put M = Y ·W . Then E(M) ∈ cM2
0.

Proof. From Lemma 3.7.1, we have E(M)t = 1 +
∫ t

0
E(M)s dMs. Therefore, Itô’s

formula yields

E(M)2t = 1 + 2
∫ t

0

E(M)s dE(M)s + [E(M)]t

= 1 + 2
∫ t

0

E(M)2s dMs +
∫ t

0

E(M)2s d[M ]s

= 1 + 2
∫ t

0

E(M)2s dMs +
n∑

k=1

∫ t

0

E(M)2s(Y
k
s )2 ds

≤ 1 + 2
∫ t

0

E(M)2s dMs +
∫ t

0

E(M)2s
n∑

k=1

fk(s)2 ds.

Define b(s) =
∑n

k=1 fk(s)2. Since
∫ t

0
E(M)2s dMs is a continuous local martingale,

there exists a localising sequence τm such that E(M)2t∧τm
is bounded over t and∫ t∧τm

0
E(M)2s dMs is a bounded martingale in t. We then obtain

EE(M)2t∧τm
≤ 1 + E

∫ t∧τm

0

E(M)2sb(s) ds

= 1 + E

∫ t

0

E(M)2sb(s)1[0,τm](s) ds

= 1 + E

∫ t

0

E(M)2s∧τm
b(s)1[0,τm](s) ds

≤ 1 + E

∫ t

0

E(M)2s∧τm
b(s) ds

= 1 +
∫ t

0

E(E(M)2s∧τm
)b(s) ds,
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by the Tonelli theorem. Now consider m fixed. Gronwall’s Lemma A.2.1 then yields

EE(M)2t∧τm
≤ exp

(∫ t

0

b(s) ds

)
.

Using Fatou’s Lemma, we then obtain

EE(M)2t = E lim inf
m

E(M)2t∧τm
≤ lim inf

m
EE(M)2t∧τm

= exp
(∫ t

0

b(s) ds

)
.

Since E(M) is a nonnegative local martingale, it is a supermartingale by Lemma 3.7.2.
Therefore, E(M) is almost surely convergent by the Martingale Convergence Theorem
2.4.3. For the limit we then obtain, again using Fatou’s Lemma,

EE(M)2∞ = E lim inf
t

E(M)2t ≤ lim inf
t

EE(M)2t ≤ exp
(∫ ∞

0

b(s) ds

)
< ∞.

Therefore, E(M) is bounded in L2. This shows the lemma.

Our next lemma will require some basic results from the theory of weak convergence.
An excellent standard reference to this is Billingsley (1999).

Lemma 3.7.4. Let h1, . . . , hn ∈ L2[0, T ], and let W denote a one-dimensional Brow-
nian motion. Then the vector (

∫ T

0
h1

s dWs, . . . ,
∫ T

0
hn

s dWs) follows a n-dimensional
normal distribution with mean zero and variance matrix Σ given by Σij =

∫ T

0
hi

sh
j
s ds.

Proof. First consider the case where h1, . . . , hn are continuous. Let π = (t0, . . . , tm)
be a partition of [0, T ] and define Xπ by putting Xπ

i =
∑m

k=1 hi(tk−1)(Wtk
−Wtk−1).

Xπ is then a stochastic variable with values in Rn. Since Xπ is a linear transformation
of normal variables, Xπ is normally distributed. It is clear that Xπ has mean zero,
and the covariance matrix Σπ of Xπ is

Σπ
ij = E

(
m∑

k=1

hi(tk−1)(Wtk
−Wtk−1)

)(
m∑

k=1

hj(tk−1)(Wtk
−Wtk−1)

)

=
m∑

k=1

hi(tk−1)hj(tk−1)(tk − tk−1)2.

Now, as the mesh tends to zero, Σπ
ij tends to

∫ T

0
hi

sh
j
s ds. Therefore, Xπ tends to the

normal distribution with mean zero and the covariance matrix Σ given in the statement
of the lemma.
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On the other hand, for any a ∈ Rn, we have by Lemma 3.4.15,

n∑

i=1

aiX
π
i

P−→
n∑

i=1

ai

∫ T

0

hi(s) dWs.

as the mesh tends to zero. Since convergence in probability implies weak convergence,
by the Cramér-Wold Device, Xπ tends to (

∫ T

0
hn(s) dWs, . . . ,

∫ T

0
hn(s) dWs) weakly.

By uniqueness of limits, we conclude that the lemma holds in the case of continuous
h1, . . . , hn.

Now consider the general case, where h1, . . . , hn ∈ L2[0, T ]. For i ≤ n, there exists a
sequence (hi

k) of continuous maps converging in L2[0, T ] to hi. By what we already
have shown, these are normally distribued with zero mean and covariance matrix
Σk

ij =
∫ T

0
hi

k(s)hj
k(s) ds. Since the integral is continuous, the Cramér-Wold Device

and uniqueness of limits again yields the conclusion.

Lemma 3.7.5. The span of the variables

exp

(
n∑

k=1

∫ T

0

hk(t) dW k
t −

1
2

n∑

k=1

∫ T

0

h2
k(t) dt

)

where h1, . . . , hn ∈ L2[0, T ], is dense in L2(FT ).

Proof. Let (Gt) denote the filtration generated by W . From the construction of the
usual augmentation in Theorem 2.1.4, we know that FT = σ(GT+,N ), where N de-
notes the null sets of F . By Lemma 2.1.9, GT+ ⊆ σ(GT ,N ). We therefore conclude
FT ⊆ σ(GT ,N ), so it will suffice to show that the span of the variables given in the
statement of the lemma is dense in L2(σ(GT ,N )). By Lemma B.6.9, it will then suffice
to show that the variables are dense in L2(GT ).

To this end, first note that
∫ T

0
1[0,s](t) dW k

t = W k
s , so GT is generated by the vari-

ables of the form
∑n

k=1

∫ T

0
hk(t) dW k

t . Also, by Lemma 3.7.4, the vector of variables∑n
k=1

∫ T

0
hk(t) dW k

t is normally distributed, in particular it has exponential moments
of all orders. It then follows from linearity of the integral and Theorem B.6.2 that the
variables exp(

∑n
k=1

∫ T

0
hk(t) dW k

t ) are dense in L2(GT ). Since 1
2

∑n
k=1

∫ T

0
h2

k(t) dt is
constant, the conclusion of the lemma follows.

We are now more or less ready to begin the proof of the martingale representation
theorem. We start out with a version of the theorem for finite time intervals.
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Theorem 3.7.6. Let X ∈ L2(FT ). There exists Y ∈ L2
T (W )n such that

X = EX +
n∑

k=1

∫ T

0

Y k
s dW k

s

almost surely. Y k is unique λ⊗ P almost surely.

Proof. We first show the theorem for variables of the form given in Lemma 3.7.5 and
then extend the result by a density argument.

Step 1: A special case. Let h1, . . . , hn ∈ L2[0, T ] be given, and put

Xs = exp

(
n∑

k=1

∫ s

0

hk(t) dW k
t −

1
2

n∑

k=1

∫ s

0

h2
k(t) dt

)

for s ≤ T . Our goal is to prove the theorem for XT . Note that defining M by putting
Mt =

∑n
k=1

∫ t

0
hk(s) dW k

s , Xt = E(M)t and so, by Lemma 3.7.1, XT = 1+
∫ T

0
Xs dMs.

According to Lemma 3.7.3, X is a square-integrable martingale, and therefore we may
in particular conclude EXT = 1, showing

XT = EXT +
n∑

k=1

∫ T

0

Xshk(s) dW k
s .

It remains to argue that s 7→ Xshk(s) is in L2(W ). Since X is a square-integrable
martingale, its squared expectation is increasing. We therefore obtain

E

∫ T

0

(Xshk(s))2 ds =
∫ T

0

hk(s)2EX2
s ds ≤ EX2

T

∫ T

0

hk(s)2 ds,

which is finite. Thus, the process s 7→ Xshk(s) is in L2
T (W ), and the theorem is proven

for XT .

Step 2: The general case. In order to extend the result to the genral case, let H
be the class of variables in L2(FT ) where the theorem holds. Clearly, H is a linear
space. By the first step and Lemma 3.7.5, we have therefore shown the result for a
dense subspace of L2(FT ). The general case will therefore follow if we can show that
H is closed.

To do so, assume that Xn is a sequence in H converging towards X ∈ L2(FT ). Then
Xn = EXn +

∑n
k=1

∫ T

0
Y k

n (s) dW k
s almost surely, for some processes Yn ∈ L2

T (W )n.
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Since Xn converges in L2, the norms and therefore the second moments also converge.
Therefore, using Itô’s isometry, Lemma 3.3.6,

n∑

k=1

‖Y k
n − Y k

m‖2W T = E

(
n∑

k=1

∫ T

0

Y k
n (s)− Y k

m(s) dW k
s

)2

= E (Xn − EXn − (Xm − EXm))2

= ‖(Xn −Xm)− (EXn − EXm)‖22.

Since both ‖Xn−Xm‖2 and |EXn−EXm| tends to zero as n and m tends to infinity, we
conclude that for each k ≤ n, (Y k

n ) is a cauchy sequence in L2
T (W ). By completeness,

there exists Y k such that ‖Y k
n − Y k‖W T tends to zero, and we then obtain

X = lim
m

Xm

= lim
m

EXm +
n∑

k=1

Y k
m(s) dW k

s

= EX +
n∑

k=1

Y k(s) dW k
s

almost surely, by the continuity of the integral, where the limits are in L2. The
existence part of the theorem is now proven.

Step 3: Uniqueness. To show uniqueness, assume that we have two representations

X = EX +
n∑

k=1

∫ T

0

Y k
s dW k

s = EX +
n∑

k=1

∫ T

0

Zk
s dW k

s .

The Itô isometry yields

n∑

k=1

‖Y k − Zk‖2W T = E

(
n∑

k=1

∫ T

0

Y k(s)− Zk(s) dW k
s

)2

= 0,

so Y k and Zk are equal λ⊗ P almost surely, as desired.

Theorem 3.7.7 (The Martingale Representation Theorem). Assume that M

is a Ft cadlag local martingale. Then, there exists Y ∈ L2(W )n such that

Mt = M0 +
n∑

k=1

∫ t

0

Y k
s dW k

s ,

almost surely. If M is square-integrable, Y can be taken to be in L2(W )n. Y k is unique
λ⊗ P almost surely.
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Proof. Uniqueness follows immediately from Lemma 3.3.7. We therefore need only
consider existence. Obviously, it will suffice to consider the case where M0 = 0. This
is proven in several steps:

1. Square-integrable martingales.

2. Continuous martingales.

3. Cadlag uniformly integrable martingales.

4. Cadlag local martingales.

Step 1: The square-integrable case. Assume that M is square-integrable starting
at zero. In particular, EM = 0. For m ≥ 1, let Ym ∈ L2

m(W )n be the process that
exists by Theorem 3.7.6 such that

Mm =
n∑

k=1

∫ m

0

Y k
m(s) dW k

s

almost surely. We then have, by the martingale property of the stochastic integral,

n∑

k=1

∫ m

0

Y k
m+1(s) dW k

s = E

(
n∑

k=1

∫ m+1

0

Y k
m+1(s) dW k

s

∣∣∣∣∣Fm

)

= E (Mm+1|Fm)

= Mm

=
n∑

k=1

∫ m

0

Y k
m(s) dW k

s ,

almost surely. Then, by the uniqueness part of Theorem 3.7.6, Y k
m+1 and Y k

m must be
λ⊗P almost surely equal on [0, m]×Ω. By the Pasting Lemma 2.5.10, there exists Y k

such that Y k is almost surely equal to Y k
m on [0,m]×Ω. In particular, Y [0, t] ∈ L2(W )n

for all t ≥ 0. This implies that for t ≥ 0,

Mt = E(M[t]+1|Ft)

= E

(
n∑

k=1

∫ [t]+1

0

Y k
[t]+1(s) dW k

s

∣∣∣∣∣Ft

)

= E

(
n∑

k=1

∫ [t]+1

0

Y k
s dW k

s

∣∣∣∣∣Ft

)

=
n∑

k=1

∫ t

0

Y k
s dW k

s ,
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almost surely, as desired. By Lemma 3.3.16, Y ∈ L2(W )n.

Step 2: The continuous case. Now let M be a continuous martingale starting
at zero. Then M is locally a square-integrable martingale. Let τn be a localising
sequence. By what we already have shown, there exists Ym ∈ L2(W )n such that
Mτm

t =
∑n

k=1

∫ t

0
Y k

m(s) dW k
s almost surely. We then obtain

n∑

k=1

∫ t

0

Y k
m+1[0, τm](s) dW k

s =

(
n∑

k=1

∫ t

0

Y k
m+1(s) dW k

s

)τm

= (Mτm+1)τm
t

= Mτm
t

=
n∑

k=1

∫ t

0

Y k
m(s) dW k

s .

Since both integrands are in L2
t (W )n, we conclude Y k

m+1[0, τm] = Y k
m λ ⊗ P almost

surely on [0, t]. Letting t tend to infinity, we may then conclude Y k
m+1[0, τm] = Y k

m

λ ⊗ P almost surely on all of [0,∞). By the Pasting Lemma, there exists Y k such
that Y k[0, τm] = Y k

m[0, τm], λ⊗ P almost surely. In particular, Y k[0, τm] ∈ L2(W ), so
Y ∈ L2(W )n, and

Mτm
t =

n∑

k=1

∫ t

0

Y k
m[0, τm]s dW k

s

=
n∑

k=1

∫ t

0

Y k[0, τm]s dW k
s

=

(
n∑

k=1

∫ t

0

Y k
s dW k

s

)τm

,

almost surely. Letting m tend to infinity, we get Mt =
∑n

k=1

∫ t

0
Y k

s dW k
s almost surely.

This shows the theorem in the case where M is a continuous martingale.

Step 3: The cadlag uniformly integrable case. Next, let M be a cadlag
uniformly integrable martingale starting at zero. By Theorem 2.4.3, M is convergent
almost surely and is closed by its limit, M∞. Let Mm

∞ be a sequence of bounded
variables converging towards M∞ in L1. Assume in particular that ‖M∞−Mm

∞‖1 ≤ 1
3n .

Mm
∞ is square-integrable, so putting Mm

t = E(Mm
∞|Ft), Mm is a square-integrable

martingale. By what we already have proven, there are Ym ∈ L2(W )n such that
Mm

t = M0 +
∑n

k=1

∫ t

0
Y k

m(s) dW k
s almost surely. In particular, there exists a version

Nm of Mm in cM2
0.
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Next note that by Doob’s maximal inequality, Theorem 2.4.2,

P

(
(Nm −M)∗t >

1
2m

)
≤ 2mE|Nm

t −Mt| = 2mE|Mm
t −Mt|

Letting t tend to infinity, we obtain by L1-convergence

P

(
(Nm −M)∗ >

1
2m

)
≤ 2mE|Mm

∞ −M∞| ≤ 2m

3m
.

By the Borel-Cantelli Lemma, then, (Nm −M)∗ tends to zero almost surely, so Nm

converges almost surely uniformly to M . In particular, M must have a continuous
version, so the conclusion in this case follows from what we proved in the previous
step.

Step 4: The cadlag local martingale case. Finally, assume that M is a cadlag
local martingale starting at zero. By Lemma 2.5.16, M is locally a cadlag uniformly
integrable martingale. Letting τm be a localising sequence, we know that the theorem
holds for Mτm . We can then use the pasting technique from step 2 to obtain the
desired representation for M .

The martingale representation theorem has the following important corollary.

Corollary 3.7.8. Let M be a Ft local martingale. Then there is Y ∈ L2(W )n such
that M and Y ·W are versions. In particular, any Ft local martingale has a continuous
version.

Proof. By Theorem 2.4.1, there is a cadlag version of M . We can then apply Theorem
3.7.7 to obtain the desired result.

Corollary 3.7.8 essentially characterises all martingales with respect to the augmented
Brownian filtration. It provides considerable insight into the structure of Ft mar-
tingales. In particular, it shows that when we are considering the filtration Ft, our
definition of the stochastic integral encompasses all local martingales as integrators.
Therefore, in the following, whenever we are considering the augmented Brownian fil-
tration, we can assume whenever convenient that we are dealing with continuous local
martingales instead of the class cML

W of stochastic integrals with respect to Brownian
motion.
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3.8 Girsanov’s Theorem

In this section, we will prove Girsanov’s Theorem. As in the previous section, we
let (Ω,F , P,Ft) be a probability space with a n-dimensional Brownian motion W ,
where (Ω,F , P ) is complete and Ft is usual augmentation of the filtration induced by
the Brownian motion. We let F∞ = σ(∪t≥0Ft). Girsanov’s Theorem characterises
the measures which are equivalent to P on F∞ and shows how the distribution of W

varies when changing to an equivalent measure. We will see that changing the measure
corresponds to changing the drift of the Brownian motion.

The theorem thus has two parts, describing:

1. The form of the measures equivalent to P on F∞.

2. The distribution of W under Q, when Q is equivalent to P on F∞.

After proving both the results, we will prove Kazamakis and Novikovs conditions on
the existence of measure changes corresponding to specific changes of drift.

The first result is relatively straightforward and only requires a small lemma.

Lemma 3.8.1. Let Q be a measure on F such that Q is absolutely continuous with
respect to P on F∞. Let Qt denote the restriction of Q to Ft, and let Pt denote the
restriction of P to Ft. Define the likelihood process Lt by Lt = dQt

dPt
. Then L is a

uniformly integrable martingale, and it is closed by dQ∞
dP∞

.

Proof. All the claims of the lemma will follow if we can show E( dQ∞
dP∞

|Ft) = Lt for any
t ≥ 0. To do so, let t ≥ 0 and let A ∈ Ft. Using Lemma B.6.8 twice yields

∫

A

dQ∞
dP∞

dP =
∫

A

dQ∞
dP∞

dP∞ =
∫

A

dQ∞ =
∫

A

dQt.

Making the same calculations in the reverse direction then yields
∫

A

dQt =
∫

A

dQt

dPt
dPt =

∫

A

dQt

dPt
dP =

∫

A

Lt dP.

Thus, E(1A
dQ∞
dP∞

) = E(1ALt) for any A ∈ Ft, and therefore E( dQ∞
dP∞

|Ft) = Lt. This
shows that L is a martingale closed by dQ∞

dP∞
. In particular, L is uniformly integrable

and has the limit dQ∞
dP∞

almost surely and in L1.
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Theorem 3.8.2 (Girsanov’s Theorem, part one). Let Q be a measure on F
equivalent to P on F∞. There exists a process M ∈ cML

W such that E(M) is a
uniformly integrable martingale with the property dQ∞

dP∞
= E(M)∞.

Proof. Let Lt be the likelihood process for dQ
dP . By Lemma 3.8.1, L is a uniformly

integrable martingale. Since the filtration is assumed to satisfy the usual conditions,
there exists a cadlag version of L. Since Lt is almost surely nonnegative for any
t ≥ 0, we can take the cadlag version to be nonnegative almost surely. By Theorem
3.7.7, there exists processes Y ∈ L2(W )n such that we have Lt =

∑n
k=1

∫ t

0
Ys dWs. In

particular, L can be taken to be continuous.

Our plan is to show that L satisfies an exponential SDE, this will yield the desired
result. If L almost surely has positive paths, we can do this simply by writing

Lt =
n∑

k=1

∫ t

0

Ls
Y k

s

Ls
dW k

s ,

and if Y k
s

Ls
∈ L2(W ), we have the result. Thus, our proof runs in three parts. First,

we show that L almost surely has positive paths. Then we argue that Y k

L ∈ L2(W ).
Finally, we prove the theorem using these facts.

Step 1: L has positive paths almost surely. To show that L almost surely has
positive paths, define τ = inf{t ≥ 0|Lt = 0}. Let t ≥ 0. Then (τ ≤ t) ∈ Ft. Using
that dQt

dPt
= Lt, we obtain

Q(τ ≤ t) = Qt(τ ≤ t) =
∫

(τ≤t)

Lt dPt =
∫

(τ≤t)

Lt dP.

Next using that (τ ≤ t) ∈ Fτ∧t and that L is a P -martingale, we find
∫

(τ≤t)

Lt dP =
∫

(τ≤t)

E(Lt|Fτ∧t) dP =
∫

(τ≤t)

Lτ∧t dP =
∫

(τ≤t)

Lτ dP = 0,

where we have used that whenever τ is finite, Lτ = 0. This shows Q(τ ≤ t) = 0. Since
P and Q are equivalent, we conclude P (τ ≤ t) = 0. Letting t tend to infinity, we
obtain P (τ < ∞) = 0. Therefore, P almost all paths of L are positive. By changing
L on a set of measure zero, we can assume that all the paths of L are positive.

Step 2: Integrability. Next, we show that Y k
s

Ls
∈ L2(W ). Let τn be a localising

sequence for Y k. Define the stopping time σn by σn = inf{t ≥ 0|Lt < 1
n}. Since the
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paths of L are positive, σn tends to infinity. By Lσn ≥ 1
n , we obtain

(∣∣∣∣
Y k

s

Ls

∣∣∣∣
)τn∧σn

≤ n(Y k
s )τn∧σn ,

almost surely, so (Y k
s

Ls
)τn∧σn is in L2(W ), showing Y k

s

Ls
∈ L2(W ). Therefore, the process

Mt =
∑n

k=1

∫ t

0
Ys

Ls
dW k

s is well-defined, and Lt =
∑n

k=1

∫ t

0
Ls

Ys

Ls
dW k

s =
∫ t

0
Ls dMs, as

desired.

Step 3: Conclusion. Finally, by Lemma 3.7.1, we have L = E(M). Since L is
uniformly integrable by Lemma 3.8.1 with limit dQ∞

dP∞
, we conclude dQ∞

dP∞
= E(M)∞.

We have now proved the first part of Girsanov’s Theorem. Theorem 3.8.2 yields a
concrete form for any measure Q which is equivalent to P on F∞. The other half of
Girsanov’s Theorem uses this concrete form to describe the Q-distribution of W .

Theorem 3.8.3 (Girsanov’s Theorem, part two). Let Q be a measure on F
equivalent to P on F∞ with Radon-Nikodym derivative dQ∞

dP∞
= E(M)∞, where M is

in cML
W such that E(M) is a uniformly integrable martingale. Let M = Y ·W , where

Y ∈ L2(W )n. The process X in Rn given by Xk
t = W k

t −
∫ t

0
Y k

s ds is an n-dimensional
Ft-Brownian motion under Q.

Proof. We first argue that the conclusion is well-defined. Let Y ∈ L2(W )n, and let
τm be a localising sequence such that Y [0, τm] ∈ L2(W )n. Then

∫ t

0
(Y k[0, τm]s)2 ds

is almost surely finite, and by Lemma B.2.4,
∫ t

0
|Y k[0, τm]s| ds is almost surely finite.

Thus, Y k ∈ L1(t), and
∫ t

0
Y k

s ds is well-defined. Therefore, Xk is well-defined and the
conclusion is well-defined. Also note that since Y k is progressive, Xk is adapted to
Ft. Therefore, to prove the theorem, it will suffice to show that s 7→ Xt+s −Xt is a
Brownian motion for any t ≥ 0.

To prove the result, we first consider the case where Y is bounded and zero from a
deterministic point onwards. Afterwards, we will obtain the general case by approxi-
mation and localisation arguments.

Step 1: The dominated case, zero from a point onwards. First assume that
there exists T > 0 such that Yt is zero for t ≤ T and assume that Y is bounded. Having
this condition will allow us to apply Lemma 3.7.3 in our calculations. To show that
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X is an Ft-Brownian motion under Q, it will suffice to show that for any 0 ≤ s ≤ t,

EQ

(
exp

(
n∑

k=1

θk(Xk
t −Xk

s )

)∣∣∣∣∣Fs

)
= exp

(
1
2

n∑

k=1

θ2
k(t− s)

)
.

In order to show this, let fk ∈ L2[0,∞) and A ∈ F . Put Zk
u = Y k

u + fk(u) and
N = Z·W , by Lemma 3.7.3 that the exponential martingale E(N) is a square-integrable
martingale. In particular E(N) has an almost sure limit. We first prove

EQ1A exp

(
n∑

k=1

∫ ∞

0

fk(u) dXk
u

)
= exp

(
1
2

n∑

k=1

∫ ∞

0

fk(u)2 du

)
EP 1AE(N)∞,

and use this formula to show the conditional expectation formula above. Note that
the stochastic integral above is well-defined in the sense that Xk ∈ S under P . We
consider the left-hand side of the above. Note that from the condition on Y , we obtain
Y ∈ L2(W )n and therefore

∫∞
0

Y k
u dW k

u and
∫∞
0

(Y k
u )2 du are well-defined. We can

therefore write

EQ1A exp

(
n∑

k=1

∫ ∞

0

fk(u) dXk
u

)

= EP 1A exp

(
n∑

k=1

∫ ∞

0

fk(u) dXk
u

)
E(M)∞

= EP 1A exp

(
n∑

k=1

∫ ∞

0

fk(u) dXk
u +

n∑

k=1

∫ ∞

0

Y k
u dW k

u −
1
2

n∑

k=1

∫ ∞

0

(Y k
u )2 du

)
.

We note that

∫ ∞

0

fk(u) dXk +
∫ ∞

0

Y k
u dW k

u −
1
2

∫ t

0

(Y k
u )2 du

=
∫ ∞

0

fk(u) dW k
u −

∫ ∞

0

fk(u)Y k
u du +

∫ ∞

0

Y k
u dW k

u −
1
2

∫ t

0

(Y k
u )2 du

=
∫ ∞

0

fk(u) + Y k
u dW k

u +
1
2

∫ ∞

0

fk(u)2 du− 1
2

∫ ∞

0

(fk(u) + Y k
u )2 du.
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We then obtain

EP 1A exp

(
n∑

k=1

∫ ∞

0

fk(u) dXk
u +

n∑

k=1

∫ ∞

0

Y k
u dW k

u −
1
2

n∑

k=1

∫ ∞

0

(Y k
u )2 du

)

= EP 1A exp

(
n∑

k=1

∫ ∞

0

fk(u) + Y k
u dW k

u +
1
2

∫ ∞

0

fk(u)2 du− 1
2

∫ ∞

0

(fk(u) + Y k
u )2 du

)

= EP 1A exp

(
1
2

n∑

k=1

∫ ∞

0

fk(u)2 du

)
E(N)∞

= exp

(
1
2

n∑

k=1

∫ ∞

0

fk(u)2 du

)
EP 1AE(N)∞.

We have now proved that for any fk ∈ L2[0,∞) and A ∈ F ,

EQ1A exp

(
n∑

k=1

∫ ∞

0

fk(u) dXk
u

)
= exp

(
1
2

n∑

k=1

∫ ∞

0

fk(u)2 du

)
EP 1AE(N)∞.

We are ready to demonstrate that X is an Ft-Brownian motion under Q. Let 0 ≤ s ≤ t,
A ∈ Fs and θ ∈ Rn. We can then define fk by fk(u) = θk1(s,t](u). Since fk is zero on
[0, s], Ms = Ns and therefore, using that E(N) is a uniformly integrable martingale,

EP 1AE(N)∞ = EP 1AE(N)s = EP 1AE(M)s = Q(A).

We then obtain

EQ1A exp

(
n∑

k=1

θk(Xk
t −Xk

s )

)
= EQ1A exp

(
n∑

k=1

∫ ∞

0

fk(u) dXk
u

)

= exp

(
1
2

n∑

k=1

∫ ∞

0

fk(u)2 ds

)
EP 1AE(N)∞

= exp

(
1
2

n∑

k=1

∫ ∞

0

fk(u)2 ds

)
Q(A)

= exp

(
1
2

n∑

k=1

θ2
k(t− s)

)
Q(A).

This shows the desired formula,

EQ

(
exp

(
n∑

k=1

θk(Xk
t −Xk

s )

)∣∣∣∣∣Fs

)
= exp

(
1
2

n∑

k=1

θ2
k(t− s)

)
.

Finally, we may conclude that X is an Ft-Brownian motion under Q.
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Step 2: The L2(W ) case, deterministic from a point onwards. Now only
assume that Y ∈ L2(W )n and that Y is zero from T and onwards. In the previous
step, we obtained our results by calculating the conditional Laplace transform. In the
current case, we will instead calculate the conditional characteristic function. Our aim
is to show that for any 0 ≤ s ≤ t,

EQ

(
exp

(
i

n∑

k=1

θk(Xk
t −Xk

s )

)∣∣∣∣∣Fs

)
= exp

(
−1

2

n∑

k=1

θ2
k(t− s)

)
.

We will use an approximation argument. To this end, define Y k
n = Y k ∧ n ∨ −n.

Yn then satisfies the condition of the first step, and we may conclude that putting
Mn(t) = Yn ·W and defining Qn by dQn

dPn
= E(Mn)∞, Qn is a probability measure and

Xn given by Xk
n(t) = W k

t −
∫ t

0
Y k

n (s) ds is a Brownian motion under Qn.

Our plan is to show that

1. There is a subsequence of E(Mm)∞ converging to E(M)∞ in L1.

2. For t ≥ 0, there is a subsequence of Xk
m(t) converging to Xk(t) almost surely.

We will be able to combine these facts to obtain our desired result.

To prove the first of the two convergence results above, note that Y k
n tends to Y k in

L2(W ) by dominated convergence. Therefore,
∫∞
0

Y k
n (s) dW k

s tends to
∫∞
0

Y k(s) dW k
s

in L2. By taking out a subsequence, we can assume that the convergence is almost
sure. Furthermore, from Lemma B.6.5 we find that by taking a subsueqence, we can
assume that

∫∞
0

Y k
n (s)2 ds tends to

∫∞
0

Y k(s)2 ds almost surely. We have now ensured
that almost surely,

∫∞
0

Y k
n (s) dW k

s tends to
∫∞
0

Y k(s) dW k
s , and

∫∞
0

Y k
n (s)2 ds tends

to
∫∞
0

Y k(s)2 ds. Therefore, E(Mn)∞ converges almost surely to E(M)∞. We know
that EPE(Mn)∞ = 1, and have assumed EP E(M)∞ = 1. By nonnegativity, Scheffé’s
Lemma B.2.3 yields that E(Mn)∞ converges in L1 to E(M)∞, as desired.

To prove the second convergence result, let t ≥ 0 be given. Note that since Y k
n con-

verges in L2(W ) to Y k and the processes are zero from a deterministic point onwards,
we obtain from Lemma B.2.4 that E

∫∞
0
|Y k

n (s)−Y k(s)| ds tends to zero. Therefore, by
Lemma B.6.5, we can by taking out a subsequence assume that

∫ t

0
Y k

n (s) ds converges
almost surely to

∫ t

0
Y k(s) ds. We then obtain

lim
n

Xk
n(t) = lim

n
W k(t)−

∫ t

0

Y k
n (s) ds = Xk(t)



108 The Itô Integral

as desired.

Now let 0 ≤ s ≤ t. We select a subsequence such that

1. E(Mm)∞ converges to E(M)∞ in L1.

2. Xk
m(s) converges almost surely to Xk(s).

3. Xk
m(t) converges almost surely to Xk(t).

Since Xm is Ft-Brownian motion under Qm, we know that

EQm

(
exp

(
i

n∑

k=1

θk(Xk
m(t)−Xk

m(s))

)∣∣∣∣∣Fs

)
= exp

(
−1

2

n∑

k=1

θ2
k(t− s)

)
.

We will identify the limit of the left-hand side. We know that

EQm

(
exp

(
i

n∑

k=1

θk(Xk
m(t)−Xk

m(s))

)∣∣∣∣∣Fs

)

= EP

(
exp

(
i

n∑

k=1

θk(Xk
m(t)−Xk

m(s))

)
E(Mm)∞

∣∣∣∣∣Fs

)
.

Using our convergence results with Lemma B.2.2, we find that

exp

(
i

n∑

k=1

θk(Xk
m(t)−Xk

m(s))

)
E(Mm)∞

L1

−→ exp

(
i

n∑

k=1

θk(Xk(t)−Xk(s))

)
E(M)∞,

and therefore, by the L1 continuity of conditional expectations,

EQ

(
exp

(
i

n∑

k=1

θk(Xk
t −Xk

s )

)∣∣∣∣∣Fs

)
= exp

(
−1

2

n∑

k=1

θ2
k(t− s)

)
,

as desired.

Step 3: The L2(W ) case. Finally, merely assume Y ∈ L2(W )n. Let σn be a localising
sequence such that Y k[0, σn] ∈ L2(W ). Put τn = σn ∧ n and define Y k

n = Y k[0, τn].
Then Y k is in L2(W ) and is zero from a deterministic point onwards. Therefore,
we can use the result from the previous step on Yn. As in the preceeding step of
the proof, we define Mm = Ym · W and define Qm by dQm

dPm
= E(Mm)∞. Putting

Xk
m(t) = W k(t)− ∫ t

0
Y k

m(s) ds, Xm is then a Ft Brownian motion under Qm. We will
show
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1. E(Mm)∞ converges to E(M)∞ in L1.

2. Xk
m(t) converges to Xk(t) almost surely.

Having these two facts, the conclusion will follow by precisely the same method as in
the previous step. To prove the first convergence result, note that E(M)τm = E(Mm).
Since E(M) is assumed to be a uniformly integrable martingale, it has an almost surely
limit and we may conclude E(M)τm = E(Mm)∞. Now, (E(M)τm)m≥1 is a discrete-
time martingale, and it is closed by E(M)∞. Therefore, it is convergent in L1. Thus

E(Mm)∞
L1

−→ E(M)∞.

The second result follows directly from

lim
m

Xk
m(t) = lim

m
W k

t −
∫ t

0

Y k
m(s) ds

= W k
t − lim

m

∫ t

0

Y k(s)1[0,τm](s) ds

= W k
t −

∫ t

0

Y k(s) ds

= Xk
t ,

almost surely. As in the previous step, we conclude that X is an Ft Brownian motion
under Q.

We are now done with the proof of Girsanov’s Theorem. In the first part of the
theorem, Theorem 3.8.2, we have seen that any probability measure Q equivalent to P

on F∞ has the property that dQ∞
dP∞

= E(M)∞ for some M such that E(M) is uniformly
integrable. In the second part, Theorem 3.8.3, we have seen now the distribution of
W changes under this measure change.

When we have two equivalent probability measures P and Q, we will usually be inter-
ested in stochastic integration under both of these probability measures, in the sense
that a given process can be a standard process under P with respect to the original
Brownian motion, and it can be a standard process under Q with respect to the new
Q Brownian motion. We have defined a stochastic integral for each of these cases. We
will now check that whenever applicable, the two stochastic integrals agree. We also
show that being a standard process under P is the same as being a standard process
under Q.
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Theorem 3.8.4. Let P and Q be equivalent on F∞. If X is a standard process under
P , it is a standard process under Q as well. Let LP (X) denote the integrands for X

under P , and let LQ(X) denote the integrands for X under Q. If Y ∈ LP (X)∩LQ(X),
then the integrals under P and Q agree up to indistinguishability.

Comment 3.8.5 The meaning of the lemma is a bit more convoluted that it might
seem at first. To be a standard process, it is necessary to work in the context of a
filtered space (Ω,F , P,Ft) with a Ft Brownian motion. That X is a standard process
under Q thus assumes that we have some particular process in mind which is a Ft

Brownian motion under Q. In our case, the implicitly understood Brownian motion is
the one given by Girsanov’s theorem. ◦

Proof. We need to prove two things: That X is a standard process under Q, and that
if ∈ LP (X) ∩ LQ(X), the integrals agree.

Step 1: X is a standard process under Q. Let the canonical decomposition of
X under P be given by X = A + M with M = Y ·W . By Girsanov’s Theorem, there
is a continuous local martingale N = Z ·W such that E(N) is a uniformly integrable
martingale and dQ∞

dP∞
= E(N)∞, and then the process WQ given by

WQ
k (t) = Wk(t)−

∫ t

0

Zk(s) ds

is a Ft Brownian motion under Q. Note that since the null sets of P and Q are
the same, the space (Ω,F , Q,Ft) satisfies the usual conditions. Thus, with WQ as our
Brownian motion, we have a setup precisely as described throughout the chapter. And
by the properties of the stochastic integral under P ,

Xt = At + Mt

= At +
n∑

k=1

∫ t

0

Yk(s) dWk(s)

= At +
n∑

k=1

∫ t

0

Zk(s) ds +
n∑

k=1

∫ t

0

Y k
s dWQ

k (s).

Under the setup (Ω,F , Q,Ft), the process At +
∑n

k=1 Zk(s) ds is of finite variation and
the process

∑n
k=1 Y k

s dWQ
k (s) is in cML

W . Therefore, X is a standard process under
Q.

Step 2: Agreement if the integrals, part 1. Now assume that Y is some process
with is in LP (X) ∩ LQ(X). Let IP

X(Y ) be the integral of Y with respect to X under
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P , and let IQ
X(Y ) be the integral of Y with respect to X under Q. We want to show

that IP
X(Y ) and IQ

X(Y ) are indistinguishable.

We first consider the case where Y is bounded and continuous. Let t ≥ 0. We will
show that IP

X(Y )t = IQ
X(Y )t almost surely. By Lemma 3.4.15, the Riemann sums∑n

k=1 Ytk−1(Xtk
−Xtk−1) converge in probability under P to IP

X(Y )t and converge in
probability under Q to IQ

X(Y )t for some sequence of partitions of [0, t] with meshes
tending to zero. By taking out a subsequence, we can assume that the convergence
is almost sure. Since P and Q are equivalent, we find that both under P and Q, the
Riemann sums tend to both IP

X(Y )t and IQ
X(Y )t. Therefore, IP

X(Y )t and IQ
X(Y )t are

almost surely equal. Since both processes are continuous, we conclude that IP
X(Y ) and

IQ
X(Y ) are indistinguishable.

Step 3: Agreement of the integrals, part 2. Now, as before, let X = A + M

be the canonical decomposition of X under P , and let X = B + N be the canonical
decomposition of X under Q. We consider the case where VA and VB are bounded,
where M, N ∈ cM2

W and where Y is bounded and zero from a deterministic point
onwards. As in the proof of Theorem 3.1.7, define

Yn(t) =
1
1
n

∫ t

(t− 1
n )+

Y (s) ds.

Then Yn is bounded and continuous with ‖Yn‖∞ ≤ ‖Y ‖∞, and Yn converges to Y

λ ⊗ P everywhere. Since µM and µN are bounded, this implies that Yn converges
to Y in L2(M) and L2(N), and therefore IP

M (Yn) converges to IP
M (Y ) in cM2

0 under
P . Likewise, IQ

N (Yn) converges to IQ
N (Y ) under Q. Taking out subsequences, we

can assume that the convergence is uniformly almost sure, showing in particular that
IP
M (Yn)t converges to IP

M (Y )t almost surely and IQ
N (Yn)t converges to IQ

N (Y )t almost
surely for any t ≥ 0.

Next, consider the finite variation components. Since VA and VB are bounded we find
that for almost all t ≥ 0, IP

A (Yn)t converges almost surely to IP
A (Y )t. Likewise, for

almost all t ≥ 0, IQ
B (Yn)t converges almost surely to IQ

B (Y )t.

All in all, we may conclude that for almost all t ≥ 0, IP
X(Yn)t converges to IP

X(Y )t

and IQ
X(Yn)t converges to IQ

X(Y )t almost surely. Therefore, by what we already have
shown

IP
X(Y )t = lim

n
IP
X(Yn)t = lim

n
IQ
X(Yn)t = IQ

X(Y )t.

Since any Lebesgue almost sure set is dense and the processes are continuous, we
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conclude that IP
X(Y ) and IQ

X(Y ) are indistinguishable.

Step 4: Agreement of the integrals, part 3. We now still assume that VA and
VB are bounded and that M, N ∈ cM2

W , but we reduce our requirement on Y to be
that Y is in L1(A) ∩ L1(B) ∩ L2(M) ∩ L2(N). We will use the results of the previous
step to show that the result holds in this case. Define

Yn(t) = Y (t)1(|Yt|>n)1[0,n](t).

Then Y is bounded and zero from a deterministic point onwards. Furthermore,
|Yn(t)| ≤ |Y (t)|, and Yn converges pointwise to Y . By dominated convergence, we
therefore conclude that Yn converges to Y in L2(M) and L2(N). This implies that
IP
M (Yn) tends to IP

M (Y ) in cM2
0 under P , and IQ

N (Yn) tends to IQ
N (Y ) in cM2

0 under
Q. For the finite variation compoments, we find that IP

A (Yn) converges pointwise to
IP
A (Y ) and IQ

A (Yn) converges pointwise to IQ
A (Y ).

As in the previous step, this implies

IP
X(Y )t = lim

n
IP
X(Yn)t = lim

n
IQ
X(Yn)t = IQ

X(Y )t,

showing the result in this case.

Step 5: Agreement of the integrals, part 4. Finally, we consider the general
case. Define the stopping times

τA
n = inf{t ≥ 0|VA(t) ≥ n}

τB
n = inf{t ≥ 0|VA(t) ≥ n},

and let τM
n and τN

n be sequences localising M and N to cM2
W , respectively. Let σn

be such that Y σn is in L1(A) ∩ L1(B) ∩ L2(M) ∩ L2(N). Defining the stopping time
τn by τn = τA

n ∧ τB
n ∧ τM

n ∧ τN
n ∧ σn. ThenV τn

A and V τn

B are bounded, Mτn and Nτn

are in cM2
W and Y τn is in L1(Aτn)∩L1(Bτn)∩L2(Mτn)∩L2(Nτn). Furthermore, τn

tends to infinity almost surely. By Lemma 3.4.11,

IP
X(Y )τn = IP

Xτn (Y )

IQ
X(Y )τn = IQ

Xτn (Y ).

Since P and Q are equivalent, τn converges to infinity both Q and P almost surely.
Therefore, since we have shown the result in the localised case, the result follows for
the general case as well.
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Next, we consider necessary requirements for the practical application of the Girsanov
theorem. In practice, we are not given a probability measure Q and want to identify
the distribution of W under Q. Rather, we desire to change the distribution of W in
a certain manner, and wish to find an equivalent probability measure Q to obtain this
change. If we plan to use Theorem 3.8.3 to facilitate this change, we need to identify
a local martingale M zero at zero yielding the desired distribution and ensure that
E(M) is a uniformly integrable martingale. This latter part is the most difficult part
of the plan. Note that the condition M0 = 0 is necessary for E(M) to be defined at
all.

In Lemma 3.7.3, we obtained a sufficient condition to ensure that E(M) is uniformly
integrable. This condition is too strong to be useful in practice, however. Our next
objective is to find weaker conditions that ensure the uniformly integrable martin-
gale property of E(M). These conditions take the form of Kazamaki’s and Novikov’s
criteria. We are led by Protter (2005), Section III.8.

Lemma 3.8.6. Let M ∈ cML
0 . E(M) is a supermartingale with EE(M)t ≤ 1 for all

t ≥ 0. E(M) is a martingale if and only if EE(M)t = 1 for all t ≥ 0. E(M) is a
uniformly integrable martingale if and only if EE(M)∞ = 1.

Proof. Since E(M) is a continuous nonnegative local martingale, it is a supermartin-
gale. In particular, EE(M)t ≤ EE(M)0 = 1. Furthermore, E(M)∞ always exists as
an almost sure limit by the Martingale Convergence Theorem.

The martingale criterion. We now prove that E(M) is a martingale if and only if
EE(M)t = 1 for t ≥ 0. Clearly, if E(M) is a martingale, EE(M)t = EE(M)0 = 1 for
all t ≥ 0. Conversely, assume that EE(M)t = 1 for all t ≥ 0. Consider 0 ≤ s ≤ t. By
the supermartingale property, we obtain E(M)s ≥ E(E(M)t|Fs). This shows that

0 ≤ E(E(M)s − E(E(M)t|Fs)) = EE(M)s − EE(M)t = 0,

so E(M)s − E(E(M)t|Fs) is a nonnegative variable with zero mean. Thus, it is zero
almost surely and E(M)s = E(E(M)t|Fs), showing the martingale property.

The UI martingale criterion. Next, we prove that E(M) is a uniformly integrable
martingale if and only if EE(M)∞ = 1. If EE(M)∞ = 1, we obtain

1 = EE(M)∞ = E lim inf
t

E(M)t ≤ lim inf
t

EE(M)t.

Now, EE(M)t is decreasing and bounded by one, so we conclude limt EE(M)t = 1 and
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therefore EE(M)t = 1 for all t. Therefore, by what we already have shown, E(M) is a
martingale. By Lemma B.5.4, it is uniformly integrable.

On the other hand, if E(M) is a uniformly integrable martingale, it is convergent in
L1 and in particular EE(M)∞ = limt EE(M)t = 1.

Lemma 3.8.7. Let M be a continuous local martingale zero at zero. Let ε > 0. If
it holds that supτ E exp

((
1
2 + ε

)
Mτ

)
< ∞, where the supremum is over all bounded

stopping times, then E(M) is a uniformly integrable martingale.

Proof. Let ε > 0 be given. Our plan is to identify an a > 1 such that supτ EE(M)a
τ

is finite, where the supremum is over all bounded stopping times. If we can do this,
Lemma 2.5.19 shows that E(M) is a martingale bounded in La, in particular E(M) is
a uniformly integrable martingale. To this end, let a, r > 1 be given. We then have

E(M)a
τ = exp

(
aMτ − a

2
[M ]τ

)
= exp

(√
a

r
Mτ − a

2
[M ]τ

)
exp

((
a−

√
a

r

)
Mτ

)
.

The point of this observation is that when we raise the first factor in the right-hand
side above to the r’th power, we obtain an exponential martingale. Therefore, letting
s be the dual exponent of r, Hölder’s inequality and Lemma 3.8.6 yields

EE(M)a
τ ≤

(
E exp

(√
arMτ − ar

2
[M ]τ

)) 1
r

(
E exp

((
a−

√
a

r

)
sMτ

)) 1
s

=
(
EE(

√
arM)τ

) 1
r

(
E exp

((
a−

√
a

r

)
sMτ

)) 1
s

≤
(

E exp
((

a−
√

a

r

)
sMτ

)) 1
s

.

Recalling that s = r
r−1 , we then find

sup
τ

EE(M)a
τ ≤

(
sup

τ
E exp

((
a−

√
a

r

)
r

r − 1
Mτ

)) 1
s

=
(

sup
τ

E exp
((

ar −√ar
) 1

r − 1
Mτ

)) 1
s

.

Thus, if we can identify a, r > 1 such that (ar−√ar) 1
r−1 ≤ 1

2 +ε, the result will follow
from our assumption. To this end, define f(y, r) = (y−√y) 1

r−1 . Finding a, r > 1 such
that (ar−√ar) 1

r−1 ≤ 1
2 +ε is equivalent to finding y > r > 1 such that f(y, r) ≤ 1

2 +ε.
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To this end, note that d
dy (y −√y) = 1 − 1

2
√

y , which is positive whenever y > 1
4 . We

therefore obtain

inf
y>r>1

f(y, r) = inf
r>1

inf
y>r

f(y, r) = inf
r>1

r −√r

r − 1
= inf

r>1

√
r√

r + 1
= inf

r>1

1
1 + 1√

r

=
1
2
.

We may now conclude that for any ε > 0, there is y > r > 1 such that f(y, r) ≤ 1
2 + ε.

The proof of the lemma is then complete.

Comment 3.8.8 This lemma parallels the lemma preceeding Theorem 44 of Section
III.8 in Protter (2005). However, Protter avoids the analysis of the mapping f used in
the proof above by formulating his lemma differently and making some very inspired
choices of exponents. He shows that if supτ E exp(

√
p

2
√

p−1Mτ ) is finite, then E(M) is a
martingale bounded in Lq, where q is the dual exponent to p. His method is based on
Hölder’s inequality just as our proof, and he uses r =

√
p+1√
p−1 .

We have opted for a different proof, involving analysis of the mapping f , in order to
avoid having to use the very original choice r =

√
p+1√
p−1 out of the blue. ◦

Theorem 3.8.9 (Kazamaki’s Criterion). Let M be a continuous local martingale
zero at zero. If supτ E exp

(
1
2Mτ

)
< ∞, where the supremum is over all bounded

stopping times, then E(M) is a uniformly integrable martingale.

Proof. Our plan is to show that E(aM) is a uniformly integrable martingale for any
0 < a < 1 and let a tend to one in a suitable context. Let 0 < a < 1. Then there is
εa > 0 such that a( 1

2 +εa) ≤ 1
2 . Therefore, with the supremum over bounded stopping

times,

sup
τ

E exp
((

1
2

+ εa

)
aMτ

)
≤ sup

τ
E

(
1(Mτ <0) + 1(Mτ≥0) exp

((
1
2

+ εa

)
aMτ

))

≤ 1 + sup
τ

E1(Mτ≥0) exp
(

1
2
Mτ

)

≤ 1 + sup
τ

E exp
(

1
2
Mτ

)
,

which is finite by assumption. Lemma 3.8.7 then yields that E(aM) is a uniformly
integrable martingale.

Next, note that there is C > 0 such that x+ ≤ C + exp( 1
2x). Therefore, by our

assumptions, M+
t is bounded in L1, and therefore Mt converges almost surely to its
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limit M∞. Since the limit [M ]∞ always exists in [0,∞], we can then write

E(aM)∞ = exp
(

aM∞ − a2

2
[M ]∞

)

= exp
(

a2M∞ − a2

2
[M ]∞

)
exp

(
(a− a2)M∞

)

= E(M)a2
exp

(
(a− a2)M∞

)
.

Using that E(aM) is a uniformly integrable martingale and applying Hölder’s inequal-
ity with 1

a2 and its dual exponent 1
1−a2 , we obtain by Lemma 3.8.6 that

1 = EE(aM)∞

≤ (EE(M))a2
(

E exp
(

a− a2

1− a2
M∞

))1−a2

.

Now, if the last factor on the right-hand side is bounded over a > 1, we can let a tend
to 1 from above and obtain 1 ≤ EE(M)∞, which would give us the desired conclusion.
Since a−a2

1−a2 = a
1+a = 1

1
a +1

< 1
2 , it will suffice to prove that E exp(a

2M∞) is bounded
over 0 < a < 1. This is what we now set out to do.

Define C = supτ E exp( 1
2Mτ ), C is finite by assumption. Note that since a < 1, there

is p > 1 such that ap ≤ 1 and therefore

sup
t≥0

E exp
(a

2
Mt

)p

= sup
t≥0

E exp
(ap

2
Mt

)
≤ C.

This shows that exp
(

a
2Mt

)
is bounded in Lp for t ≥ 0. In particular, the family is

uniformly integrable. Since Mt converges almost surely to M∞, we have convergence
in probability as well. Therefore, exp(a

2Mt) converges in L1 to exp(a
2M∞), and we

may conclude
E exp

(a

2
M∞

)
= lim

t
E exp

(a

2
Mt

)
≤ C.

In particular, then, we finally get 1 ≤ (EE(M)∞)a2

C1−a2
, and letting a tend to one

yields 1 ≤ EE(M)∞. By Lemma 3.8.6, the proof is complete.

Theorem 3.8.10 (Novikov’s Criterion). Let M be a continuous local martingale
zero at zero. Assume that E exp(1

2 [M ]∞) is finite. Then E(M) is a uniformly integrable
martingale.

Proof. We will show that Novikov’s criterion implies Kazamaki’s criterion. Let τ be
any bounded stopping time. Then

E(M)
1
2
τ = exp

(
1
2
Mτ

)(
exp

(
−1

2
[M ]τ

)) 1
2

,
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which, using the Cauchy-Schwartz inequality, shows that

E exp
(

1
2
Mτ

)
= EE(M)

1
2
τ

(
exp

(
1
2
[M ]τ

)) 1
2

≤ (EE(M)τ )
1
2

(
E exp

(
1
2
[M ]τ

)) 1
2

≤
(

E exp
(

1
2
[M ]∞

)) 1
2

,

where we have used that [M ] is increasing. Since the final right-hand side is indepen-
dent of τ and finite by assumption, Kazamaki’s criterion is satisfied and the conclusion
follows from Theorem 3.8.9.

This concludes our work on the stochastic calculus. In this section, we have proven
Girsanov’s theorem, characterising the possible measure changes on F∞ and giving
the change in drift of the Brownian motion. The Kazamaki and Novikov criteria can
be used to obtain the existence of measure changes corresponding to specific drifts. Of
these two, the Kazamaki criterion is the strongest, but the Novikov criterion is often
easier to apply.

Before proceeding to the next chapter, we will in the next section discuss our choice
to assume the usual conditions.

3.9 Why The Usual Conditions?

The question of whether to assume the usual conditions is a vexed one. Most books
either do not comment the problem or choose to assume the usual conditions without
stating why. We have assumed the usual conditions in this text. We will now explain
this choice. We will also describe how we could have avoided having to make this
assumption, and we will discuss general pros and cons of the usual conditions.

A review of the usual conditions. We begin by reiterating the meaning of the
usual conditions and reviewing some opinions expressed about the usual conditions
in the literature. Recall that for a filtered probability space (Ω,F , P,Ft), the usual
conditions are conditions states that:
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1. (Ω,F , P ) is a complete measure space.

2. The filtration is right-continuous, Ft = ∩s>tFs.

3. For t ≥ 0, Ft contains all P -null sets in F .

The books Rogers & Williams (2000a) and Protter (2005) both have sections dis-
cussing the effects and the reasonableness of assuming the usual conditions.

In Rogers & Williams (2000a), Section II.76, the right-continuity of the filtration is
taken as a natural choice. The authors focus on why the completion of the filtration is
to be introduced. The main argument is that this is necessary for the Début Theorem
and Section Theorem of Section II.77 to hold. Of these two, the Début Theorem is
the easiest to understand, simply stating that for any progressive process X and Borel
set B, the variable DB = inf{t ≥ 0|X ∈ B} is a stopping time. This is not necessarily
true if the filtration is not completed. The reason for this is illustrated in the proof
of Lemma 75.1, where it is explained how the process can approach B in uncountably
many ways, which causes problems with measurability.

In Protter (2005), Section 1.5, the completion of the filtration is instead seen as a
natural choice, and the author focuses on why the right-continuity should be included.
He does this by showing that the completed filtration of any cadlag Feller process is
automatically right-continuous, so when assuming completion, right-continuity comes
naturally.

While enlightening, none of these discussions provide reasons for us to assume the
usual filtrations. Our reasons for assuming the usual conditions are much more down-
to-earth and actually motivated from mostly practical concerns. Before discussing
upsides and downsides from assuming the usual conditions in our case, we make some
general observations regarding the effects of the usual conditions.

Regularity of paths and the usual conditions. We take as starting point the
topic of cadlag versions of martingales. We claim that

1. Without any assumptions on the filtration, no cadlag versions are guaranteed.

2. With right-continuity, almost sure cadlag paths can be obtained.

3. With right-continuity and completeness, cadlag paths for all ω can be obtained.
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The first claim is basically unfounded, as we have no counterexample to show that there
are martingales where no cadlag versions exists. However, there are no theorems in the
literature to be found giving results on general filtrations, and from the structure of
the proofs for right-continuous filtrations, it seems highly unlikely that cadlag versions
should exist for the general case.

To understand what is going on in the two other cases, we follow Rogers & Williams
(2000a), sections II.62 through II.67. We work in a probability space (Ω,F , P,Ft)
where we assume that the filtration is right-continuous. Let x : [0,∞) → R be some
mapping. We define limq↓↓t xq as the limit of xq as q converges downwards to t through
the rationals. Likewise, we define limq↑↑t xq as the limit of xq as q converges upwards
to t through the rationals. We say that x is regularisable if limq↓↓t xq exists for all
t ≥ 0 and limq↑↑t xq exists for all t > 0. As described in Rogers & Williams (2000a),
Theorem II.62.13, if x is regularisable, there exists another function y such that y is
cadlag and y agrees with x on [0,∞) ∩ Q. As shown in Sokol (2007), Lemma 2.73,
being regularisable is actually both a sufficient and necessary condition for this to hold.
y is explicitly given by yt = limq↓↓t xt.

Now let M be a martingale and define

G = {ω ∈ Ω|M(ω) is regularisable}.

By Rogers & Williams (2000a), Theorem II.65.1, G is then F-measurable and it holds
that P (G) = 1. We define

Yt(ω) =

{
limq↓↓t Mt(ω) if the limit exists.

0 otherwise.

By a modification of the argument in Rogers & Williams (2000a), Theorem II.67.7, if
the filtration is right-continuous, Y is then a version of M . Note that

G ⊆ (Yt = lim
q↓↓t

Mt ∀ t ≥ 0),

and therefore Y is almost surely cadlag. Since the filtration is right-continuous, it
is clear that Y is adapted, so Y is an Ft martingale. Thus, under the assumption of
right-continuity, we have been able to use Rogers & Williams (2000a) Theorem II.67.7
to obtain a version Y of M which is a martingale and almost surely cadlag.

We will now consider what can be done to make sure that all paths of our version of M

are cadlag. An obvious idea would be to put Y ′ = 1GY . This corresponds to letting Y ′

be equal to Y on G, where Y is guaranteed to be cadlag, and zero otherwise. All paths
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of Y ′ are cadlag. However, since we have no guarantee that G ∈ Ft, Y ′ is no longer
adapted. This is what ruins our ability to obtain all paths cadlag in the uncompleted
case: the set of non-cadlag paths does not interact well with the filtration.

However, if we assume that Ft contains all P -null sets, we can use the fact that
P (G) = 1 to see that Y ′ is adapted. Thus, in this case, we can obtain a version Y ′ of
M which is a martingale and has all paths cadlag.

We have now argued for the three claims we made earlier. A general moral of our
arguments is that if X is an adapted process, then we can change X on a null set and
retain adaptedness if the filtration contains all null sets.

Upsides and downsides of the usual conditions. We now discuss reasons for
assuming or not assuming the usual conditions.

The upsides of the usual conditions are:

1. Path properties hold for all ω, so there are fewer null sets to worry about.

2. Proofs of adaptedness are occasionally simpler.

3. Most literature assumes the usual conditions, making it easier to refer results.

The downsides of the usual conditions are:

1. We need to spend time checking that, say, the Brownian motion can be taken to
be with respect to a filtration satisfying the usual conditions.

2. Density proofs are occasionally harder.

To see how the usual conditions can make density proofs harder, look at the proof
of Lemma 3.7.5. To see how proofs of adaptedness can be harder without the usual
conditions, we go back to the construction seen earlier, Yt(ω) = limq↓↓t Mt(ω) when-
ever the limit exists and zero otherwise. Had we assumed the usual conditions, we
could just define the entire trajectory of Y on some almost sure set and putting it to
zero otherwise. This phenomenon would also cause some trouble when defining the
stochastic integral for integrators of finite variation.
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As null sets really are a frustrating aspect of the entire theory, adding almost no real
value but constantly complicating proofs, we have chosen to offer a bit of extra effort
to introduce the usual conditions, in return obtaining fewer null sets to worry about.
We could have developed the entire theory without the usual conditions, but then all
our stochastic integrals and other processes would only be continuous almost surely.

Some would say that another downside of the usual conditions is that the filtration
loses some of its interpretation as “carrier of information”, in the sense that Ft is
usually interpreted as “the information available at time t”. We do not find this
argument to be particularly weighty. Obviously, the null sets N contain sets from all
of F , in particular sets from Ft for any t ≥ 0. But these are sets of probability zero. It
would therefore seem that the information value in these sets is quite minimal. Since
completing the filtration does not have any negative impact on actual modeling issues,
it seems unreasonable to maintain that the interpretation of the filtration is reduced.

There do seem to be situations, though, where the usual conditions should not be
assumed. When considering the martingale problem, Jacod & Shiryaev (1987) in
Section III.1 specifically notes that they are considering filtrations that do not nec-
essarily satisfy the usual conditions. However, Rogers & Williams (2000b) also con-
siders the martingale problem in Section V.19, even though they have only developed
the stochatic integral under the usual conditions, and seem to get through with this.
Changes of measure can also present situations where the usual conditions are in-
appropriate, see the comments in Rogers & Williams (2000b), Section IV.38, page
82.

3.10 Notes

In this section, we will review other accounts of the theory in the literature, and we
will give references to extensions of the theory. We will also compare our methods to
those found in other books and discuss the merits and demerits of our methods.

Other accounts of the theory of stochastic integration. There are many excel-
lent sources for the theory of stochastic integration. We will consider the approaches
to the stochastic integral taken in Øksendal (2005), Rogers & Williams (2000b),
Protter (2005) and Karatzas & Shreve (1988).
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In Øksendal (2005), the integrators are resticted to processes of the type given by∫ t

0
Yt dt+

∫ t

0
Yt dWt. The integral is developed over compact intevals and the viewpoint

is more variable-oriented and less process-oriented. The level of rigor is lower, but the
text is easier to comprehend and gives a good overview of the theory.

In Rogers & Williams (2000b), a very systematic development of the integral is made,
resulting in a large generality of integrators. As integrators, the authors first take
elements of cM2

0. They develop the integral for integrands in bE , and then extend
to the space of locally bounded predictable integrands, L0(bP). Here, the predictable
σ-algebra the σ-algebra on (0,∞) × Ω generated by the left-continuous processes, or
equivalently, generated by bE . This σ-algebra is strictly smaller than Σπ, and thus
the integrands of Rogers & Williams (2000b) are less general than ours. However, the
extension method is simpler, based on the monotone class theorem. Their greater range
of integrators comes at the cost of having to develop the quadratic variation in greater
detail. After constructing the integral for integrators in cM2

0, they later develop a
much more general theory, where the integrators are semimartingales, meaning the
sum of a local martingale and a finite variation process.

In Protter (2005), a kind of converse viewpoint to other books is taken. Instead of
developing the integral for more and more general processes, the author defines a semi-
martingale as a process X making the integral mapping with respect to X continuous
under suitable topologies. In the first part of the book, the integral is developed as
a mapping from left-continuous processes to right-continuous processes. In time, it
is shown that this integral leads to the same result as the conventional approach. In
later parts of the book, the space of integrands are extended to predictable processes.

Finally, in Karatzas & Shreve (1988), the integral is developed in the usual straightfor-
ward manner as in Rogers & Williams (2000b), but here, only continuous integrators
are considered. As in Rogers & Williams (2000b), the authors begin with processes in
cM2

0 as integrators, but in this case, the space of integrands is larger than in Rogers
& Williams (2000b). The account is very detailed and highly recommended.

Extensions of the theory. As noted above, the theory we have presented can be
extended considerably. Rogers & Williams (2000b), Protter (2005) and Karatzas
& Shreve (1988) all consider more general integrators than we do here. A very
pedagogical source for the general theory is Elliott (1982), though the number of
misprints can be frustrating.
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The idea of extending the stochastic integral begs the question of whether results
such as Itô’s representation theorem and Girsanov’s theorem also can be extended to
more general situations. To a large extent, the answer is yes. For extensions of the
representation theorem, see Section III.4 of Jacod & Shiryaev (1987) or Section IV.3
of Protter (2005). Extensions of the Girsanov theorem can be found in Section III.3
of Jacod & Shiryaev (1987), Section III.8 of Protter (2005), and also in Rogers &
Williams (2000b) and Karatzas & Shreve (1988). One immediate extension is the
opportunity to prove Girsanov’s theorem in a version where P and Q are not equivalent
on F∞, but only on Ft for all t ≥ 0. Having proved this extension would have made
our applications to mathematical finance easier. Alas, this realization came too late.

The search for results like Kazamaki’s or Novikov’s criteria guaranteeing that an ex-
ponential martingale is a uniformly integrable martingale can reasonably be said to
be an active field of research. See Protter & Shimbo (2006) for recent results and
further references. For an example of a situation where Kazamaki’s criterion applies
but Novikov’s criterion does not, see Revuz & Yor (1998), page 336.

Discussion of the present account. The account of the theory developed here has
the same level of ambition as, say, Øksendal (2005) or Steele (2000), but with a
higher level of rigor. It is an attempt to combine the methods of Steele (2000) with
the stringency of Rogers & Williams (2000b) and Karatzas & Shreve (1988).

The restriction to continuous integrators simplifies the theory immensely, more or less
to a point beyond comparison. One consequence of this restriction is that we can take
our integrands to be progressively measurable instead of predictably measurable.

Not only is progressive measurability less restrictive than predictable measurability,
but it also removes some of the trouble with the timepoint zero. Traditionally, the
role of zero has not been well-liked. In Dellacherie & Meyer (1975), Section IV.61, the
authors claim that zero plays “the devil’s role”, and in the introduction to Chapter
IV of Rogers & Williams (2000b), it is “consigned to hell”. These problems very
much has something to do with the predictable σ-algebra, this is most obvious in
Rogers & Williams (2000b) where the predictable σ-algebra is defined as a σ-algebra
on (0,∞) × Ω instead of [0,∞) × Ω. Even in our case, however, there are some
considerations to be made. The fundamental problem with zero is that the intuitive
role of an integrator X should only depend on differences Xt − Xs, interpreted as
the measure assigned to (s, t]. The existence of a value at zero is therefore in fact
something of a nuisance. In our definition of the integral, we have chosen to assign
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any non-zero value at zero of the integrator X to the finite-variation part of X and
thus deferred the problems to results from ordinary measure theory.

In fact, a good deal of our results can be extended to integrators which are not even
progressively measurable. This is due to a result, the Chung-Doob-Meyer theorem,
stating that for any measurable and adapted process, there exists a progressive version
of that process. This would enable us to define the stochastic integral with respect to all
measurable and adapted processes satisfying appropriate integrability conditions. The
original proof of the Chung-Doob-Meyer theorem was quite difficult and can be found
in Dellacherie & Meyer (1975), Section 30 of Chapter IV, page 99. Recently, a much
simpler proof has surfaced, see Kaden & Potthoff (2004). Because we have assumed
the usual conditions, we could easily have adapted our results to consider meaurable
and adapted integrands. Without the usual conditions, however, the integration of
measurable and adapted processes causes problems with adaptedness. In essence,
progressive meaurability is the “right” measurability concept for dealing with pathwise
Lebesgue integration.

Now, as stated in the introduction, part of the purpose of the account given here was
to explore what it would be like to develop the simple theory of stochastic integration
with respect to Brownian integrators, just as in Steele (2000), but with complete rigor
and in a self-contained manner. The reason to do so is mainly to avoid the trouble of
having to prove the existence of the quadratic variation process for general continuous
local martingales. This could potentially allow for a very accesible presentation of the
basic theory of stochastic integration, which covers much of the results necessary for,
say, basic mathematical finance. However, as we have seen, the lower level of generality
has its price. The main demerits are:

1. The lack of general martingales makes the theory less elegant.

2. The development of the integral through associativity in Section 3.3 is tedious.
The need to consider n-dimensional Brownian motion and corresponding n-
dimensional integrands makes the notation cumbersome.

3. The proof of Girsanov’s theorem of Section 3.8 is very lengthy.

The first two demerits more or less speak for themselves. The third demerit deserves
some comments. In Øksendal (2005), the integral is also only developed for Brownian
integrators, but the proof of the Girsanov theorem given there is considerably shorter.
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This is because the author takes the Lévy characterisation of Brownian motion as
given, and thus his account is not self-contained.

The modern proof of the Lévy characterisation theorem uses a more general theory
of stochastic integration than presented here, see Theorem 33.1 of Rogers & Williams
(2000b). There is an older proof, however, not based on stochastic integration theory,
but it is much more cumbersome. A one-dimensional proof is given in Doob (1953).
If we were to base our proof of the Girsanov theorem on the Lévy characterisation
theorem, our account would become even longer than it is at present. The proof
we have given is based on the proof in Steele (2000) for the case where the drift
is bounded. Steele (2000) claims on page 224 that the proof for the bounded case
immediately can be extended to the general case. It is quite unclear how this should
be possible, however, since it would require the result that if E(M) is a martingale and
f is bounded and deterministic, then E(M + f ·W ) is a martingale as well. Our result
extends the method in Steele (2000) by a localisation argument, and it is to a large
degree this localisation which encumbers the proof.

If we had the theory of stochastic integration for general continuous local martingales
at our disposal, we could have used the arguments of Rogers & Williams (2000b),
Section IV.33 and Section IV.38, to give short and elegant proofs of both the Lévy
characterisation theorem and the Girsanov theorem.

Our conclusion is that when a high level of rigor is required, it is quite doubtful that
there is any use in developing the theory only for the case of Brownian motion instead
of considering general continuous local martingales. A theory at the level of Karatzas
& Shreve (1988) would therefore be preferable as introductory, with works such as
Øksendal (2005) and Steele (2000) being useful for obtaining a heuristic overview of
the theory.
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Chapter 4

The Malliavin Calculus

In this section, we will define the Malliavin derivative and prove its basic properties.
The Malliavin derivative and the theory surrounding it is collectively known as the
Malliavin calculus. The Malliavin derivative is an attempt to define a derivative of
a stochastic variable X in the direction of the underlying probability space Ω. Obvi-
ously, this makes no sense in the classical sense of differentiability unless Ω has sufficient
structure. The Malliavin derivative is therefore defined for appropriate variables on
general probability spaces not by a limiting procedure as in the case of classical deriva-
tive operators, but instead by analogy with a situation where the underlying space has
sufficient topological structure.

We will not be able to develop the theory sufficiently to prove the results which are ap-
plied to mathematical finance. Therefore, the exposition given here is mostly designed
to give a rigorous introduction to the fundamentals of the theory.

Before beginning the development of the Malliavin calculus, we make some motivating
remarks on the definition of the derivative. We are interested in defining the derivative
on probability spaces (Ω,F , P ) with a one-dimensional Wiener process W on [0, T ],
where the variables to be differentiated are in some suitable sense related to W . With
this in mind, we first consider the case where our probability space is C0[0, T ], the
space of continuous real functions on [0, T ] starting at zero, endowed with the Wiener
measure P . C0[0, T ] is a Banach space under the uniform norm. Let W be the identity
mapping, W is then a Wiener process on [0, T ]. We want to identify a differentiability
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concept for variables of the form ω 7→ Wt(ω) which can be generalized to the setting of
an abstract probability space with a Wiener process. To this end, consider a mapping
X from C0[0, T ] to R. Immediately available differentiability concepts for the mapping
are:

1. The Frechét derivative: The Frechét derivative of X at ω is the linear operator
Aω : C0[0, T ] → R such that limh→0

‖X(ω+h)−X(ω)−Aω(h)‖
‖h‖ = 0.

2. The Gâteaux directional derivatives: The derivative in direction h ∈ C0[0, T ] at
ω is the element DhX(ω) ∈ R such that limε→0

X(ω+εh)−X(ω)
ε = DhX(ω).

Here, the Frechét derivative can obviously be ruled out as a candidate for general-
ization because of the direct dependence of the derivative on the linear structure of
C0[0, T ]. Considering the Gâteaux derivative, we have that for h ∈ C0[0, T ], the
Gateaux derivative of Wt in direction h is

DhWt(ω) = lim
ε→0

Wt(ω + εh)−Wt(ω)
ε

= lim
ε→0

ωt + εht − ωt

ε
= ht

This means that this derivative is not amenable to direct generalization either, because
the derivative is an element of the underlying space depending directly of its properties
as a function space. Consider, however, the case where ht =

∫ t

0
g(t) dt for some

g ∈ L1[0, T ]. Then,

DhWt(ω) = ht =
∫ T

0

1[0,t](s)g(s) ds.

In this case, then, the Gâteaux derivative for any ω ∈ C0[0, T ] is actually characterized
by the mapping 1[0,t] from [0, T ] to R. We can therefore consider 1[0,t] as a kind of
derivative of Wt. Extending this concept to general mappings X : C0[0, T ] → R, we
can say that if there exists a mapping f : [0, T ] → R such that for h ∈ C0[0, T ] with
h(t) =

∫ t

0
g(s) ds, it holds that DhX(ω) =

∫ T

0
f(s)g(s) ds, then f is the derivative of

X, and we define DFX = f .

To interpret this derivative, fix y ∈ [0, T ] and consider the case hε(t) =
∫ t

0
ψε(s−y) ds,

where (ψε) is a Dirac family, see Appendix A. This means that hε is 0 almost all the
way on [0, y] and 1 almost all the way on [y, T ]. Then,

DhεX(ω) =
∫ T

0

DFX(s)ψε(s− y) ds ≈ DFX(y).

In other words, DFX(y) can be thought of as measuring the sensitivity of X to parallel
shifts of the argument ω of the form 1[y,T ].
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Led by the above ideas, consider now a general probability triple (Ω,F , P ) with a
Wiener process W on [0, T ]. By FT , we denote the usual augmentation of the σ-
algebra generated by W . We want to define the Malliavin derivative of Wt as the
mapping DWt = 1[0,t] from [0, T ] to R. Since this derivative in the abstract setting is
not defined by a limiting procedure, but only by analogy to the case of C0[0, T ], we
need to impose requirements on the D to extend it meaningfully to other variables
than Wt. A suitable starting point is to require that a chain rule holds for D: If
f is continuously differentiable with sufficient growth conditions, namely polynomial
growth of the mapping itself and its partial derivatives, we would like that

Df(Wt1 , . . . ,Wtn
) =

n∑

k=1

∂f

∂xk
(Wt1 , . . . , Wtn

)DWtk
,

where we put DWtk
= 1[0,tk]. It turns out that to require this form of the derivative of

f(Wt1 , . . . , Wtn
) is sufficient to obtain a rich theory for the operator D. The derivative

given above is a stochastic function from [0, T ] to R. With sufficient growth conditions
on f , it is an element of Lp([0, T ]× Ω), p ≥ 1.

Our immediate goal is to formalize the definition of the derivative given above and
consider its properties. To do so, we begin by accurately specifying the immediate
domain of the derivative operator and considering its properties. After this, we will
rigorously define the derivative operator.

4.1 The spaces S and Lp(Π)

We will now define the space S which will be the initial domain of the Malliavin
derivative. We work in the context of a filtered probability space (Ω,F , P,Ft) with a
one-dimensional Brownian motion W , where the filtration is the augmented filtration
induced by the Brownian motion. A multi-index of order n is an element α ∈ Nn

0 . The
degree of the multi-index is |α| =

∑n
k=1 αk. A polynomial in n variables of degree k

is a map p : Rn → R, p(x) =
∑
|α|≤k aαxα. The sum in the above runs over all multi-

indicies α with |α| ≤ k, with xα =
∏n

i=1 xαi
i . The space of polynomials of degree k in

any number of variables is denoted Pk. Furthermore, we use the following notation.

• C1(Rn) are the mappings f : Rn → R which are continuously differentiable.

• C∞(Rn) are the mappings f : Rn → R which are differentiable infinitely often.
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• C∞p (Rn) are the elements f ∈ C∞(Rn) such that f and its partial derivatives
are dominated by polynomials.

• C∞c (Rn) are the elements of C∞(R) with compact support.

Clearly, then C∞c (Rn) ⊆ C∞p (Rn) ⊆ C∞(Rn) ⊆ C1(Rn). For basic results on these
spaces, see appendix A. We are now ready to define the space S.

Definition 4.1.1. If t ∈ [0, T ]n, we write Wt = (Wt1 , . . . ,Wtn
). By S, we then denote

the space of variables f(Wt), where f ∈ C∞p (Rn) and t ∈ [0, T ]n.

Our aim in the following regarding S is to develop a canonical representation for
elements of S, develop results to yield flexible representations of elements in S and
to prove that S is an algebra which is dense in Lp(FT ), p ≥ 1. These results are
somewhat tedious, but they are necessary for what will follow.

Lemma 4.1.2. Let t ∈ [0, T ]n, s ∈ [0, T ]m and F ∈ S with F = f(Wt). Assume that
{t1, . . . , tn} ⊆ {s1, . . . , sm}. There exists g ∈ C∞p (Rm) such that F = g(Ws).

Comment 4.1.3 Note that this lemma not only allows us to extend the coordinates
which F depends on, but also allows us to reorder the coordinates. ◦

Proof. Since {t1, . . . , tn} ⊆ {s1, . . . , sm}, we have n ≤ m and there exists a mapping
σ : {1, . . . , n} → {1, . . . ,m} such that tk = sσ(k) for k ≤ n. We then simply define
g(x1, . . . , xm) = f(xσ1 , . . . , xσn). Then g ∈ C∞p (Rm) and

g(Ws) = g(Ws1 , . . . ,Wsm)

= f(Wsσ1
, . . . , Wsσn

)

= f(Wt1 , . . . ,Wtn)

= f(Wt)

Lemma 4.1.4. Let F ∈ S with F = f(Wt) for f ∈ C∞p (Rn). If t1 = 0, there exists
g ∈ C∞p (Rn−1) such that F = g(Wt2 , . . . , Wtn).

Proof. Define g(x2, . . . , xn) = f(0, x2, . . . , xn). Because we have W0 = 0, it holds that
F = f(Wt1 , . . . , Wtn) = g(Wt2 , . . . , Wtn).



4.1 The spaces S and Lp(Π) 131

Lemma 4.1.5. Let F ∈ S with F = f(Wt) for f ∈ C∞p (Rn). If ti = tj for some i 6= j,
there is g ∈ C∞p (Rn−1) such that F = g(Wu), where u = (t1, . . . , tj−1, tj+1 . . . , tn).

Proof. Define A : Rn−1 → Rn by Ax = (x1, . . . , xj−1, xi, xj+1, . . . , xn). Then A is
linear. Putting g(x) = f(Ax), then g ∈ C∞p (Rn). Clearly, AWu = Wt and therefore
F = f(Wt) = f(AWu) = g(Wu), as desired.

Corollary 4.1.6. Let F ∈ S. There exists t ∈ [0, T ]n such that 0 < t1 < · · · < tn and
f ∈ C∞p (Rn) such that F = f(Wt).

Proof. This follows by combining Lemma 4.1.2, Lemma 4.1.4 and Lemma 4.1.5.

Corollary 4.1.6 states that any element of S has a representation where we can assume
that all the coordinates of the Wiener process in the element are different, positive
and ordered. This observation will make our lives a good deal easier in the following.
Our next result shows that any element of S can be written as a transformation of an
n-dimensional standard normal variable.

Lemma 4.1.7. Let F ∈ S with F = f(Wt) for f ∈ C∞p (Rn), where 0 < t1 < · · · < tn.
Define A : Rn → Rn by Ax = ( x1√

t1
, x2−x1√

t2−t1
, . . . , xn−xn−1√

tn−tn−1
). Then A is invertible,

f ◦ A−1 ∈ C∞p (Rn) and F = (f ◦ A−1)(AWt), where AWt has the standard normal
distribution in n dimensions.

Proof. Put t0 = 0. A is invertible with inverse given by (A−1x)k =
∑k

i=0

√
tk − tk−1xk.

Since A−1 is linear, f ◦A−1 ∈ C∞p (Rn). It is clear that AWt is standard normal.

We are now done with our results on representations of elements of S. Before proceed-
ing, we prove that S is an algebra which is dense in Lp(FT ).

Lemma 4.1.8. S is an algebra, and S ⊆ Lp(Ω) for all p ≥ 1.

Proof. S is an algebra. S is a space of real random variables. Since S is obviously
nonempty, to prove the first claim, we need to show that S is stable under linear
combinations and multiplication. Let F, G ∈ S with F = f(Wt) and G = g(Ws) where
f ∈ C∞p (Rn) and g ∈ C∞p (Rm). Let λ, µ ∈ R. Then,

λF + µG = (λf ⊕ µg)(Wt1 , . . . , Wtn ,Ws1 , . . . , Wsm),
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where λf ⊕ µg ∈ C∞p (Rn+m). In the same manner,

FG = (f ⊗ g)(Wt1 , . . . ,Wtn ,Ws1 , . . . , Wsm),

where, f ⊗ g ∈ C∞p (Rn+m). This shows that S is an algebra.

S is a subset of Lp(Ω). Next, we will show that S ⊆ Lp(Ω). Let F ∈ S be such
that F = f(Wt). By Corollary 4.1.6, we can assume 0 < t1 < · · · < tn. By Lemma
4.1.7, there then exists g ∈ C∞p (Rn) such that F = g(X) where X is n-dimensionally
standard normally distributed. Since g ∈ C∞p (Rn), |g|p ∈ C∞p (Rn). Therefore, there
is a multinomial q in n variables with |g|p ≤ q, say q(x) =

∑
|α|≤m aαxα. We then find

E|F |p =
∫
|g(x)|pφn(x) dx

≤
∫

q(x)φn(x) dx

≤
∫ ∑

|α|≤m

n∏

k=1

aαxαk

k φn(x) dx

=
∑

|α|≤m

n∏

k=1

aα

∫
xαk

k φ(xk) dxk,

which is finite, since the normal distribution has moments of all orders.

Lemma 4.1.9. The variables of the form f(Wt) for f ∈ C∞c (Rn) are dense in Lp(FT )
for p ≥ 1.

Proof. As in the proof of Lemma 3.7.5, we find that with GT the σ-algebra generated by
W , FT ⊆ σ(GT ,N ), so it will suffice to show that the variables given in the statement
of the lemma is dense in L2(GT ).

We first prove that any X ∈ Lp(GT ) can be approximated by variables dependent
only on finitely many coordinates of the Wiener process. Let X ∈ Lp(GT ) be given
and let {tk}k≥1 be dense in [0, T ] and let Hn = σ(Wt1 , . . . , Wtn). Then Hn is an in-
creasing family of σ-algebras, and GT = σ(Hn)n≥1. Therefore, E(X|Hn) is a discrete-
time martingale with limit X, convergent in Lp. By the Doob-Dynkin lemma B.6.7,
E(X|Hn) = g(Wt1 , . . . , Wtn) for some measurable g : Rn → R.

Now consider X ∈ Lp(GT ) with X = g(Wt) for some measurable g : Rn → R and
t ∈ [0, T ]n. Let µ be the distribution of Wt. Since µ is bounded, µ is a Radon measure
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on Rn, and g ∈ Lp(µ) by assumption. By Theorem A.4.5, g can be approximated in
Lp(µ) by mappings (gn) ⊆ C∞c (Rn). We then obtain

lim ‖g(Wt)− gn(Wt)‖p = lim ‖g − gn‖Lp(µ) = 0,

showing the claim of the lemma.

Corollary 4.1.10. The space S is dense in Lp(FT ) for any p ≥ 1.

Proof. This follows immediately from Lemma 4.1.9, since C∞c (Rn) ⊆ C∞p (Rn).

This concludes our basic results on S, which we will use in the following sections when
developing the Malliavin derivative. The important points of our work is this:

• By Corollary 4.1.6, we can choose a particularly nice form of any F ∈ S, namely
that F = f(Wt) where 0 < t1 < · · · < tn. Also, by Lemma 4.1.2 we can extend
to more coordinates when we wish. When working with more than one element
of S, this will allow us to assume that they depend on the same underlying
coordinates of the Wiener process.

• By combining Corollary 4.1.6 and Lemma 4.1.7, we can always write any F ∈ S
as a C∞p transformation of a standard normal variable.

• By Lemma 4.1.8 and Corollary 4.1.10, S is an algebra, dense in Lp(FT ) for any
p ≥ 1.

Before we proceed to the next section, we show some basic results on the space
Lp([0, T ] × Ω,B[0, T ] ⊗ FT , λ ⊗ P ). We will use the shorthands Π = B[0, T ] ⊗ FT

and η = λ⊗ P and write Lp(Π) for Lp([0, T ]× Ω,B[0, T ]⊗ FT , λ⊗ P ). When p = 2,
we denote the inner product on L2(Π) by 〈·, ·〉Π.

Lemma 4.1.11. The variables of the form f(Wt) for f ∈ C∞c (Rn) generate FT .

Proof. This follows immediately from Lemma 4.1.9, since this lemma yields that for
any A ∈ FT , 1A can be approximated pointwise almost surely with elements of the
form f(Wt), where f ∈ C∞c (Rn).

Lemma 4.1.12. The functions 1[s,t] ⊗ f(Wu), where 0 ≤ s ≤ t ≤ T , u ∈ [0, T ]n and
f ∈ C∞c (Rn) is stable under multiplication and generates Π.
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Proof. Clearly, the class is stable under multiplication. We show the statement about
its generated σ-algebra. We will apply Lemma B.6.4. Let E be the class of mappings
f(Wu) where f ∈ C∞c (Rn) and u ∈ [0, T ]n. Let K be the class of functions 1[s,t] for
0 ≤ s ≤ t ≤ T .

By Lemma 4.1.11, σ(E) = FT . Since f(W0) is constant for any f ∈ C∞c (R), E contains
the constant mappings. Also, clearly σ(K) = B[0, T ], and clearly the mapping which
is constant 1 on [0, T ] is in K. The hypotheses of Lemma B.6.4 are then fulfilled, and
the conclusion follows.

4.2 The Malliavin Derivative on S and D1,p

With the results of Section 4.1, we are ready to define and develop the Malliavin
derivative. Letting F ∈ S with F = f(Wt), where f ∈ C∞p (Rn), we want to put

DF =
n∑

k=1

∂f

∂xk
(Wt)1[0,tk].

We begin by showing that this is well-defined, in the sense that if we have different
representations f(Wt) = g(Ws), the derivative yields the same result.

Lemma 4.2.1. Let F ∈ S, and assume that we have two representations,

F = f1(Wt)

F = f2(Ws),

where f1 ∈ C∞p (Rn) and f2 ∈ C∞p (Rm). It then holds that

n∑

k=1

∂f1

∂xk
(Wt)1[0,tk] =

m∑

k=1

∂f2

∂xk
(Ws)1[0,sk].

Proof. We proceed in two steps, first showing the equality for particularly simple
representations of F and then proceeding to the general case.

Step 1. First assume that F = f1(Wt) = f2(Wt) for some f1, f2 ∈ C∞p (Rn), where
0 < t1 < · · · < tn. Define A : Rn → Rn by Ax = ( x1√

t1
, x2−x1√

t2−t1
, . . . , xn−xn−1√

tn−tn−1
).

By Lemma 4.1.7, A is invertible, and AWt has the standard normal distribution in
n dimensions. Put g1 = f1 ◦ A−1 and g2 = f2 ◦ A−1. Then g1(AWt) = g2(AWt).
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This implies that g1 and g2 are equal almost surely with respect to the n-dimensional
standard normal measure. Since this measure has a positive density with respect to
the Lebesgue measure, this means that g1 and g2 are equal Lebesgue almost surely.
Since both mappings are continuous, we conclude g1 = g2. Because f1 = g1 ◦ A and
f2 = g2 ◦A, this implies f1 = f2 and therefore

n∑

k=1

∂f1

∂xk
(Wt)1[0,tk] =

n∑

k=1

∂f2

∂xk
(Wt)1[0,tk],

as desired.

Step 2. Now assume F = f1(Wt) and F = f2(Ws). Defining u = (t1, . . . , tn, s1, . . . , sm)
and putting

g1(x1, . . . , xn+m) = f1(x1, . . . , xn)

g2(x1, . . . , xn+m) = f2(xn+1, . . . , xm),

we obtain f1(Wt) = g1(Wu) and f2(Ws) = g2(Wu). By what we already have shown,

n+m∑

k=1

∂g1

∂xk
(Wu)1[0,tk] =

n+m∑

k=1

∂g2

∂xk
(Wu)1[0,tk].

Therefore, we conclude

n∑

k=1

∂f1

∂xk
(Wt)1[0,tk] =

n∑

k=1

∂g1

∂xk
(Wu)1[0,uk] =

n+m∑

k=1

∂g1

∂xk
(Wu)1[0,uk]

=
n+m∑

k=1

∂g2

∂xk
(Wu)1[0,uk] =

m∑

k=1

∂f2

∂xk
(Ws)1[0,sk],

showing the desired result.

Definition 4.2.2. Let F ∈ S, with F = f(Wt1 , . . . , Wtn). We define the Malliavin
derivative of F as the stochastic process on [0, T ] given by

n∑

k=1

∂f

∂xk
(Wt1 , . . . , Wtn)1[0,tk].

Comment 4.2.3 The mapping defined above is well-defined by Lemma 4.2.1. ◦

We have now defined the Malliavin derivative D on S. Next, we will investigate its
basic properties and extend it to a larger space.
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Lemma 4.2.4. The mapping D is linear and maps into Lp(Π) for all p ≥ 1.

Proof. Let F, G ∈ S with F = f(Wt) and G = g(Ws). Also, let λ, µ ∈ R. From
Lemma 4.1.8 and its proof, we have

D(λF + µG) = D(λf ⊕ µg)(Wt1 , . . . ,Wtn
, Ws1 , . . . , Wsm

)

=
n∑

k=1

λ
∂f

∂xk
(Wt)1[0,tk] +

m∑

k=1

µ
∂g

∂xk
(Ws)1[0,sk]

= λDF + µDG.

This shows linearity. To show the second statement, assume F = f(Wt). Then,

‖DF‖p =

∥∥∥∥∥
n∑

k=1

∂f

∂xk
(Wt)1[0,tk]

∥∥∥∥∥
p

≤ T
1
p

n∑

k=1

∥∥∥∥
∂f

∂xk
(Wt)

∥∥∥∥
p

.

Since f ∈ C∞p (Rn), ∂f
∂xk

has polynomial growth, so ∂f
∂xk

(Wt) ∈ Lp(FT ), proving the
lemma.

From Corollary 4.1.10, we see that we have defined the derivative on a dense subspace
of Lp(FT ). Nonetheless, even dense sets can be quite slim, and we need to extend the
operator D to a larger space before it can be of any actual use. To do so, we show
that D is closable. We can then extend it by taking the closure. We first need a few
lemmas.

Lemma 4.2.5. Let F ∈ S with F = f(Wt) for f ∈ C∞p (Rn), where t = (t1, . . . , tn)
and 0 = t0 < t1 < · · · < tn. Let A : Rn → Rn be linear and invertible with matrix A′.
Then

n∑

k=1

∂

∂xk
f(Wt)1[0,tk] =

n∑

k=1

n∑

i=1

∂

∂xi
(f ◦A−1)(AWt)A′ik1[0,tk].

Proof. This follows from
n∑

k=1

∂

∂xk
f(Wt)1[0,tk] =

n∑

k=1

∂

∂xk
(f ◦A−1 ◦A)(Wt)1[0,tk]

=
n∑

k=1

n∑

i=1

∂

∂xi
(f ◦A−1)(AWt)

∂

∂xk
Ai(Wt)1[0,tk]

=
n∑

k=1

n∑

i=1

∂

∂xi
(f ◦A−1)(AWt)A′ik1[0,tk],

where we have applied the chain rule.
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Lemma 4.2.6. Let f ∈ C∞p (Rn). Let φn be the n-dimensional standard normal
density. Then,

∫
∂f

∂xk
(x)φn(x) dx =

∫
f(x)xkφn(x) dx.

Proof. First note that the integrals are well-defined, since φn decays faster than any
polynomial. We begin by showing that it will suffice to prove the result in the case
where k = 1, this will make the proof notationally easier. To this end, note that the
Lebesgue measure is invariant under orthonormal transformations. Define the mapping
U : Rn → Rn as the linear transformation exchanging the first and k’th coordinates,
leaving all other coordinates the same. U is then orthonormal, and

∫
∂f

∂xk
(x)φn(x) dx =

∫
∂f

∂xk
(Ux)φn(Ux) dx

=
∫ n∑

i=1

∂f

∂xi
(Ux)

∂Ui

∂x1
(x)φn(Ux) dx

=
∫

∂(f ◦ U)
∂x1

(x)φn(x) dx.

Likewise,

∫
f(x)xkφn(x) dx =

∫
f(Ux)(Ux)kφn(Ux) dx =

∫
(f ◦ U)(x)x1φn(x) dx.

Therefore, it will suffice to show the result for k = 1 for mappings of the form f ◦ U

where f ∈ C∞p (Rn). But such mappings are in C∞p (Rn) as well, and we conclude that
it will suffice to show the result in the case where k = 1 for some f ∈ C∞p (Rn). In
that case, we obtain

∫
∂f

∂x1
(x)φn(x) dx

= lim
M→∞

∫

[−M,M ]n

∂f

∂x1
(x)φn(x) dx

= lim
M→∞

∫

[−M,M ]n−1

∫ M

−M

∂f

∂x1
(x)φn(x) dx1 · · · dxn

= lim
M→∞

∫

[−M,M ]n−1
[f(x)φn(x)]x1=M

x1=−M −
∫ M

−M

f(x)
∂φn

∂x1
(x) dx1 dx2 · · · dxn.

We wish to use dominated convergence to get rid of the first term. Defining x′ by
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x′ = (x2, . . . , xn), we obtain

∫

[−M,M ]n−1

∣∣∣[f(x)φn(x)]x1=M
x1=−M

∣∣∣ dx2 · · · dxn

≤
∫ ∣∣∣[f(x)φn(x)]x1=M

x1=−M

∣∣∣ dx′

≤
∫
|f(M,x′)|φn(M,x′) + |f(−M,x′)|φn(−M, x′) dx′

=
∫
|f(M,x′)|φ(M)φn−1(x′) dx′ +

∫
|f(−M,x′)|φ(−M)φn−1(x′) dx′

Let p with p(x) =
∑m

k=0 ak

∏n
i=1 xαk

i , be a polynomial such that |f | ≤ p. Then,

sup
M∈R

|f(M,x′)|φ(M) ≤
m∑

k=0

|ak| sup
M∈R

φ(M)Mαk
1

n∏

i=2

|x|αk
i

=
m∑

k=0

(
|ak| sup

M∈R
|M |αk

1 φ(M)
) n∏

i=2

|x|αk
i ,

where the suprema are finite since φ decays faster than any exponential. There-
fore, supM∈R |f(M, x′)|φ1(M) has polynomial growth. From this we conclude that
supM∈R |f(M, x′)|φ1(M)φn−1(x′) is integrable, and by dominated convergence, we
therefore get

lim
M→∞

∫

[−M,M ]n−1
[f(x)φn(x)]x1=M

x1=−M dx′

=
∫

lim
M→∞

1[−M,M ]n−1(x′)(fφn)(M, x′)− 1[−M,M ]n−1(x′)(fφn)(−M,x′) dx′

=
∫

lim
M→∞

(fφn)(M,x′)− (fφn)(−M, x′) dx′

= 0.

We may therefore conclude

∫
∂f

∂x1
(x)φn(x) dx = − lim

M→∞

∫

[−M,M ]n−1

∫ M

−M

f(x)
∂φn

∂x1
(x) dx1 dx2 · · · dxn

= lim
M→∞

∫

[−M,M ]n
f(x)x1φn(x) dx

=
∫

f(x)x1φn(x) dx,

as desired.
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Comment 4.2.7 The result of Lemma 4.2.6 is a version of a result sometimes known
as Stein’s lemma in the literature, see for example Zou et al. (2007). See Stein (1981),
Lemma 1 and Lemma 2 for proofs of Stein’s Lemma. ◦

Lemma 4.2.8. Consider G = g(Wu)⊗ 1[s,t] with g ∈ C∞c (Rn) and u ∈ [0, T ]n. There
is some constant C such that for any F ∈ S, | ∫ G(DF ) dη| ≤ C‖F‖p.

Proof. By Lemma 4.1.2, we can assume that F = f(Wu) for some f ∈ C∞p (Rn), and
we can assume that 0 < u1 < · · · < un. Define Ax = ( x1√

u1
, x2−x1√

u2−u1
, . . . , xn−xn−1√

un−un−1
),

by Lemma 4.2.5 we then have

n∑

k=1

∂

∂xk
f(Wu)1[0,uk] =

n∑

k=1

n∑

i=1

∂

∂xi
(f ◦A−1)(AWu)A′ik1[0,uk],

where A′ is the matrix for the linear mapping A. Defining f ′ = f◦A−1 and g′ = g◦A−1,
we then obtain

∫
GDF dη =

∫
G

n∑

k=1

n∑

i=1

∂f ′

∂xi
(AWu)A′ik1[0,uk] dη

=
n∑

k=1

n∑

i=1

A′ik

∫
g(Wu)

∂f ′

∂xi
(AWu)1[s,t]1[0,uk] dη

=
n∑

k=1

n∑

i=1

A′ik

(∫
1[s,t]1[0,uk] dλ

)
E

(
g′(AWu)

∂f ′

∂xi
(AWu)

)
.

In particular, then,

∣∣∣∣
∫

GDF dη

∣∣∣∣ ≤ nT‖A′‖∞
n∑

i=1

∣∣∣∣E
(

g′(AWu)
∂f ′

∂xi
(AWu)

)∣∣∣∣ .

We consider the mean values in the sums. Using Lemma 4.2.6, we obtain

E

(
g′(AWu)

∂f ′

∂xi
(AWu)

)
=

∫
g′(x)

∂f ′

∂xi
(x)φn(x) dx

=
∫

∂g′f ′

∂xi
(x)φn(x) dx−

∫
∂g′

∂xi
(x)f ′(x)φn(x) dx

=
∫

g′(x)f ′(x)xiφn(x) dx−
∫

∂g′

∂xi
(x)f ′(x)φn(x) dx.



140 The Malliavin Calculus

Recalling that F = f ′(AWu), we can use Hölder’s inequality to obtain
∣∣∣∣E

(
g′(AWu)

∂f ′

∂xi
(AWu)

)∣∣∣∣ =
∣∣∣∣
∫

g′(x)f ′(x)xiφn(x) dx−
∫

∂g′

∂xi
(x)f ′(x)φn(x) dx

∣∣∣∣

=
∣∣∣∣EF

(
g′(AWu)(AWu)i − ∂g′

∂xi
(AWu)

)∣∣∣∣

≤ ‖F‖p

∥∥∥∥g′(AWu)(AWu)i − ∂g′

∂xi
(AWu)

∥∥∥∥
q

.

Since g has compact support, so does g′ and ∂g′

∂xi
. Therefore, the latter factor in the

above is finite. Putting

C = nT‖A′‖∞
n∑

i=1

∥∥∥∥g′(AWu)(AWu)i − ∂g′

∂xi
(AWu)

∥∥∥∥
q

,

we have proved | ∫ GDF dη| ≤ C‖F‖p, as desired.

Theorem 4.2.9. The operator D is closable from S to Lp(Π).

Proof. Let a sequence (Fn) ⊆ S be given such that Fn converges to zero in Lp(FT )
and such that DFn converges in Lp(Π). We need to prove that the limit of DFn is
zero. Let ξ be the limit, By Theorem A.2.5 it will suffice to prove that that for any
G ∈ Lq(Π),

∫
ξG dη = 0.

Let H be the class of elements G ∈ Lq(Π) such that
∫

ξG dη = 0. We will prove
that H = Lq(Π) first by proving that bH contains all bounded mappings in Lq(Π).
Obviously, then, H also contains all bounded mappings in Lq(Π) and we can finish the
proof by a closedness argument.

Step 1: bH contains all bounded mappings. We will use the monotone class
theorem to prove that bH contains all bounded mappings. To this end, note that
bH by dominated convergence is a monotone vector space. Defining K as the class
of mappings g(Wt) ⊗ 1[s,t] where g ∈ C∞c (Rn) and t ∈ [0, T ]n, we know from Lemma
4.1.12 that K is a multiplicative class generating Π. If we can show that K ⊆ bH,
it will follow from the monotone class theorem B.1.2 that bH contains all bounded
mappings in Lq(Π).

Let G ∈ K be given with G = g(Wu) ⊗ 1[s,t]. Our ambition is to show G ∈ H.
By Lemma 4.2.8, there exists a constant C, such that for any F ∈ S, it holds that
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| ∫ G(DF ) dη| ≤ C‖F‖p. By the continuity of F 7→ ∫
FG dη, we then obtain

∣∣∣∣
∫

ξG dη

∣∣∣∣ =
∣∣∣∣
∫

G lim
n

DFn dη

∣∣∣∣ = lim
n

∣∣∣∣
∫

G(DFn) dη

∣∣∣∣ ≤ lim
n

C‖Fn‖p = 0.

Thus,
∫

Gξ dη = 0. We conclude G ∈ bH and therefore K ⊆ H.

Step 2: H is closed. Since the bounded elements of Lq(Π) are dense in Lq(Π), it
will follow that H = Lq(Π) if we can prove that H is closed. To do so, assume that
(Gn) ⊆ H, converging to G. Then lim ‖ξGn − ξG‖1 ≤ lim ‖ξ‖p‖Gn − G‖q = 0 by
Hölder’s inequality, so

∫
ξG dη = lim

∫
ξGn dη = 0, and H is closed. It follows that

H = Lq(Π) and we may finally conclude that ξ = 0 and therefore D is closable.

We may now conclude from Theorem A.7.3 that D has a unique closed extension from
S to the subspace D1,p of Lp(FT ) defined as the F ∈ Lp(FT ) such that there exists
a sequence (Fn) in S converging to F such that DFn converges as well, and in this
case the value of DF is the limit of DFn. D maps from D1,p into Lp(Π). Note that
endowing the space D1,p with the norm given by ‖F‖1,p = ‖F‖p +‖DF‖p, S is a dense
subspace of D1,p. This is another way to think of the extension of D from S to D1,p.

We will mainly be interested in the properties of the operator from D1,2 → L2(Π). We
will consider this case in detail in the next section. First, we will spend a moment
reviewing our progress. We have succeeded in defining, for any p ≥ 1, a linear operator
D : D1,p → Lp(Π) with the properties that

• For F ∈ S with F = f(Wt), DF =
∑n

k=1
∂f
∂xk

(Wt)1[0,tk].

• When considering D1,p under the norm ‖ · ‖p, D is closed.

These two properties are more or less all there is to the definition. The first property
shows how to calculate D on S, and the second property shows how to infer values
of D outside of S from the values on S. Note that our definition of D1,p is different
from the one seen in Nualart (2006). Nualart (2006) consideres the construction of
the Malliavin derivative based on isonormal gaussian processes, which can be seen as
a generalization of Brownian motion. This allows certain proofs the clarity of higher
abstraction, but the downside is that the theory becomes harder to relate to real
problems and furthermore that the development of the derivative operator is tied up
to the L2-structure of the concept of isonormal processes. For a brownian motion, the
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space of smooth functionals considered in Nualart (2006) would be
{

f

(∫ T

0

h1(t) dW (t), . . . ,
∫ T

0

hn(t) dW (t)

)∣∣∣∣∣ h1, . . . , hn ∈ L2[0, T ], f ∈ C∞p (Rn)

}
,

and the space D1,p would be the completion of this space with respect to the norm

‖F‖1,p =
(
E|F |p + E‖DF‖p

L2[0,T ]

) 1
p

,

where DF is considered as a stochastic variable with values in L2[0, T ].

4.3 The Malliavin Derivative on D1,2

We will now consider specifically the properties of the Malliavin derivative as operator
D : D1,2 → L2(Π). We will prove two results allowing us easy manipulation of the
Malliavin derivative: the chain rule and the integration-by-parts formula. Further-
more, we will prove that D1,2 has some degree of richness by showing that it contains
all stochastic integrals of deterministic functions. We will also show how the derivative
of such integrals are given.

We begin by proving the chain rule. The proof of the general case is rather long, so we
split it in two. We begin by proving in Theorem 4.3.1 the chain rule as it is formulated
in Nualart (2006) with transformations having bounded partial derivatives. After
this, we prove in Theorem 4.3.5 a generalized chain rule.

Theorem 4.3.1. Let F = (F1, . . . , Fn), where F1, . . . , Fn ∈ D1,2, and let ϕ ∈ C1(Rn)
with bounded partial derivatives. Then ϕ(F ) ∈ D1,2 and

Dϕ(F ) =
n∑

k=1

∂ϕ

∂xk
(F )DFk.

Comment 4.3.2 In the above, ∂ϕ
∂xk

(F ) is a mapping on Ω and DFk is a mapping on
[0, T ]× Ω. The multiplication is understood to be pointwise in the sense

(
∂ϕ

∂xk
(F )DFk

)
(t, ω) =

∂ϕ

∂xk
(F )(ω)DFk(t, ω).

◦
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Proof. The conclusion is well-defined since ∂ϕ
∂xk

is bounded, so ϕ(F ) is an element of
L2(FT ) and the right-hand side is an element of L2(Π). We prove the theorem in three
steps:

1. The case where ϕ ∈ C∞p (Rn) and F ∈ Sn.

2. The case where ϕ ∈ C∞p (Rn) with bounded partial derivatives and F ∈ Dn
1,2.

3. The case where ϕ ∈ C1(Rn) with bounded partial derivatives and F ∈ Dn
1,2.

Step 1: C∞p transformations of S. Consider the case where ϕ ∈ C∞p (Rn) and
F ∈ Sn. By Lemma 4.1.2, we can assume that the Fk are transformations of the
same coordinates of the wiener process, Fk = fk(Wt) where t ∈ [0, T ]m. Putting
f = (f1, . . . , fn), ϕ ◦ f ∈ C∞p (Rm). We have ϕ(F ) = (ϕ ◦ f)(Wt), so ϕ(F ) ∈ S and
therefore

Dϕ(F ) =
m∑

i=1

∂(ϕ ◦ f)
∂xi

(Wt)1[0,ti]

=
m∑

i=1

n∑

k=1

∂ϕ

∂xk
(f(Wt))

∂fk

∂xi
(Wt)1[0,ti]

=
n∑

k=1

∂ϕ

∂xk
(f(Wt))

m∑

i=1

∂fk

∂xi
(Wt)1[0,ti]

=
n∑

k=1

∂ϕ

∂xk
(F )DFk.

Step 2: Special C∞p transformations of D1,2. We next consider the case where
F ∈ Dn

1,2 and ϕ ∈ C∞p (Rn) with bounded partial derivatives. Since D is closed, we
know that there exists F j

k ⊆ S such that F j
k converges to Fk in L2(FT ) and DF j

k

converges to DFk in L2(Π). Then, by what we have already shown, ϕ(F j) ∈ S and
Dϕ(F j) =

∑n
k=1

∂ϕ
∂xk

(F j)DF j
k . Our plan is to show that ϕ(F j) converges to ϕ(F ) in

L2(FT ) and that Dϕ(F j) converges to
∑n

i=1
∂ϕ
∂xi

(Fi)DFi in Lp(Π). By the closedness
of D, this will imply that ϕ(F ) ∈ D1,2 and Dϕ(F ) =

∑n
k=1

∂ϕ
∂xk

(F )DFk.

By assumption, F j
k converges to Fk in L2(FT ) and DF j

k converges in L2(Π) to DFk.
By picking a subsequence we may assume that we also have almost sure convergence.
By the mean value theorem, Lemma A.2.2,

∥∥ϕ(F j)− ϕ(F )
∥∥

2
=

∥∥∥∥∥
n∑

k=1

∂ϕ

∂xk
(ξ)(F j

k − Fk)

∥∥∥∥∥
2

≤ max
k≤n

∥∥∥∥
∂ϕ

∂xk

∥∥∥∥
∞

∥∥∥∥∥
n∑

k=1

(F j
k − Fk)

∥∥∥∥∥
2

,
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so ϕ(F j) converges to ϕ(F ) in L2(FT ). To show the other convergence, note that
∥∥∥∥∥Dϕ(F j)−

n∑

i=1

∂ϕ

∂xi
(F )DFi

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=1

∂ϕ

∂xi
(F j)DF j

i −
n∑

i=1

∂ϕ

∂xi
(F )DFi

∥∥∥∥∥
2

≤
n∑

i=1

∥∥∥∥
∂ϕ

∂xi
(F j)DF j

i −
∂ϕ

∂xi
(F )DFi

∥∥∥∥
2

,

where, for each i ≤ n,
∥∥∥∥

∂ϕ

∂xi
(F j)DF j

i −
∂ϕ

∂xi
(F )DFi

∥∥∥∥
2

≤
∥∥∥∥

∂ϕ

∂xi
(F j)(DF j

i −DFi)
∥∥∥∥

2

+
∥∥∥∥
(

∂ϕ

∂xi
(F j)− ∂ϕ

∂xi
(F )

)
DFi

∥∥∥∥
2

≤
∥∥∥∥

∂ϕ

∂xi

∥∥∥∥
∞

∥∥∥DF j
i −DFi

∥∥∥
2

+
∥∥∥∥
(

∂ϕ

∂xi
(F j)− ∂ϕ

∂xi
(F )

)
DFi

∥∥∥∥
2

.

Here, the first term converges to zero by assumption. Regarding the second term, we
know that F j a.s.−→ F , and by continuity, ∂ϕ

∂xi
(F j) a.s.−→ ∂ϕ

∂xi
(F ), bounded by a constant

since the partial derivatives are bounded. Dominated convergence therefore yields that
the second term in the above converges to zero as well. We conclude that ϕ(F ) ∈ D1,2

and Dϕ(F ) =
∑n

k=1
∂ϕ
∂xk

(F )DFk.

Step 3: C1 transformations of D1,2. Now assume ϕ ∈ C1 with bounded partial
derivatives, and let F ∈ D1,2. From Lemma A.4.3, we know that there exists functions
ϕn ∈ C∞p (Rn) such that ϕn converges uniformly to ϕ, the partial derivatives of ϕn

converges pointwise to the partial derivatives of ϕ and ‖∂ϕn

∂xk
‖∞ ≤ ‖ ∂ϕ

∂xk
‖∞. By what

we already have shown, ϕn(F ) ∈ D1,2 and Dϕn(F ) =
∑n

k=1
∂ϕn

∂xk
(F )DFk. We want

to argue that ϕn(F ) converges to ϕ(F ) in L2(FT ) and that Dϕn(F ) converges to∑n
k=1

∂ϕ
∂xk

(F )DFk in L2(Π). As in the previous step, by closedness of D, this will yield
that ϕ(F ) ∈ D1,2 and that the derivative is given by Dϕ(F ) =

∑n
k=1

∂ϕ
∂xk

(F )DFk.

Clearly, since ‖ϕ(F )−ϕn(F )‖2 ≤ ‖ϕ−ϕn‖∞, ϕn(F ) converges to ϕ(F ). To show the
second limit statement, we note

∥∥∥∥∥Dϕn(F )−
n∑

k=1

∂ϕ

∂xk
(F )DFk

∥∥∥∥∥
2

≤
n∑

k=1

∥∥∥∥
(

∂ϕn

∂xk
(F )− ∂ϕ

∂xk
(F )

)
DFk

∥∥∥∥
2

.

Since ∂ϕn

∂xk
converges pointwise to ∂ϕ

∂xk
, clearly ∂ϕn

∂xk
(F ) a.s.−→ ∂ϕ

∂xk
(F ), and this conver-

gence is bounded. The dominated convergence theorem therefore yields that the above
sum converges to zero.
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The chain rule of Theorem 4.3.1 is sufficient in many cases, but it will be convenient
in the following to have an extension which does not require the boundedness of the
partial derivatives of the transformation, but only requires enough integrability to
ensure that the statement of the chain rule is well-defined. This is what we now set
out to prove.

Lemma 4.3.3. Let M > 0 and ε > 0. There exists a mapping f ∈ C∞c (Rn) with
partial derivatives bounded by 1 + ε such that [−M, M ]n ≺ f ≺ (−(M + 1),M + 1)n.

Proof. Let ε > 0 be given, put Mε− = M − ε and Mε+ = M + ε. Define the sets
Kε = [−Mε+,Mε+]n and Vε = (−(Mε− + 1),Mε− + 1)n. We will begin by identifying
a d∞-Lipschitz mapping g ∈ Cc(Rn) with Kε ≺ g ≺ Vε.

To this end, we put g(x) = min{ 1
1−2εd∞(x, V c

ε ), 1}. Clearly, then g is continuous and
maps into [0, 1]. Since g is zero on V c

ε and Vε has compact closure, g has compact
support. And if x ∈ Kε, we obtain

g(x) = min
{

1
1− 2ε

d∞(x, V c
ε ), 1

}
≥ min

{
1

1− 2ε
d∞(Kε, V

c
ε ), 1

}
= 1,

We conclude Kε ≺ g ≺ Vε. We know that |d∞(x, V c)− d∞(y, V c)| ≤ d∞(x, y) by the
inverse triangle inequality, so x 7→ d∞(x, V c) is d∞-Lipschitz continuous with Lipschitz
constant 1. Therefore, the mapping x 7→ 1

1−2εd∞(x, V c) is d∞-Lipschitz continuous
with Lipschitz constant 1

1−2ε . Since x 7→ min{x, 1} is a contraction, g is d∞-Lipschitz
continuous with Lipschitz constant 1

1−2ε .

Now let (ψε) be a Dirac family with respect to ‖·‖∞ and let f = g∗ψε. We claim that f

satisfies the properties in the lemma. Let K = [−M,M ]n and V = (−(M+1),M+1)n,
we want to show that f ∈ C∞c (Rn), that K ≺ f ≺ V and that f has partial derivatives
bounded by 1

1−2ε . By Lemma A.3.2, f is infinitely differentiable, and it is clear that
f takes values in [0, 1]. If x ∈ V c, we have x − y ∈ V c

ε for any y with ‖y‖∞ ≤ ε.
Therefore,

f(x) =
∫

g(x− y)ψε(y) dy =
∫

1(‖y‖∞≤ε)g(x− y)ψε(y) dy = 0.

Likewise, if x ∈ K, then x− y ∈ Kε for any y with ‖y‖∞ ≤ ε and thus

f(x) =
∫

g(x− y)ψε(y) dy =
∫

1(‖y‖∞≤ε)g(x− y)ψε(y) dy = 1.

We have now shown K ≺ f ≺ V . Since V is compact closure, it follows in particular
that f has compact support. It remains to prove the bound on the partial derivatives.
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To this end, we note

|f(x)− f(y)| =
∣∣∣∣
∫

g(x− z)ψε(z) dz −
∫

g(y − z)ψε(z) dz

∣∣∣∣

≤
∫
|g(x− z)− g(y − z)|ψε(z) dz

≤ d∞(x, y)
1− 2ε

.

We therefore obtain, with ek denoting the unit vector in the k’th direction,
∣∣∣∣

∂f

∂xk
(x)

∣∣∣∣ = lim
h→0+

|f(x + hek)− f(x)|
h

≤ lim
h→0+

1
1− 2ε

‖hek‖∞
h

=
1

1− 2ε
.

We have now identified a mapping f ∈ C∞c (Rn) with K ≺ f ≺ V and partial deriva-
tives bounded by 1

1−2ε . Since ε > 0 was arbitrary, we conclude that there exists
f ∈ C∞c (Rn) with K ≺ f ≺ V and partial derivatives bounded by 1 + ε for any ε > 0.
This shows the lemma.

Comment 4.3.4 Instead of explicitly constructing the Lipschitz mapping, we could
also have applied the extended Urysohn’s Lemma of Theorem C.2.2. This would have
yielded a weaker bound for the partial derivatives, but the nature of the argument
would be more general. ◦
Theorem 4.3.5 (Chain rule). Let F = (F1, . . . , Fn), where F1, . . . , Fn ∈ D1,2, and
let ϕ ∈ C1(Rn). Assume ϕ(F ) ∈ L2(FT ) and

∑n
k=1

∂ϕ
∂xk

(F )DFk ∈ L2(Π). Then
ϕ(F ) ∈ D1,2 and Dϕ(F ) =

∑n
k=1

∂ϕ
∂xk

(F )DFk.

Proof. We first prove the corollary in the case where ϕ is bounded, and then extend
to general ϕ.

Step 1: The bounded case. Assume that ϕ ∈ C1(Rn) is bounded and that we have∑n
k=1

∂ϕ
∂xk

(F )DFk ∈ L2(Π). In this case, obviously ϕ(F ) ∈ L2(FT ). We will employ
the bump functions analyzed in Lemma 4.3.3. Let ε > 0 and define the sets Km and
Vm by Km = [−m,m]n and Vm = (−m − 1,m + 1)n. By Lemma 4.3.3, there exists
mappings (cm) in C∞c (Rn) with Km ≺ cm ≺ Vm such that the partial derivatives of
cm are bounded by 1 + ε.

Define ϕm by putting ϕm(x) = cm(x)ϕ(x). We will argue that ϕm ∈ C1(Rn) with
bounded partial derivatives. It is clear that ϕm is continuously differentiable, and

∂ϕm

∂xk
(x) =

∂cm

∂xk
(x)ϕ(x) + cm(x)

∂ϕ

∂xk
(x).
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Since cm ∈ C∞c (Rn), both cm and ∂cm

∂xk
has compact support. It follows that ∂ϕm

∂xk

has compact support, and since it is also continuous, it is bounded. We can there-
fore apply the ordinary chain rule of Theorem 4.3.1 to conclude that ϕm(F ) ∈ D1,2

and Dϕm(F ) =
∑n

k=1
∂ϕm

∂xk
(F )DFm. We will use the closedness of D to extend this

result to ϕ(F ). We will show that ϕm(F ) converges to ϕ(F ) in L2(FT ) and that∑n
k=1

∂ϕm

∂xk
(F )DFk converges to

∑n
k=1

∂ϕ
∂xk

(F )DFk in L2(Π). Closedness of D will
then yield ϕ(F ) ∈ D1,2 and Dϕ(F ) =

∑n
k=1

∂ϕ
∂xk

(F )DFk.

Since cm converges pointwise to 1, ϕm converges pointwise to ϕ. Therefore, we obtain
ϕm(F ) a.s.−→ ϕ(F ). Because ‖cm‖∞ ≤ 1, dominated convergence yields that ϕm(F )
converges in L2(FT ) to ϕ(F ). To show the corresponding result for the derivatives,
first note that ∂cm

∂xk
is zero on K◦

m. Since cm is one on K◦
m, we find that ∂ϕm

∂xk
and ∂ϕ

∂xk

are equal on K◦
m. We therefore obtain

∥∥∥∥∥
n∑

k=1

∂ϕm

∂xk
(F )DFk −

n∑

k=1

∂ϕ

∂xk
(F )DFk

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

k=1

1(K◦
m)c(F )

(
∂ϕm

∂xk
(F )− ∂ϕ

∂xk
(F )

)
DFk

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

k=1

1(K◦
m)c(F )

(
∂cm

∂xk
(F )ϕ(F ) + (cm(F )− 1)

∂ϕ

∂xk
(F )

)
DFk

∥∥∥∥∥
2

≤
∥∥∥∥∥

n∑

k=1

1(K◦
m)c(F )

∂cm

∂xk
(F )ϕ(F )DFk

∥∥∥∥∥
2

+

∥∥∥∥∥
n∑

k=1

1(K◦
m)c(F )(cm(F )− 1)

∂ϕ

∂xk
(F )DFk

∥∥∥∥∥
2

.

We wish to show that each of these terms tend to zero by dominated convergence.
Considering the first term, by definition of cm we obtain

∣∣∣∣∣
n∑

k=1

1(K◦
m)c(F )

∂cm

∂xk
(F )ϕ(F )DFk

∣∣∣∣∣ ≤ (1 + ε)‖ϕ‖∞
n∑

k=1

|DFk|,

which is square-integrable. Likewise, for the second term we have the square-integrable
bound
∣∣∣∣∣

n∑

k=1

1(K◦
m)c(F )(cm(F )− 1)

∂ϕ

∂xk
(F )DFk

∣∣∣∣∣ = |1(K◦
m)c(F )(cm(F )− 1)|

∣∣∣∣∣
n∑

k=1

∂ϕ

∂xk
(F )DFk

∣∣∣∣∣

≤
∣∣∣∣∣

n∑

k=1

∂ϕ

∂xk
(F )DFk

∣∣∣∣∣ .

Since K◦
m increases to Rn, by dominated convergence using the two bounds obtained

above, we find that both norms tends to zero and therefore we may finally conclude
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that
∑n

k=1
∂ϕm

∂xk
(F )DFk tends to

∑n
k=1

∂ϕ
∂xk

(F )DFk in L2(Π). Closedness of D then
implies that ϕ(F ) ∈ D1,2 and Dϕ(F ) =

∑n
k=1

∂ϕ
∂xk

(F )DFk.

Step 2: The general case. Now let ϕ ∈ C1(Rn) be arbitrary and assume that
ϕ(F ) ∈ L2(FT ) and

∑n
k=1

∂ϕ
∂xk

(F )DFk ∈ L2(Π). We still consider some fixed ε > 0.
Define the sets Km = [−m,m] and Vm = [−(m+1), m+1] and let cm be the Lipschitz
element of C∞c (R) with Km ≺ cm ≺ Vm that exists by Lemma 4.3.3 with Lipschitz
constant 1 + ε. Let Cm be the antiderivative of cm which is zero at zero, given by
Cm(x) =

∫ x

0
cm(y) dy. Note that since cm is bounded by one and is zero outside of

Vm, ‖Cm‖∞ ≤ m + 1. In particular, Cm is bounded. Defining ϕm(x) = Cm(ϕ(x)), it
is then clear that ϕm is bounded. Furthermore, ϕm ∈ C1(Rn) and

∂ϕm

∂xk
(x) = cm(ϕ(x))

∂ϕ

∂xk
(x).

We therefore have∣∣∣∣∣
n∑

k=1

∂ϕm

∂xk
(F )DFk

∣∣∣∣∣ =

∣∣∣∣∣cm(ϕ(F ))
n∑

k=1

∂ϕ

∂xk
(F )DFk

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑

k=1

∂ϕ

∂xk
(F )DFk

∣∣∣∣∣ ,

so
∑n

k=1
∂ϕm

∂xk
(F )DFk ∈ L2(Π). Thus, ϕm is covered by the previous step of the proof,

and we may conclude that ϕm(F ) ∈ D1,2 and Dϕm(F ) =
∑n

k=1
∂ϕm

∂xk
(F )DFk. As in

the previous step, we will extend this result to ϕ by applying the closedness of D. We
will therefore need to prove convergence in L2(FT ) of ϕm(F ) to ϕ(F ) and to prove
convergence in L2(Π) of

∑n
k=1

∂ϕm

∂xk
(F )DFk to

∑n
k=1

∂ϕ
∂xk

(F )DFk.

To this end, note that since cm is bounded by one, |Cm(x)| ≤ ∫ x

0
|cm(y)| dy ≤ |x|, and

for x ∈ [−m,m], Cm(x) =
∫ x

0
cm(y) dy = x. Therefore, ϕm(x) = ϕ(x) on [−m,m] and

‖ϕm(F )− ϕ(F )‖2 = ‖1[−m,m]c(F )(ϕm(F )− ϕ(F ))‖2
= ‖1[−m,m]c(F )(Cm(ϕ(F ))− ϕ(F ))‖2.

Since |Cm(ϕ(F ))−ϕ(F )| ≤ |Cm(ϕ(F ))|+|ϕ(F )| ≤ 2|ϕ(F )| by the contraction property
of Cm, we conclude by dominated convergence that the above tends to zero, so ϕm(F )
tends to ϕ(F ) in L2(FT ). Likewise, for the derivatives we obtain

∥∥∥∥∥
n∑

k=1

∂ϕm

∂xk
(F )DFk −

n∑

k=1

∂ϕ

∂xk
(F )DFk

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

k=1

cm(ϕ(F ))
∂ϕ

∂xk
(F )DFk −

n∑

k=1

∂ϕ

∂xk
(F )DFk

∥∥∥∥∥
2

=

∥∥∥∥∥(cm(ϕ(F ))− 1)
n∑

k=1

∂ϕ

∂xk
(F )DFk

∥∥∥∥∥
2

,
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and since cm−1 tends to zero, bounded by the constant one, we conclude by dominated
convergence that the above tends to zero. By the closedness of D, we finally obtain
ϕ(F ) ∈ D1,2 and Dϕ(F ) =

∑n
k=1

∂ϕ
∂xk

(F )DFk, proving the theorem.

Corollary 4.3.6. Let F, G ∈ D1,2. If the integrability conditions FG ∈ L2(FT ) and
(DF )G + F (DG) ∈ L2(Π) hold, FG ∈ D1,2 and D(FG) = (DF )G + F (DG).

Proof. Putting ϕ(x, y) = xy, the chain rule of Theorem 4.3.5 yields that FG ∈ D1,2

and DFG = ∂ϕ
∂x1

(F, G)DF + ∂ϕ
∂x2

(F,G)DG = G(DF ) + F (DG).

We are now done with the proof of the chain rule for the Malliavin derivative. Next,
we prove that stochastic integrals with deterministic integrands are in the domain of
D. This will allow us to reconcile our definition of the Malliavin derivative with that
found in Nualart (2006).

Lemma 4.3.7. Let h ∈ L2[0, T ]. It then holds that
∫ T

0
h(t) dW (t) ∈ D1,2, and

D
∫ T

0
h(t) dW (t) = h.

Proof. First assume that h is continuous. We define hn(t) =
∑n

k=1 h( k
n )1( k−1

n , k
n ](t).

Since h is continuous, h is bounded and it follows that hn ∈ bE . We may therefore
conclude

∫ T

0
hn(t) dW (t) ∈ S and

Ds

∫ T

0

hn(t) dW (t) = Ds

n∑

k=1

h

(
k

n

)(
W

(
k

n

)
−W

(
k − 1

n

))

=
n∑

k=1

h

(
k

n

)
1( k−1

n , k
n ](s)

= hn(s).

Next, note that hn converges pointwise to h for all t ∈ (0, T ]. By boundedness of h,
hn converges in L2[0, T ] to h. By continuity of the stochastic integral,

∫ T

0
hn(t) dW (t)

converges in L2(FT ) to
∫ T

0
h(t) dW (t). Closedness then yields

∫ T

0
h(t) dW (t) ∈ D1,2

and D
∫ T

0
h(t) dW (t) = h, as desired. This shows the result for continuous h.

Next, consider a general h ∈ L2[0, T ]. There exists continuous hn converging in L2[0, T ]
to h. By the previous step, D

∫ T

0
hn(t) dWt = hn. Thus,

∫ T

0
hn(t) dWt converges to∫ T

0
h(t) dWt and D

∫ T

0
hn(t) dWt converges to h. We conclude that

∫ T

0
h(t) dWt ∈ D1,2

and D
∫ T

0
h(t) dWt = h.
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In the following, we will for brevity denote the the Brownian stochastic integral op-
erator on [0, T ] by θ, that is, whenever X ∈ L2(Π) is progressively measurable, we
will write θ(X) = θX =

∫ T

0
Xs dWs. Furthermore, if X1, . . . , Xn ∈ L2(Π) and we put

X = (X1, . . . , Xn), we will write θX for (θX1, . . . , θXn).

Now consider h1, . . . , hn ∈ L2[0, T ] and let ϕ ∈ C∞p (Rn). Since θh has a normal
distribution by Lemma 3.7.4, it follows that ϕ(θh) ∈ L2(Π). Furthermore, since h is
deterministic,

∥∥∥∥∥
n∑

k=1

∂ϕ

∂xk
(θh)hk

∥∥∥∥∥
2

≤
n∑

k=1

∥∥∥∥
∂ϕ

∂xk
(θh)hk

∥∥∥∥
2

=
n∑

k=1

∥∥∥∥
∂ϕ

∂xk
(θh)

∥∥∥∥
2

‖hk‖2 ,

which is finite. By Lemma 4.3.7 and Theorem 4.3.5, we conclude that ϕ(θh) ∈ D1,2

and Dϕ(θh) =
∑n

k=1
∂ϕ
∂xk

(θh)hk. This result shows that our method of introducing
the Malliavin derivative only for variables ϕ(Wt) with ϕ ∈ C∞p (Rn) yields the same
result as the method in Nualart (2006), where the Malliavin derivative is introduced
for variables ϕ(θh) with ϕ ∈ C∞p (Rn). The two methods are thus equivalent.

We let Sh denote the space of variables ϕ(θh), where h = (h1, . . . , hn), hk ∈ L2[0, T ]
and ϕ ∈ C∞p (Rn). Clearly, S ⊆ Sh. Our final goal of this section will be to prove a
few versions of the integration-by-parts formula. This formula will be very useful in
the next section, where we develop the Hilbert space theory of the Malliavin calculus.
If X ∈ L2(Π) and h ∈ L2[0, T ], we will write 〈X, h〉[0,T ](ω) =

∫
X(ω, t)h(t) dt.

Theorem 4.3.8 (Integration-by-parts formula). Let h ∈ L2[0, T ] and F ∈ D1,2.
Then E〈DF, h〉[0,T ] = EF (θh), where F (θh)(ω) = F (ω)(θh)(ω).

Proof. We first check that the conclusion is well-defined. Considering h as an element
of L2(Π), the left-hand side is simply the inner product in L2(Π) of two elements in
L2(Π). And since F and θh are in L2(FT ), F (θh) ∈ L1(FT ). Thus, all the integrals
are well-defined.

By linearity, it will suffice to prove the result in the case where h has unit norm.
First consider the case where F ∈ Sh with F = f(θg), g ∈ (L2[0, T ])n. By using a
linear transformation, we can assume without loss of generality that g1 = h and that
g1, . . . , gn are orthonormal. We then obtain

E〈DF, h〉[0,T ] = E

〈 n∑

k=1

∂f

∂xk
(θg)gk, g1

〉

[0,T ]

= E

n∑

k=1

∂f

∂xk
(θg)〈gk, g1〉[0,T ] = E

∂f

∂x1
(θg).
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Since g1, . . . , gn are orthonormal, θg is standard normally distributed. Therefore, we
can use Lemma 4.2.6 to obtain

E
∂f

∂x1
(θg) =

∫
∂f

∂x1
(y)φn(y) dy =

∫
f(y)y1φn(y) dy = Ef(θg)(θg)1 = EFθ(h).

This proves the claim in the case where F ∈ Sh. Now consider the case where F ∈ D1,2.
Let Fn be a sequence in Sh such that Fn converges to F and DFn converges to DF , this
is possible by the closedness definition of D and our earlier observation that S ⊆ Sh.
By continuity of the inner products, we find

E〈DF, h〉[0,T ] = E〈limDFn, h〉[0,T ]

= lim E〈DFn, h〉[0,T ]

= lim EFnθ(h)

= E limFnθ(h)

= EFθ(h),

as desired.

Theorem 4.3.8 is the fundamental result known as the integration-by-parts formula,
even though it may not seem to bear much similarity to the integration-by-parts for-
mula of ordinary calculus. In practice, we will not really use the integration-by-parts
formula in the form given in Theorem 4.3.8, rather we will be using the following two
corollaries.

Corollary 4.3.9. Let F, G ∈ D1,2 with FG ∈ L2(FT ) and F (DG)+G(DF ) ∈ L2(Π).
Then

E(G〈DF, h〉[0,T ]) = E (FG(θh))− EF 〈DG, h〉[0,T ]

Comment 4.3.10 Note that the left-hand side of the formula above also can be writ-
ten as

∫ ∫
[0,T ]

DF (ω, t)G(ω)h(t) dt dP . This makes this formula useful for identifying
conditional expectations, which in the Hilbert space context corresponds to orthogonal
projections. ◦

Proof. By Corollary 4.3.6, FG ∈ D1,2 and D(FG) = F (DG) + G(DF ). Therefore,
Theorem 4.3.8 yields

E(FG(θh)) = E〈D(FG), h〉[0,T ]

= E〈F (DG), h〉[0,T ] + E〈G(DF ), h〉[0,T ]

= EF 〈DG, h〉[0,T ] + EG〈DF, h〉[0,T ],
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and rearranging yields the result.

Corollary 4.3.11. Let F ∈ D1,2 and G ∈ Sh. Then

E(G〈DF, h〉[0,T ]) = E (FG(θh))− EF 〈DG, h〉[0,T ]

Comment 4.3.12 The point of considering G ∈ Sh is to avoid the integrability
requirements of Corollary 4.3.9. Particularly important for our later applications is
that we avoid the requirement FG ∈ L2(FT ). ◦

Proof. Let Fn be a sequence in Sh such that Fn converges to F and DFn converges to
DF . Then Fn and G are both in Sh, so Fn and G are both C∞p transformations of coor-
dinates of the Wiener process. Since C∞p transformations and their partial derivatives
have polynomial growth, we conclude FnG ∈ L2(FT ) and Fn(DG)+G(DFn) ∈ L2(Π).
From Lemma 4.3.9, we then have

E(G〈DFn, h〉[0,T ]) = E (FnG(θh))− EFn〈DG, h〉[0,T ].

We want to show that each of these terms converge as Fn converges to F .

First term. We begin by considering the term on the left-hand side. Because we
have G ∈ L2(FT ) and h ∈ L2[0, T ], G⊗ h ∈ L2(Π). DFn converges to DF in L2(Π),
so by the Cauchy-Schwartz inequality, DFn(G⊗h) converges to DF (G⊗h) in L1(Π).
Noting that

E
∣∣G〈DFn, h〉[0,T ] −G〈DF, h〉[0,T ]

∣∣ = E

∣∣∣∣∣
∫ T

0

(G⊗ h)DFn dλ−
∫ T

0

(G⊗ h)DF dλ

∣∣∣∣∣
≤ ‖DFn(G⊗ h)−DF (G⊗ h)‖1 ,

we obtain that G〈DFn, h〉[0,T ] converges in L1(FT ) to G〈DF, h〉[0,T ], and therefore
E(G〈DFn, h〉[0,T ]) converges to E(G〈DF, h〉[0,T ]), as desired.

Second term. Next, consider the first term on the right-hand side. Since G(θh) is
in L2(FT ), the Cauchy-Schwartz inequality implies that FnG(θh) tends to FG(θh) in
L1(FT ). Therefore E(FnG(θh)) converges to E(FG(θh)).

Third term. Finally, consider the second term on the right-hand side. We proceed
as for the term on the left-hand side and first note that since Fn ∈ L2(FT ) and
h ∈ L2[0, T ], Fn ⊗ h ∈ L2(Π). We also obtain ‖Fn ⊗ h − F ⊗ h‖22 = ‖Fn − F‖22‖h‖22,
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showing that Fn ⊗ h converges in L2(Π) to F ⊗ h. Therefore, (Fn ⊗ h)DG converges
in L1(Π) to (F ⊗ h)DG. Since we have, as for the first term considered,

E
∣∣Fn〈DG, h〉[0,T ] − F 〈DG, h〉[0,T ]

∣∣ = E

∣∣∣∣∣
∫ T

0

(Fn ⊗ h)DG dλ−
∫ T

0

(F ⊗ h)DG dλ

∣∣∣∣∣
≤ ‖(Fn ⊗ h)DG− (F ⊗ h)DG‖1

we conclude that Fn〈DG, h〉[0,T ] tends to F 〈DG,h〉[0,T ] in L1(FT ), and therefore
E(Fn〈DG, h〉[0,T ]) tends to E(F 〈DG,h〉[0,T ]).

Conclusion. We have now argued that

E(FGθ(h)) = lim
n

E(FnGθ(h))

E(F 〈DG, h〉[0,T ]) = lim
n

E(Fn〈DG,h〉[0,T ])

E(G〈DF, h〉[0,T ]) = lim
n

E(G〈DFn, h〉[0,T ]),

and we may therefore conclude E(G〈DF, h〉[0,T ]) = E (FGθ(h)) − EF 〈DG, h〉[0,T ] by
taking the limits. This is the result we set out to prove.

We have now come to the conclusion of this section. Before proceeding, we will review
our progress. We have developed some of the fundamental results of the Malliavin
derivative on D1,2. In Lemma 4.3.7, we have checked that stochastic integrals with de-
terministic integrands are in D1,2. This allowed us to reconcile our Malliavin derivative
with that of Nualart (2006). Also, in Theorem 4.3.5 and Theorem 4.3.8, we proved
the chain rule and the integration-by-parts formula, respectively. These two results
will be indispensable in the coming sections. The chain rule tells us that as long as
natural integrability conditions are satisfied, D1,2 is stable under C1 transformations.
The integration-by-parts formula is essential because it can transfer an expectation
involving DF into an expectation involving only F . This will be of particular use in
the form of Corollary 4.3.11.

Our next goal is to introduce a series of subspaces of L2(FT ) and L2(Π) and investigate
the special properties of D related to these subspaces. These results are very important
for the general theory of the Malliavin calculus. Unfortunately we will not be able to
see the full impact of them with the limited theory we detail here. However, we will
take the time to obtain one corollary from the theory, namely an extension of the chain
rule to Lipschitz transformations.
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4.4 Orthogonal subspaces of L2(FT ) and L2(Π)

In this section, we will introduce orthogonal decompositions of L2(FT ) and L2(Π)
given by

L2(FT ) =
∞⊕

n=0

Hn and L2(Π) =
∞⊕

n=0

Hn(Π).

We will see that subspacesHn have orthogonal bases for which the Malliavin derivative
can be explicitly computed, and the images of the subspaces are in Hn(Π). These
properties will allow us a characterization of D1,2 in terms of the projections on the
subspaces Hn and Hn(Π), which can lead to some very useful results. In order to give
an idea of what is to come, we provide the following graphical overview.

Hn
span // H′′n

cl

²²

H′′n(Π)

cl

²²

Hn(Π)
spanoo

H′n cl // Hn
D // Hn(Π) H′n(Π)

cl
oo

Consider the left-hand part of graph. It is meant to state that Hn is the closure
of H′n and H′′n, and the span of Hn is H′′n. On the right-hand part, Hn(Π) is the
closure of H′n(Π) and H′′n(Π), and the span of Hn(Π) is H′′n. The connection between
the left-hand and right-hand parts is the Malliavin derivative, which maps Hn into
Hn(Π).

Our plan is first to formally introduce Hn, H′n, H′′n and Hn and consider their basic
properties. After this, we introduce Hn(Π), H′n(Π), H′′n(Π) and Hn(Π). Finally, we
prove that D maps Hn into Hn(Π) by explicitly calculating the Malliavin derivative
of the elements in Hn. We then apply our results to obtain a characterization of the
elements of the space D1,2 in terms of the projections on the spaces Hn.

The subspaces Hn are based on the Hermite polynomials. As described in Appendix
A.5, the n’th Hermite polynomial is defined by

Hn(x) = (−1)ne
x2
2

dn

dxn
e−

x2
2 ,

with H0(x) = 1 and H−1(x) = 0. See the appendix for elementary properties of the
Hermite polynomials. This section will use a good deal of Hilbert space theory, see
Appendix A.6 for a review of the results used. We now define some of the subspaces
of L2(FT ) under consideration. Recall that we in the previous section defined θ as the
Brownian stochastic integral operator on [0, T ].
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Definition 4.4.1. We let H′n be the linear span of Hn(θh) for h ∈ L2[0, T ] with
‖h‖ = 1 and let Hn be the closure of H′n in L2(FT ).

Our first goal is to show that the subspaces (Hn) are mutually orthogonal and that
their orthogonal sum is L2(FT ). The following lemma will be fundamental to this
endeavor.

Lemma 4.4.2. It holds that for h, g ∈ L2[0, T ] with ‖h‖2 = ‖g‖2 = 1,

EHn(θh)Hm(θg) =

{
0 if n 6= m

n!〈h, g〉n if n = m
.

Proof. Let n,m ≥ 1 be given. By Lemma A.5.2, we have

EHn(θh)Hm(θg) = E
∂n

∂sn
exp

(
sθh− s2

2

)∣∣∣∣
s=0

∂m

∂tm
exp

(
tθg − t2

2

)∣∣∣∣
t=0

= E

(
∂n

∂sn
exp

(
sθh− s2

2

)
∂m

∂tm
exp

(
tθg − t2

2

))∣∣∣∣
s=0,t=0

= E

(
∂n

∂sn

∂m

∂tm
exp

(
sθh− s2

2

)
exp

(
tθg − t2

2

))∣∣∣∣
s=0,t=0

.

Our plan is to interchange the differentiation and integration above and explicitly
calculate and differentiate the resulting mean.

Step 1: Interchange of differentiation and integration. We first note that by a
simple induction proof,

∂n

∂sn

∂m

∂tm
exp

(
sx− s2

2

)
exp

(
ty − t2

2

)
= qn(s, x)qm(t, y) exp

(
sx− s2

2

)
exp

(
ty − t2

2

)
,

where qn is some polynomial in two variables. We will show that for any s, t ∈ R, it
holds that

E
∂

∂s
qn(s, x)qm(t, y) exp

(
sθh− s2

2

)
exp

(
tθg − t2

2

)

=
∂

∂s
Eqn(s, x)qm(t, y) exp

(
sθh− s2

2

)
exp

(
tθg − t2

2

)
.

By symmetry, if this is true, then the same result will of course also hold when dif-
ferentiation with respect to t. Applying this result n + m times will yield the desired
exchange of differentiation and integration. To show the result, fix t ∈ R and consider
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a bounded interval [a, b]. Define c = min{|a|, |b|}. We then have, with rn+1 some
polynomial and C and C ′t some suitably large constants,

sup
a≤s≤b

∣∣∣∣
∂

∂s
qn(s, x)qm(t, y) exp

(
sx− s2

2

)
exp

(
ty − t2

2

)∣∣∣∣

= sup
a≤s≤b

∣∣∣∣qn+1(s, x)qm(t, y) exp
(

sx− s2

2

)
exp

(
ty − t2

2

)∣∣∣∣

≤ rn+1(|x|)qm(|t|, |y|) exp
(

bx− c2

2

)
exp

(
ty − t2

2

)

≤ (C + exp(|x|)(C ′t + exp(|y|)) exp
(

bx− c2

2

)
exp

(
ty − t2

2

)
.

We have exploited that exponentials grow faster than any polynomial. Now, since
E exp(

∑n
k=1 λk|Xk|) is finite whenever λ ∈ Rn and X has an n-dimensional normal

distribution, we find

E(C + exp(|θh|)(C ′t + exp(|θg|)) exp
(

bθh− c2

2

)
exp

(
tθg − t2

2

)
< ∞.

Ordinary results for exchanging differentiation and integration now certify that

E
∂

∂s
qn(s, x)qm(t, y) exp

(
sθh− s2

2

)
exp

(
tθg − t2

2

)

=
∂

∂s
Eqn(s, x)qm(t, y) exp

(
sθh− s2

2

)
exp

(
tθg − t2

2

)
,

as desired. We can then conclude

E

(
∂n

∂sn

∂m

∂tm
exp

(
sθh− s2

2

)
exp

(
tθg − t2

2

))

=
∂n

∂sn

∂m

∂tm
E

(
exp

(
sθh− s2

2

)
exp

(
tθg − t2

2

))
,

and finally,

E

(
∂n

∂sn

∂m

∂tm
exp

(
sθh− s2

2

)
exp

(
tθg − t2

2

))∣∣∣∣
s=0,t=0

=
∂n

∂sn

∂m

∂tm
E exp

(
sθh− s2

2

)
exp

(
tθg − t2

2

)∣∣∣∣
s=0,t=0

.

Step 2: Calculating the mean. We now set to work to calculate

E exp
(

sθh− s2

2

)
exp

(
tθh− t2

2

)
.
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By Lemma 3.7.4, (θh, θg) is normally distributed with mean zero, V θh = 1, V θg = 1
and Cov(θh, θg) = 〈h, g〉. We then conclude for any s, t ∈ R, sθh + tθg is normally
distributed with mean zero and variance s2 + t2 + 2st〈h, g〉. Using the formula for the
Laplace transform of the normal distribution, we then find

E exp
(

sθh− s2

2

)
exp

(
tθg − t2

2

)

= exp
(
−s2 + t2

2

)
E exp (sθh + tθg)

= exp
(
−s2 + t2

2

)
exp

(
1
2
(s2 + t2 + 2st〈h, g〉)

)

= exp (st〈h, g〉) .

Step 3: Conclusion. With α = max{n,m}, we now obtain

∂n

∂sn

∂m

∂tm
E exp

(
sθh− s2

2

)
exp

(
tθg − t2

2

)

=
∂n

∂sn

∂m

∂tm
exp (st〈h, g〉)

=
∂n

∂sn

∂m

∂tm

∞∑

k=0

〈h, g〉k
k!

sktk

=
∞∑

k=α

〈h, g〉k
k!

n!m!sk−ntk−m.

Combining our results, we conclude

EHn(θh)Hm(θg) = E

(
∂n

∂sn

∂m

∂tm
exp

(
sθh− s2

2

)
exp

(
tθg − t2

2

))∣∣∣∣
s=t=0

=
∂n

∂sn

∂m

∂tm
E exp

(
sθh− s2

2

)
exp

(
tθg − t2

2

)∣∣∣∣
s=0,t=0

=
∞∑

k=α

〈h, g〉k
k!

n!m!sk−ntk−m

∣∣∣∣∣
s=t=0

,

and the final expression above is zero if n 6= m and n!〈h, g〉n otherwise. This shows
the claim of the lemma.

Theorem 4.4.3. The subspaces (Hn) are orthogonal, and L2(FT ) = ⊕∞n=0Hn.

Proof. We first prove that the subspaces are mutually orthogonal. Let n,m ≥ 1 be
given with n 6= m and let h, g ∈ L2[0, T ] with ‖h‖2 = ‖g‖2 = 1. By Lemma 4.4.2,
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Hn(θh) and Hm(θg) are orthogonal. Since Hn is the closure of the span of elements
of the form Hn(θh), ‖h‖ = 1, Lemma A.6.2 yields that Hn⊥Hm.

Next, we must show L2(FT ) = ⊕∞n=0Hn. By Lemma A.6.11, ⊕∞n=0Hn is the closure
of span ∪∞n=0 Hn. It will therefore suffice to show that the subspace span ∪∞n=0 Hn is
dense in L2(FT ). To do so, it will by Lemma A.6.4 suffice to show that the orthogonal
complement of span ∪∞n=0 Hn is {0}. And to do so, it will by Lemma A.6.2 suffice to
show that the orthogonal complement of ∪∞n=0Hn is {0}. This is therefore what we
set out to do.

Therefore, let F ∈ L2(FT ) be given, orthogonal to ∪∞n=1Hn. This means that, for any
n ≥ 0 and h with ‖h‖ = 1, EFHn(θh) = 0. Let n be given. By Lemma A.5.6, there
are coefficients such that

xn =
n∑

k=0

λkHk(x).

We then obtain EF (θh)n =
∑n

k=0 λkEFHk(θh) = 0. By scaling, we can conclude that
EF (θh)n for any h ∈ L2[0, T ]. Therefore, in the following h will denote an arbitrary
element of L2[0, T ], not necessarily of unit norm. We will show EF exp(θh) = 0. To
do so, note that by Lemma B.3.2,

∞∑
n=0

∥∥∥∥
(θh)n

n!

∥∥∥∥
2

=
∞∑

n=0

1
n!

(
E(θh)2n

) 1
2

=
∞∑

n=0

1
n!
‖h‖n

(
(2n)!
2nn!

) 1
2

=
∞∑

n=0

‖h‖n

√
n!

(
(2n)!

2n(n!)2

) 1
2

≤
∞∑

n=0

‖h‖n

√
n!

,

where we have used that (2n)!
2nn! ≤ n!.

∑∞
n=0

‖h‖n

√
n!

is convergent by the quotient test,

and by completeness, we can conclude that
∑∞

n=0
(θh)n

n! is convergent in L2(FT ). Since
it also converges almost surely to exp(θh), this is also the limit in L2(FT ). By
the Cauchy-Schwartz inequality, we find that F

∑n
k=0

(θh)k

k! converges in L1(FT ) to
F exp(θh), and therefore

EF exp(θh) = lim
n

EF

n∑

k=0

(θh)k

k!
= 0.

Since the variables of the form exp(θh) where h ∈ L2[0, T ] form a dense subset of
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L2(FT ) by Theorem B.6.2, their span form a dense subspace of L2(FT ). Since F is
orthogonal to this subspace, Lemma A.6.4 yields F = 0, as desired.

Next, we introduce the orthonormal basis Hn for the subspace Hn. We are going to
need an orthonormal basis for L2[0, T ]. Since B[0, T ] is countably generated, Lemma
B.4.1 yields that L2[0, T ] is separable, and therefore any orthonormal basis must be
countable. Let (en) be such a basis, we will hold this basis fixed for the remainder of
the section.

We let I be the set of sequences with values in N0 which are zero from a point onwards.
We call the elements of I multi-indices. If a ∈ I, we put |a| = ∑∞

n=1 an and call |a| the
degree of the multi-index. We also define a! =

∏∞
n=1 an!. We let In be the multi-indices

of degree n and let Imn be the multi-indices a of degree n such that ak = 0 whenever
k > m. We say that the multi-indices in Imn have order m.

Definition 4.4.4. For any multi-index a of order n, we define Φa = 1√
a!

∏∞
n=1 Han(θen).

We write H = {Φa|a ∈ I} and Hn = {Φa||a| = n}. We let H′′n denote the span of Hn.

We begin by showing that H is an orthonormal set. Afterwards, we will work on
showing that Hn is an orthonormal basis for Hn.

Lemma 4.4.5. H is an orthonormal set in L2(FT ).

Proof. We need to show that each Φa has unit norm and that the elements of the
family is mutually orthogonal.

Unit norm. Let a multi-index a be given. Since (en) is orthonormal, the family
(θen) are mutually independent. Recalling that ak is zero from a point onwards, using
Lemma 3.7.4 and Lemma 4.4.2, we obtain

‖Φa‖22 = E

(
1√
a!

∞∏
n=1

Han(θen)

)2

=
1
a!

∞∏
n=1

EHan(θen)2

=
1
a!

∞∏
n=1

an!‖en‖2

= 1.
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Orthogonality. Next, consider two multi-indices a and b with a 6= b. We then find

〈Φa, Φb〉 = E

(
1√
a!

∞∏
n=1

Han
(θen)

) (
1√
b!

∞∏
n=1

Hbn
(θen)

)

=
1√

a!
√

b!
E

∞∏
n=1

Han
(θen)Hbn

(θen)

=
1√

a!
√

b!

∞∏
n=1

EHan(θen)Hbn(θen).

Now, since there is some n such that an 6= bn, it follows from Lemma 4.4.2 that for
this n, EHan

(θen)Hbn
(θen) = 0. Therefore, the above is zero and Φa and Φb are

orthogonal.

In order to show that Hn is an orthonormal basis forHn, we will need to add a few more
spaces to our growing collection of subspaces of L2(FT ). Recall that Pn denotes the
polynomials of degree less than or equal to n. That is, Pn is the family of polynomials
of degree less than or equal to n in k variables for any k ≥ 1.

Definition 4.4.6. We let P ′n be the linear span of p(θh), where p ∈ Pn is a polynomial
in k variables and h ∈ (L2[0, T ])k, and let Pn be the closure of P ′n.

Lemma 4.4.7. Consider h ∈ (L2[0, T ])n with h = (h1, . . . , hn). Let (hk) be a sequence
with hk = (hk

1 , . . . , hk
n) converging to h. Let f ∈ C1

p(Rn). Then f(θhk) converges to
f(θh) in L2(FT ).

Proof. This follows from Lemma B.3.4.

Lemma 4.4.8. Let Pn be the family of variables p(θe), where p ∈ Pn is a polynomium
of k variables and e is a vector of distinct elements from the orthonormal basis (en).
Then the closure of the span of Pn is equal to Pn.

Proof. Obviously, Pn ⊆ P ′n, and therefore span Pn ⊆ Pn. We need to prove the other
inclusion. We first consider the case F = p(θh), where p ∈ Pn is a polynomial of degree
n in k variables and h = (h1, . . . , hk) with coordinates in span {ei}i≥1. We want to
prove that F ∈ span Pn. To do so, first observe that there exists an orthonormal
subset {g1, . . . , gm} of distinct elements from {ei}i≥1 such that hj =

∑m
i=1 λj

igi for
some coefficients λj

i . We then obtain

p(θh) = p

(
m∑

i=1

λ1
i gi, . . . ,

m∑

i=1

λk
i gi

)
= q(g1, . . . , gm),



4.4 Orthogonal subspaces of L2(FT ) and L2(Π) 161

where q(x1, . . . , xm) = p(
∑m

i=1 λ1
i xi, . . . ,

∑m
i=1 λk

i xi) is a polynomium of degree less
than or equal to n in m variables. We conclude p(θh) ∈ Pn. We have now proven that
p(θh) is in span Pn when the coordinates of h are in span {ei}i≥1.

Next, consider F = p(θh), where h ∈ (L2[0, T ])k, h = (h1, . . . , hk). We need to prove
that p(θh) is in span Pn. To this end, note that since (en) is an orthonormal basis, there
exists sequences (hi

j) in span {ei}i≥1 for j ≤ k such that hi
j converges to hj . Putting

hi = (hi
1, . . . , h

i
k), we then find by Lemma 4.4.7 that p(θhi) converges in L2 to p(θh).

Since we have already proven that p(θhi) ∈ span Pn, this shows that p(θh) ∈ span Pn.
By linearity, we may now conclude P ′n ⊆ span Pn and therefore also Pn ⊆ span Pn, as
desired.

Lemma 4.4.9. For each n ≥ 0, Pn = ⊕n
k=0Hk.

Proof. We first show the easier inclusion ⊕n
k=0Hk ⊆ Pn. Let k ≤ n. By Lemma A.5.6,

the k’th Hermite polynomial is a polynomial of degree k, therefore an element of Pn.
Thus, H′k ⊆ P ′n ⊆ Pn. Since Pn is closed, this implies Hk ⊆ Pn, and we therefore
immediately obtain ⊕n

k=0Hk ⊆ Pn, as desired.

Now consider the other inclusion, Pn ⊆ ⊕n
k=0Hk. From Theorem 4.4.3 and Lemma

A.6.16, we have the orthogonal decomposition

L2(FT ) =
∞⊕

k=0

Hk =

(
n⊕

k=0

Hk

)
⊕

( ∞⊕

k=n+1

Hk

)
.

By Lemma A.6.14, we therefore find that to show Pn ⊆ ⊕∞k=0Hk, it will suffice to
show that Pn is orthogonal to ⊕∞k=n+1Hk. And to do so, it will by Lemma A.6.11 and
Lemma A.6.2 suffice to show that Pn is orthogonal to H′k for any k > n.

Therefore, let k > n be given, and let ‖h‖ = 1. We will show that Pn is orthogonal
to Hk(θh). To this end, it will suffice to show that P ′n is orthogonal to Hk(θh).
Let F ∈ P ′n with F = p(θg), where g = (g1, . . . , gm) are in L2[0, T ]. Using the
same technique as in the proof of Lemma 4.4.8, we can assume that g1, . . . , gm are
orthonormal. In fact, by the Gram-Schmidt orthonormalization procedure, we can
even assume g1 = h.

We now prove EFHk(θh) = 0. By Lemma A.5.6, we have, for any i ≥ 0,

xi =
i∑

j=0

µi
jHj(x)
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for some coefficients µi
j ∈ R. Recalling that Imn denotes the multi-indicies of order m

with degree n, we then have, for some coefficients λa,

p(θg) =
∑

a∈Imn
λa

m∏

i=1

(θgi)ai

=
∑

a∈Imn
λa

m∏

i=1

ai∑

j=0

µai
j Hj(θgi)

=
∑

a∈Imn
λa

a1∑

j1=0

· · ·
am∑

jm=0

m∏

i=1

µai
ji

Hji
(θgi).

Therefore, we obtain

EFHk(θh) =
∑

a∈Imn
λa

a1∑

j1=0

· · ·
am∑

jm=0

EHk(θh)
m∏

i=1

µai
ji

Hji
(θgi).

Now consider the expression EHk(θh)
∏m

i=1 µai
ji

Hji(θgi), we wish to argue that this is
equal to zero. Since g1, . . . , gm are orthonormal, θg1, . . . , θgm are independent. We
therefore find, recalling that g1 = h,

EHk(θh)
m∏

i=1

µai
ji

Hji(θgi) = E(Hk(θh)Hj1(θh))
m∏

i=2

Eµai
ji

Hji(θgi).

Since |a| ≤ n, a1 ≤ n and in particular j1 ≤ n. Since k > n, we may conclude by
Lemma 4.4.2 that E(Hk(θh)Hj1(θh)) = 0, and the above expression is therefore zero.
Thus, EFHk(θh) = 0 and we conclude that Pn is orthogonal to H′k for k > n. As a
consequence of this, Pn is orthogonal to ⊕∞k=n+1Hk and therefore Pn ⊆ ⊕n

k=0Hk, as
desired.

Theorem 4.4.10. For each n, Hn is an orthonormal basis of Hn.

Proof. From Lemma 4.4.5, we already know that Hn is an orthonormal set, so it will
suffice to show that the span H′′n is dense in Hn. Let Kn be the closure of H′′n. We
wish to show Kn = Hn. To do so, we first prove Pn = ⊕n

k=0Kk. Since Φa for |a| = k

is a polynomial transformation of degree k of variables θ(ei), it is clear that Hk ⊆ Pn

for any k ≤ n and therefore Kk ⊆ Pn. In particular, ⊕n
k=0Kk ⊆ Pn. We need to prove

the other inclusion.

By Lemma 4.4.8, it will suffice to show Pn ⊆ ⊕n
k=0Kk. Therefore, let F ∈ Pn

with F = p(θe), where e = (ek1 , . . . , ekn) are distinct and p(x) =
∑

a∈Imn λkxa is a
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polynomial of degree n in m variables. By Lemma A.5.6, we have, for any n ≥ 0,
xn =

∑n
k=0 µn

kHk(x), for some coefficients µn
k ∈ R. We obtain

p(θ(ek1), . . . , θ(ekn
)) =

∑

a∈Im
n

λa

n∏

i=1

(θeki
)ai

=
∑

a∈Imn
λa

n∏

i=1

ai∑

j=0

µai
j Hj(θeki)

=
∑

a∈Imn
λa

a1∑

j1=0

· · ·
an∑

jn=0

n∏

i=1

µai
ji

Hji
(θeki

)

=
∑

a∈Imn

a1∑

j1=0

· · ·
an∑

jn=0

(
λa

n∏

i=1

√
ji!µai

ji

)
n∏

i=1

1√
ji!

Hji
(θeki

).

Now, with |j| = ∑n
k=1 jk, the innermost product of the above is in H|j|. Since |a| ≤ n

and ji ≤ ai for i ≤ n, |j| ≤ n. We may therefore conclude that the above is in the
span of ∪n

k=0Hk, therefore in ⊕n
k=0Kk.

We have now shown Pn = ⊕n
k=0Kk. Recall that from Lemma 4.4.9, we also have

Pn = ⊕n
k=0Hk. We may then conclude

Pn−1 ⊕Kn =
n⊕

k=0

Kk =
n⊕

k=0

Hk = Pn−1 ⊕Hn.

Now, since Pn−1 = ⊕n−1
k=0Kk and Pn−1 = ⊕n−1

k=0Hk, we conclude that Kn and Pn−1 are
orthogonal and Pn−1 and Hn are orthogonal. Therefore, by Lemma A.6.15, Kn = Hn

and therefore span Hn = cl H′′n = Kn = Hn, as desired.

Our results so far are the following: The subspaces Hn are mutually orthogonal, has
orthonormal bases Hn, and L2(FT ) = ⊕∞n=0Hn. We also have two subspaces H′n and
H′′n which are dense in Hn.

We will now use the families Hn, H′n, H′′n and Hn to define analogous families Hn(Π),
H′n(Π), H′′n(Π) andHn(Π) in L2(Π). These sets will have properties much alike to their
counterparts in L2(FT ), and will eventually be linked to these through the Malliavin
derivative.

Definition 4.4.11. By H′n(Π), we denote the span of the variables of the form F ⊗h,
where F ∈ Hn and h ∈ L2[0, T ]. By Hn(Π), we denote the closure of H′n(Π).
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Theorem 4.4.12. Defining Hn(Π) as the family of elements Φa ⊗ ei, where |a| = n

and i ∈ N, Hn(Π) is an orthonormal basis for Hn(Π). In particular, the span H′′n(Π)
of Hn(Π) is dense in Hn(Π).

Proof. It is clear that ‖Φa ⊗ ei‖2 = ‖Φa‖2‖ei‖2 = 1. For any a, b ∈ In and i, j ∈ N,
the Fubini Theorem yields 〈Φa ⊗ ei, Φb ⊗ ej〉 = 〈Φa,Φb〉〈ei, ej〉, so if a 6= b or i 6= j,
Φa ⊗ ei and Φb ⊗ ej are orthogonal. Thus, Hn(Π) is orthonormal.

It remains to show span Hn(Π) = Hn(Π). To this end, it will suffice to show that
H′n(Π) ⊆ span Hn(Π). Therefore, consider F ∈ Hn and h ∈ L2[0, T ]. We need to
demonstrate F ⊗ h ∈ span Hn(Π). Now, there are hn ∈ span {ei}i≥1 such that hn

tends to h, and therefore

lim
n
‖F ⊗ h− F ⊗ hn‖2 = lim

n
‖F‖2‖h− hn‖2 = 0.

Furthermore, there are Fn ∈ span Hn such that Fn tends to F . Fixing n, we then find

lim
k
‖F ⊗ hn − Fk ⊗ hn‖2 = lim

k
‖F − Fk‖2‖hn‖ = 0.

Since Fk ∈ span Hn and hn ∈ span {ei}i≥1, we obtain Fk ⊗Hn ∈ span Hn(Π). Now,
since Fk ⊗ hn tends to F ⊗ hn as k tends to infinity, F ⊗ hn ∈ span Hn(Π). And since
F ⊗Hn tends to F ⊗ h as n tends to infinity, F ⊗ h ∈ span Hn(Π). This shows the
statement of the theorem.

Theorem 4.4.13. The spaces Hn(Π) are orthogonal and L2(Π) = ⊕∞n=0Hn(Π).

Proof. Since the sets Hn are orthogonal, it is clear that the sets Hn(Π) are orthogonal.
Therefore, Hn(Π) are orthogonal as well.

In order to show that L2(Π) = ⊕∞n=0Hn(Π), as in Theorem 4.4.3 it will suffice to show
that the orthogonal complement of ∪∞n=0Hn(Π) is zero. Therefore, let X ∈ L2(Π), and
assume that X is orthogonal to Hn(Π) for any n ≥ 0. In particular, X is orthogonal
to F ⊗ h for any F ∈ Hn and any h ∈ L2[0, T ]. Since L2(FT ) = ⊕∞k=0Hk, we conclude
by continuity of the inner product that X is orthogonal to F ⊗ h for any F ∈ L2(FT )
and any h ∈ L2[0, T ]. By Lemma B.4.2, X is zero almost surely.

Next, we will investigate the interplay between Hn, Hn(Π) and D. Here, our orthonor-
mal bases Hn will prove essential.
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Theorem 4.4.14. H ⊆ D1,2, and for any multi-index a,

DΦa =
∞∑

k=1

αa
kek,

where αa
k = ak√

a!
Hak−1(θek)

∏∞
i6=k Hai

(θei), with the convention that H−1 = 0. The
elements (DΦa) are mutually orthogonal, and ‖DΦa‖2 = |a|.

Comment 4.4.15 Since ak is zero from some point onwards, the infinite product in
αa

k only has finitely many nontrivial factors, and is therefore well-defined. Similarly,
we see that αa

k is zero from some point onwards, and therefore the infinite sum in the
expression for DΦa is well-defined, only having finitely many nontrivial terms. ◦

Proof. We need to prove four things: That Φa ∈ D1,2, the form of DΦa, orthogonality
and the norm of ‖DΦa‖.

Computation of DΦa. Let a ∈ I and assume that ak = 0 for k > n. Then
Φa = 1√

a!

∏n
k=1 Han(θen), so Φa = f(Ha1(θe1), . . . , Han(θen)), where f : Rn → R

with f(x) = 1√
a!

∏n
k=1 xk. By the chain rule, Φa ∈ D1,2 and

DΦa =
n∑

k=1

∂f

∂xk
(Ha1(θe1), . . . ,Han(θen)) DHak

(θek)

=
n∑

k=1


 1√

a!

n∏

i6=k

Hai(θei)


 akHak−1(θek)ek

=
n∑

k=1

ak√
a!


Hak−1(θek)

n∏

i 6=k

Hai(θei)


 ek

=
n∑

k=1

αa
kek

=
∞∑

k=1

αa
kek,

where we have used Lemma A.5.3. Note that in the case where ak = 0, Hak
= 1, so

H ′
ak

= 0 = H−1. The above computation is therfore valid no matter whether ak is
zero or nonzero.

Orthogonality. Let a and b be multi-indices. Recall that the inner product on
L2(Π) is denoted 〈·, ·〉Π. We have, using Lemma 3.7.4 and recalling that in the sums
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and products, only finitely many terms and factors are nontrivial,

〈Φa,Φb〉Π = E〈Φa,Φb〉[0,T ]

= E

〈 ∞∑

k=1

αa
kek,

∞∑

k=1

αb
kek

〉

[0,T ]

=
∞∑

k=1

Eαa
kαb

k

=
∞∑

k=1

akbk√
a!
√

b!
E


Hak−1(θek)

∞∏

i 6=k

Hai(θei)





Hbk−1(θek)

∞∏

i 6=k

Hbi(θei)




=
∞∑

k=1

akbk√
a!
√

b!
(EHak−1(θek)Hbk−1(θek))




∞∏

i 6=k

EHai(θei)Hbi(θei)


 .

In particular, if a 6= b, 〈Φa,Φb〉Π = 0 by Lemma 4.4.2, showing orthogonality of distinct
Φa and Φb.

Norm of DΦa. Finally, we find

‖Φa‖2Π =
∞∑

k=1

a2
k

a!
EHak−1(θek)2

∞∏

i 6=k

EHai(θei)2

=
∞∑

k=1

a2
k

a!
(ak − 1)!

∞∏

i 6=k

ai!

=
∞∑

k=1

a2
k(ak − 1)!

ak!

= |a|.

Theorem 4.4.14 has several corollaries which gives us a good deal of insight into the
nature of the Malliavin derivative.

Corollary 4.4.16. It holds that Hn ⊆ D1,2, and for any F ∈ Hn, ‖DF‖ =
√

n‖F‖.

Proof. First consider F ∈ H′′n with F =
∑m

k=1 λkΦak
, where ak ∈ In for k ≤ m. By

Lemma 4.4.14 and the Pythagoras Theorem, we obtain F ∈ D1,2 and

‖DF‖2 =
m∑

k=1

λ2
k‖DΦak

‖2 =
m∑

k=1

λ2
k|ak| = n

m∑

k=1

λ2
k = n

m∑

k=1

λ2
k‖Φak

‖2 = n‖F‖2.



4.4 Orthogonal subspaces of L2(FT ) and L2(Π) 167

We have now shown that H′′n ⊆ D1,2 and that for F ∈ H′′n, ‖DF‖ =
√

n‖F‖. We need
to extend this to Hn. Therefore, let F ∈ Hn be given, and let Fn be a sequence in H′′n
converging to F . By what we already have shown, ‖DFn −DFm‖ =

√
n‖Fn − Fm‖.

Since (Fn) is a cauchy sequence, we conclude that DFn is a cauchy sequence as well.
By completeness, there exists a limit X of DFn. By the closedness of D, we conclude
that F ∈ D1,2 and DF = X. We then have

‖DF‖ = ‖ limDFn‖ = lim ‖DFn‖ =
√

n lim ‖Fn‖ =
√

n‖F‖.

This shows the claims of the corollary.

Corollary 4.4.17. D maps Hn into Hn−1(Π).

Proof. Let Φa ∈ Hn be given. By Lemma 4.4.14,

DΦa =
∞∑

k=1

αa
kek,

where αa
k = ak√

a!
Hak−1(θek)

∏∞
i 6=k Hai(θei). By inspection, whenever αa

k 6= 0 we have
αa

kek ∈ H′′n−1(Π) ⊆ Hn−1(Π). By Corollary 4.4.16, D is continuous on Hn. Since
Hn−1(Π) is a closed linear space, the result therefore extends from Hn to Hn.

Corollary 4.4.18. The images of Hn and Hm under D are orthogonal whenever
n 6= m.

Proof. This follows by combining Corollary 4.4.17 and Theorem 4.4.13.

We have now introduced all of the subspaces and orthogonal sets described in the
diagram in the beginning of the section, and we have discussed their basic properties.
We are now ready to begin work on a characterisation of D1,2 in terms of the projections
on the subspaces Hn. Let Pn be the orthogonal projection in L2(FT ) on Hn, and let
PΠ

n be the orthogonal projection in L2(Π) on Hn(Π).

Lemma 4.4.19. If F ∈ H′′n and h ∈ L2[0, T ], F (θh) ∈ Hn−1 ⊕Hn+1.

Proof. We prove the result by first considering some simpler cases and then extending
using density arguments.
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Step 1: The case F ∈ Hn and h = ep. First consider the case where F ∈ Hn with
F = Φa and h = ep for some p ∈ N. Supposing that ak = 0 for k > m, we can write
Φa = 1√

a!

∏m
i=1 Hai(θei). In the case p ≤ m, we find, using Lemma A.5.4,

Φaθ(ep) =
1√
a!

Hap
(θep)θ(ep)

∏

i 6=p

Hai
(θei)

=
1√
a!

(
Hap+1(θep) + apHap−1(θep)

) ∏

i 6=p

Hai
(θei)

=
1√
a!

Hap+1(θep)
∏

i6=p

Hai(θei) +
1√
a!

apHap−1(θep)
∏

i 6=p

Hai(θei),

which is in Hn−1 ⊕Hn+1. If p > m, we obtain Φaθ(ep) = 1√
a!

H1(θep)
∏m

i=1 Hai
(θei),

yielding Φaθ(ep) ∈ Hn+1 ⊆ Hn−1 ⊕Hn+1.

Step 2: The case F ∈ Hn and h ∈ L2[0, T ]. By linearity, it is clear that the result
extends to F = Φa and h in the span of {ei}i≥1. Consider a general h ∈ L2[0, T ], and
let hn be in the span of {ei}i≥1, converging to h. Now, the mapping

f(x) =

(
1√
a!

m∏

i=1

Hai(xi)

)
xm+1

is in C∞p (Rm+1), and furthermore we have the equalities Φaθ(h) = f(θe1, . . . , θem, θh)
and Φaθ(hn) = f(θe1, . . . , θem, θhn). Therefore, Lemma 4.4.7 yields that Φaθ(hn)
converges in L2(FT ) to Φaθ(h). Since Hn−1 ⊕ Hn+1 is a closed subspace, we may
conclude Φaθ(h) ∈ Hn−1 ⊕Hn+1.

Step 3: The case F ∈ H′′n and h ∈ L2[0, T ]. The remaining extension follows
directly by linearity as in the previous step.

Lemma 4.4.20. If X ∈ Hn(Π) and h ∈ L2[0, T ], 〈X,h〉[0,T ] ∈ Hn.

Proof. Let h ∈ L2[0, T ]. First note that for any F ∈ Hn and h′ ∈ L2[0, T ], we find
〈F ⊗ h′, h〉[0,T ] = F 〈h′, h〉 ∈ Hn, showing the result in this simple case. Since the
mapping X 7→ 〈X,h〉[0,T ] is linear and continuous and Hn is a closed subspace, the
result extends to X ∈ Hn(Π).

Theorem 4.4.21. Let F ∈ D1,2. Then PΠ
n DF = DPn+1F .

Proof. Our plan is to show that 〈Z, DF 〉 = 〈Z, DPn+1F 〉 for any Z ∈ Hn(Π) and then
use Lemma A.6.18 to obtain the conclusion. Showing this equality in full generality
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will be done in two steps, first demonstrating it in a simple case and then extending
by linearity and continuity.

Step 1: The equality for G ⊗ h. Let G ∈ H′′n and let h ∈ L2[0, T ]. We will show
that 〈G ⊗ h,DF 〉 = 〈G ⊗ h,DPn+1F 〉. Since H′′n ⊆ Sh, we can use Corollary 4.3.11
and obtain

〈G⊗ h,DF 〉 = E(G〈DF, h〉[0,T ])

= EFG(θh)− EF 〈DG, h〉[0,T ].

Using the orthogonal decomposition of L2(FT ) proven in Theorem 4.4.3, Lemma
A.6.12 yields F =

∑∞
k=0 PkF , where the limit is in L2(FT ). Using the Cauchy-

Schwartz inequality, we then obtain the two results

∞∑

k=0

‖G(θh)PkF‖1 ≤ ‖G(θh)‖2
∞∑

k=0

‖PkF‖2 < ∞
∞∑

k=0

‖〈DG, h〉[0,T ]PkF‖1 ≤ ‖〈DG,h〉[0,T ]‖2
∞∑

k=0

‖PkF‖2 < ∞,

so
∑∞

k=0 G(θh)PkF and
∑∞

k=0〈DG, h〉[0,T ]PkF are convergent in L1. Since convergence
in Lp implies convergence in probability, we conclude by uniqueness of limits that

∞∑

k=0

G(θh)PkF = G(θh)
∞∑

k=0

PkF

∞∑

k=0

〈DG, h〉[0,T ]PkF = 〈DG,h〉[0,T ]

∞∑

k=0

PkF,

where the limits on the left are in L1(FT ) and the limits on the right are in L2(FT ).
This implies

E(G〈DF, h〉[0,T ]) = EFG(θh)− EF 〈DG,h〉[0,T ]

= E

( ∞∑

k=0

G(θh)PkF

)
− E

( ∞∑

k=0

〈DG, h〉[0,T ]PkF

)

=
∞∑

k=0

EG(θh)PkF −
∞∑

k=0

E〈DG,h〉[0,T ]PkF,

where we have used the L1-convergence to interchange sum and integral. By assump-
tion, G ∈ H′′n, so DG ∈ Hn−1(Π) by Corollary 4.4.17, and 〈DG, h〉[0,T ] ∈ Hn−1 by
Lemma 4.4.20. Furthermore, by Lemma 4.4.19, Gθ(h) ∈ Hn−1 ⊕Hn+1. By orthogo-
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nality of the Hn, we then find

∞∑

k=0

EG(θh)PkF −
∞∑

k=0

E〈DG, h〉[0,T ]PkF

= EG(θh)Pn−1F + EG(θh)Pn+1F − E〈DG, h〉[0,T ]Pn−1F.

By the integration-by-parts formula of Corollary 4.3.11,

EG(θh)Pn−1F − E〈DG,h〉[0,T ]Pn−1F = EG〈DPn−1F, h〉[0,T ],

which is zero since G ∈ H′′n and 〈DPn−1F, h〉[0,T ] ∈ Hn−2 by Lemma 4.4.19. Since also
E〈DG,h〉[0,T ]Pn+1F = 0 by the same lemma, we can use Corollary 4.3.11 once again
to obtain

EG(θh)Pn−1F + EG(θh)Pn+1F − E〈DG, h〉[0,T ]Pn−1F

= EG(θh)Pn+1F

= EG(θh)Pn+1F − E〈DG,h〉[0,T ]Pn+1F

= EG〈DPn+1F, h〉[0,T ]

= 〈G⊗ h, DPn+1F 〉.

All in all, we have proven for G ∈ H′′n that

〈G⊗ h,DF 〉 = 〈G⊗ h, DPn+1F 〉.

Step 2: Conclusions. Noting that both the left-hand side and the right-hand side
in the equality above is continuous and linear in G, we can extend it to hold not
only for G ∈ H′′n, but also for G ∈ Hn. Since the variables of the form G ⊗ h

for G ∈ Hn and h ∈ L2[0, T ] has dense span in Hn(Π) by definition, we conclude,
again by continuity and linearity of the inner product, that 〈Z, DF 〉 = 〈Z, DPn+1F 〉
for all Z ∈ Hn(Π). Since DPn+1F ∈ Hn(Π) by Corollary 4.4.17, Lemma A.6.18
finally yields that DPn+1F is the orthogonal projection of DF onto Hn(Π), that is,
PΠ

n DF = DPn+1F .

Theorem 4.4.22. Let F ∈ L2(FT ). F is in D1,2 if and only if
∑∞

n=1 n‖PnF‖2 is
finite. In the affirmative case, DF =

∑∞
n=0 DPnF , and in particular the norm is given

by ‖DF‖2 =
∑∞

n=1 n‖PnF‖2.

Proof. First assume that F ∈ L2(FT ) and that
∑∞

n=1 n‖PnF‖22 < ∞. We have to
show that F ∈ D1,2 and identify DF and ‖DF‖2. By Lemma A.6.12, F =

∑∞
n=0 PnF .
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Define Fk =
∑k

n=0 PnF , then Fk converges to F in L2(FT ). We will argue that DFk

converges as well, this will imply F ∈ D1,2.

Obviously, PnF ∈ Hn, so by Corollary 4.4.16, PnF ∈ D1,2 and ‖DPnF‖2 = n‖PnF‖2.
Therefore, we find

∑∞
n=0 ‖DPnF‖2 =

∑∞
n=0 n‖PnF‖2 < ∞, showing that the series∑∞

n=0 DPnF is convergent in L2(FT ), meaning that the sequence DFn is convergent.
By closedness of D, we conclude F ∈ D1,2 and DF =

∑∞
n=0 DPnF . By Corollary

4.4.18, DPnF and DPmF are orthogonal whenever n 6= m. We may therefore also
conclude ‖DF‖2 =

∑∞
n=0 ‖DPnF‖2 =

∑∞
n=1 n‖PnF‖2.

It remains to show that
∑∞

n=1 n‖PnF‖2 < ∞ is also necessary to obtain F ∈ D1,2.
Assume that F ∈ D1,2, we need to prove that the sum is convergent. To this end, note
that using the orthogonal decomposition of L2(Π) from Theorem 4.4.13 and applying
Lemma A.6.12 and Theorem 4.4.21,

DF =
∞∑

n=0

PΠ
n DF =

∞∑
n=0

DPn+1F =
∞∑

n=1

DPnF.

In particular, the sum on the right is convergent, and therefore
∑∞

n=1 ‖DPnF‖2 is fi-
nite. By Corollary 4.4.16, ‖DPnF‖2 = n‖PnF‖2, and we conclude that

∑∞
n=1 n‖PnF‖2

is finite, as desired.

Theorem 4.4.22 is the promised characterisation of D1,2 in terms of the subspaces Hn.
As our final result on the Malliavin calculus, we will show how the theorem can be
used to obtain an extension of the chain rule for Lipschitz mappings. We are going to
employ some weak convergence results, see Appendix A.6 for an overview.

Lemma 4.4.23. Let Fn be a sequence in D1,2 converging to F and assume that DFn

is bounded in L2(Π). Then F ∈ D1,2, and there is a subsequence of DFn converging
weakly to DF .

Proof. We will use Theorem 4.4.22 to argue that F ∈ D1,2. To do so, we need to prove
that

∑∞
m=1 m‖PmF‖2 is finite. To this end, first note that since DFn is bounded

in L2(Π), by Theorem A.6.21 there exists a subsequence DFnk
converging weakly to

some α ∈ L2(Π). Convergence of Fnk
to F and Corollary 4.4.16 allows us to conclude

∞∑
m=1

m‖PmF‖2 =
∞∑

m=1

lim
k

m‖PmFnk
‖2 =

∞∑
m=1

lim
k
‖DPmFnk

‖2.
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Now note that PmFnk
is a sequence in Hm which converges to PmF since Pm is

continous, being an orthogonal projection. By Corollary 4.4.16, D is a continuous
mapping on Hm, so we find that DPmFnk

converges to DPmF . On the other hand,
by Theorem 4.4.21, DPmFnk

= PΠ
m−1DFnk

. Since DFnk
converges weakly to α,

PΠ
m−1DFnk

converges weakly to PΠ
m−1α by Lemma A.6.23. Since ordinary convergence

implies weak convergence by Lemma A.6.20 and weak limits are unique by Lemma
A.6.19, we obtain DPmF = PΠ

m−1α. All in all, we conclude that DPmFnk
converges

to PΠ
m−1α. Therefore, the norms converge as well. Thus, using Lemma A.6.12,

∞∑
m=1

lim
k
‖DPmFnk

‖2 =
∞∑

m=1

‖PΠ
m−1α‖2 = ‖α‖2,

which is of course finite. Theorem 4.4.22 now yields F ∈ D1,2. Finally, note that
PΠ

mDF = DPm+1F = PΠ
mα for any m ≥ 0, so by Lemma A.6.12, DF = α. This

means that DFnk
converges weakly to DF .

Corollary 4.4.24. Let Fn be a sequence in D1,2 converging to F and assume that
DFn is bounded in L2(Π). Then F ∈ D1,2, and DFn converges weakly to DF .

Proof. By Lemma 4.4.23, F ∈ D1,2. We need to show that DFn converges weakly to
DF . To this end, it will suffice to show that for any subsequence DFnk

, there is a
further subsequence DFnkl

converging to DF . Therefore, let a subsequence DFnk
be

given. Then Fnk
converges to F and DFnk

is bounded in L2(Π), so Lemma 4.4.23 shows
that there is a subsequence Fnkl

converging to DF . This concludes the proof.

Theorem 4.4.25 (Lipschitz chain rule). Let F ∈ Dn
1,2, F = (F1, . . . , Fn), and let

ϕ : Rn → R be a Lipschitz mapping with Lipschitz constant K with respect to ‖ · ‖∞.
Then ϕ(F ) ∈ D1,2, and there is a random variable G = (G1, . . . , Gn) with values in
Rn and ‖Gk‖2 ≤ K such that Dϕ(F ) =

∑n
k=1 GkDFk.

Proof. By Lemma A.4.2, there exists a sequence of mappings ϕn ∈ C∞(Rn) with
partial derivatives bounded by K converging uniformly to ϕ. By the ordinary chain rule
of Theorem 4.3.1, Dϕn(F ) =

∑n
k=1

∂ϕn

∂xk
(F )DFk. Now, since ϕn converges uniformly

to ϕ, ϕn(F ) converges in L2(FT ) to ϕ(F ). On the other hand, we have
∥∥∥∥∥

n∑

k=1

∂ϕn

∂xk
(F )DFk

∥∥∥∥∥
2

≤ K

n∑

k=1

‖DFk‖2,

so the sequence
∑n

k=1
∂ϕn

∂xk
(F )DFk is bounded in L2(Π). By Corollary 4.4.24 we obtain

ϕ(F ) ∈ D1,2 and
∑n

k=1
∂ϕn

∂xk
(F )DFk converges weakly to Dϕ(F ). If we can identify
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the weak limit as being of the form stated in the theorem, we are done. To this end,
note that since the sequence ∂ϕn

∂xk
(F ) is pointwisely bounded by K, it is bounded in

L2(FT ) by K as well. Therefore, by Theorem A.6.21 there exists a subsequence such
that for all k ≤ n, ∂ϕnm

∂xk
(F ) converges weakly to some Gk ∈ L2(FT ). From Lemma

A.6.22 we know that ‖Gk‖2 ≤ K, but we would like a pointwise bound instead. To
obtain this, let A ∈ FT . We then obtain

E1AG2
k = 〈1AGk, Gk〉

= lim
m

〈
1AGk,

∂ϕnm

∂xk
(F )

〉

= E1AGk
∂ϕnm

∂xk
(F )

≤ K1A|Gk|.

This shows in particular that G2
k ≤ K|Gk| almost surely, and therefore |Gk| ≤ K

almost surely. Now, for any bounded element X of L2(Π), we find

〈
X,

∂ϕnm

∂xk
(F )DFk −GkDFk

〉
=

〈
X,

(
∂ϕnm

∂xk
(F )−Gk

)
DFk

〉

= E

(∫ T

0

X(t)
(

∂ϕnm

∂xk
−Gk

)
DFk(t) dt

)

= E

(∫ T

0

X(t)DFk(t) dt

) (
∂ϕnm

∂xk
−Gk

)
.

Since X is bounded and DFk ∈ L2(Π), we conclude by Jensen’s inequality that∫ T

0
X(t)DFk(t) dt ∈ L2(FT ). By the weak convergence of ∂ϕnm

∂xk
to Gk, the above

therefore tends to zero. We may now conclude, still letting X ∈ L2(Π) be bounded,

〈
X, Dϕ(F )−

n∑

k=1

GkDFk

〉
= lim

m

〈
X,

n∑

k=1

∂ϕnm

∂xk
(F )DFk −

n∑

k=1

∂ϕnm

∂xk
(F )DFk

〉
= 0.

Since the bounded elements of L2(Π) are dense, by Lemma A.6.2 and A.6.13, we
conclude Dϕ(F ) =

∑n
k=1 GkDFk. This proves the theorem.

This concludes our exposition of this Malliavin calculus. In the final next section, we
give a survey of the further theory of the Malliavin calculus.
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4.5 Further theory

Our description of the Malliavin calculus in the preceeding sections only covers the
basics of theory, and is in fact quite inadequate for applications. We will now describe
some of the further results of the theory and outline the main theoretical areas where
Malliavin calculus finds application. All of these areas are covered in more or less
detail in Nualart (2006).

The Skorohod integral. The largest omission in our exposition is clearly that of
the Skorohod integral. The Skorohod integral δ is defined as the adjoint operator of
the Malliavin derivative D. This is a linear operator defined on a dense subspace S1,2

of L2(Π) mapping into L2(FT ), characterised by the duality relationship

〈F, δu〉FT
= 〈DF, u〉Π

for any u ∈ S1,2. The existence of such an operator follows from the closedness of
D combined with Lemma 19.2 and Proposition 19.5 of Meise & Vogt (1997). The
Skorohod integral has two extremely important properties which connect it to the
theory of stochastic integration. First off, if u ∈ L2(Π) is progressively measurable, it
holds that

δ(u) =
∫ T

0

us dWs,

where the integral on the right is the ordinary Itô stochastic integral. This justifies the
name “Skorohod integral” for δ, and shows that the Skorohod integral is an extension
of the Itô stochastic integral. Inspired by this fact, we will use the notation

∫ T

0
usδWs

for δ(u). The second important property is as follows. Writing DtF = (DF )t, if u

is such that ut ∈ D1,2 for all t ≤ T and such that there is a measurable version of
(t, s) 7→ Dtus and a measurable version of

∫ T

0
DtusδWs, then

Dt

∫ T

0

usδWs =
∫ T

0

DtusδWs + ut.

In the case where u is progressively measurable, this shows how to differentiate a
general Itô stochastic integral.

The properties of the Skorohod integral are usually investigated through the Itô-Wiener
expansion, which is a series expansion for variables F ∈ L2(FT ). The basic content
of the expansion is, with ∆n = {t ∈ [0, T ]n|t1 ≤ · · · ≤ tn}, that there exists square-
integrable deterministic functions fn on ∆n such that

F =
∞∑

n=0

n!
∫ T

0

∫ tn

0

· · ·
∫ t3

0

∫ t2

0

fn(t) dW (t1) · · · dW (tn),
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where the convergence is in L2. Expanding a process on [0, T ] in this manner, one may
then identify a necessary and sufficient criterion on the mappings fn to ensure that the
process is adapted. This can be used to prove the relationship between the Skorohod
integral and the Itô integral. All of this is described in Section 1.3 of Nualart (2006).

Differentiation of SDEs. Being a stochastic calculus, it seems obvious that the
Malliavin calculus should yield useful results when applied to the theory of stochastic
differential equations. The main result on this topic is described in Section 2.2 of
Nualart (2006) and basically states that under suitable regularity conditions, when
taking the Malliavin derivative of the solution to a stochastic differential equation,
interchange of differentiation and integration is allowed. This result is of fundamental
importance to the applications in financial mathematics.

Regularity of densities. The Malliavin calculus can also be used to give abstract
criteria for when a random variable possesses a density with respect to the Lebesgue
measure, and criteria for when such a density possesses some degree of smoothness.
This is shown in Section 2.1 of Nualart (2006). The basic results are Theorem 2.1.1
and Theorem 2.1.4, yielding sufficient criteria in terms of the Malliavin derivatives
of a vector variable for the existence and smoothness of a density with respect to
the Lebesgue measure. A further important result is found as Theorem 2.3.3, giving
a sufficient criterion for the solution of a stochastic differential equation to have a
smooth density.

4.6 Notes

We will in this section review our results and compare them to other accounts of the
same results in the theory.

Our exposition of the theory is rather limited in its reach, striving primarily for rigor
and detail. The theory is based almost entirely on Section 1.1 and Section 2.1 of
Nualart (2006). Nualart (2006) does not always provide many details, so the virtue
of our results is mostly the added detail. The main difficulties has been to provide
details of the chain rule of Theorem 4.3.1 and the relations between the orthogonal
decompositions of L2(FT ) and L2(Π), culminating in the proof of Theorem 4.4.21.
Further work has gone into the extension of the chain rule given in Theorem 4.3.5,
which hopefully will be useful in the later development of the theory.
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The Malliavin calculus is a relatively young theory, originating in the 1970s, and even
though the recent applications in finance such as the results in Fournié et al. (1999)
seem to have motivated an increase in production of material related to the theory,
there are still quite few sources for the theory.

The most well-known book on the Malliavin calculus is Nualart (2006), which as noted
has been the fundamental source for all of the theory described in this chapter. Other
books on the topic are Bell (1987), Bass (1998), Malliavin (1997) and Sanz-Solé
(2005).

In general, these books are all, to put it bluntly, either not very rigorous or somewhat
inaccessible. Nualart (2006) is clearly the best exposition of these, but is still difficult
compared to the literature available for, say, stochastic integration. We will now
discuss the merits and demerits of each book.

The book by Bell (1987) is very small, and in general either defers proofs to other
works or only gives sketches of proofs, making it difficult to use as an introduction.
The book Bass (1998) does not have the Malliavin calculus as its main topic, and
only spends the final chapter exploring it. Considering this, it cannot be blamed for
not developing the theory in detail. Still, it is not useful as an introductory work.

The work Sanz-Solé (2005) looks very useful at a first glance, with a nice layout and
a seemingly pedagogical introduction. However, it also defers many proofs to other
books and often entirely skips proofs. This work cannot be recommended as an good
introduction either.

Another work on the Malliavin calculus is Malliavin (1997). This book is not only
about the Malliavin calculus, but touches upon a good deal of different topics. In any
case, the main problem with the book is that it is so impressively abstract that it
seems almost made to be incomprehensible on purpose.

This leaves Nualart (2006). While it, as noted earlier, is not very accessible, it is
clearly superior to the other books. It is cast in a modern manner, and does not make
the theory unnecessarily abstract. Our account differs from that one by considering a
one-dimensional Brownian motion instead of what is known as an isonormal gaussian
process. The approach based on isonormal processes restricts the theory to the context
of Hilbert spaces. This would make the introductory results of Section 4.2 prettier,
but would also make motivation for the definitions more difficult to comprehend.
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In general, what makes the book difficult is that it very often omits a great deal of
detail. This scope of these omissions can be estimated by noting that the theory which
have been developed in 40 pages here and at least 15 pages more in the appendix is
developed in only 10 pages in Nualart (2006).

Complementing these books, there are also notes available on the internet documenting
the Malliavin calculus. Some of these are Zhang (2004), Bally (2003), Friz (2002)
and Øksendal (1997). Of these, only Øksendal (1997) is useful.

The notes Bally (2003) and Friz (2002) are very easy to identify as useless. Both
engage in what best can be described as some sort of mathematical name-dropping,
often invoking Sobolev spaces, distribution theory and other theories, without these
invocations ever resulting in any actual proofs. Furthermore, proofs are in general
heuristic or omitted. Zhang (2004) at a first glance looks very good. As with Sanz-
Solé (2005), the layout is professional and the author quickly obtains an air of having
a good overview of the theory. However, on closer inspection most of the proofs have
conspicuously similar levels of detail as in Nualart (2006), thereby not really adding
anything new.

The final note we discuss is Øksendal (1997). This is by far the most accessible text
available on the Malliavin calculus. It develops the theory in manner very different
from Nualart (2006), basing the definition of the Malliavin derivative and Skorohod
integral directly on the Wiener-Itô expansion. The proofs are in general given in detail
and are very readable. Unfortunately, the note is short and does not cover so much
of the theory, so at some point one has to revert to other works. However, as an
introduction, it is most definitely very useful.

Complementing these works is the forthcoming book Di Nunno et al. (2008). It
extends the theory of the Malliavin calculus to processes other than Brownian motion,
but does also cover the Brownian case in detail. Even though the final work here
is based on Nualart (2006), Di Nunno et al. (2008) has been invaluable as a first
introduction, both to the Malliavin calculus in general and also for the applications to
finance, because of its high level of detail and readability.
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Chapter 5

Mathematical Finance

In this chapter, we will develop the theory of arbitrage pricing for a very basic class
of models for financial markets. Our goals is to find sufficient criteria for the markets
to be free of arbitrage, to apply these criteria to some simple models and to show how
to calculate prices and sensitivities in these models.

For ease of notation, we will in general use the shorthand dXt = µ dt + σ dWt for
Xt = X0 +

∫ t

0
µt dt +

∫ t

0
σt dWt for some X0.

5.1 Financial market models

We work in the context of a filtered probability space (Ω,F , P,Ft) with a n-dimensional
Ft Brownian motion W . We assume that the usual conditions hold, in particular we
assume that Ft is the usual augmentation of the filtration generated by W . Further-
more, we assume that F = F∞ = σ(∪t≥0Ft).

We begin by defining the fundamental building blocks of what will follow. We will
assume given a one-dimensional stochastic short rate process r and define the risk-
free asset price process B as the solution to dBt = rtBt dt with B0 some positive
constant, equivalent to putting Bt = B0 exp(

∫ t

0
rs ds). We furthermore assume given

m financial asset price processes (S1, . . . , Sm), which we assume to be nonnegative
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standard processes.

Together, the short rate, the risk-free asset price process and the financial asset price
processes define a financial market model M. In this market, a portfolio strategy is a
pair of locally bounded progressive processes h = (h0, hS), where h0 is one-dimensional
and hS is m-dimensional. The interpretation is that h0(t) denotes the number of units
held at time t in the risk-free asset B, and hS

k (t) denotes the number of units held
at time t in the k’th risky asset Sk. To a given portfolio strategy, we associate the
value process V h, defined by V h(t) = h0(t)B(t) +

∑m
k=1 hS

k (t)Sk(t). We say that h is
admissible if V h is nonnegative. We say that the portfolio h is self-financing if it holds
that

dV h(t) = h0(t) dB(t) +
m∑

k=1

hS
k (t) dSk(t).

Here, the integrals are always well-defined because h is assumed to be locally bounded
and progressive. The above essentially means that the change in value in the portfolio
only comes from profits and losses in the portfolio, there is no exogenous intake or
outtake of wealth. That this is the correct criterion for no exogenous infusions of
wealth is not as obvious as it may seem. It is important that we are using the Itô
integral and not, say, the Stratonovich integral. For an argument showing that the Itô
integral yields the correct interpretation, see Chapter 6 of Björk (2004) and compare
with the Riemann approximations for the Itô and Stratonovich integrals of Lemma
IV.47.1 and Lemma IV.47.3 in Rogers & Williams (2000b).

We are now ready to make the central definition of this section, the notion of an
arbitrage opportunity.

Definition 5.1.1. We say that an admissible and self-financing portfolio is an arbi-
trage opportunity at time T if the value process V h satisfies V h

0 = 0, P (V h
T ≥ 0) = 1

and P (V h
T > 0) > 0. If a market M contains no arbitrage opportunities at time T , we

say that it is T -arbitrage free. If a market contains no arbitrage opportunities at any
time, we say that it is arbitrage free.

Comment 5.1.2 The notion of being arbitrage free is the basic requirement for a
market to be realistic. It it reasonable to state that most real-world markets are
arbitrage-free most of the time. Therefore, if we are considering a market which has
arbitrage, we are some distance away from anything useful for real-world modeling.

The three requirements for h to constitute an arbitrage opportunity can be put in
words as:
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1. It must be possible to enter the strategy without cost.

2. The strategy should never result in a loss of money.

3. The stragegy should have a positive probability of resulting in a profit.

Note that for a portfolio to be an arbitrage opportunity, it must be both self-financing
and admissible. Clearly, a portfolio satisfying the three requirements above but which
is not self-financing does not say anything about whether our market is realistic, anyone
can generate a sure profit if exogenous money infusions are allowed. The reason we
also require admissibility is to rule out possibilities for “doubling schemes” - borrowing
money until a profit turns out. For more on doubling schemes, see Steele (2000),
Section 14.5 or Example 1.2.3 of Karatzas & Shreve (1998). ◦

We are interested in finding a sufficient criterion for a market to be arbitrage free.
To formulate our main result on this, we first need to introduce the concept of a
normalized market. Given our financial instrument vector S and the risk-free asset B,
we define the normalized instruments by S′k(t) = Sk(t)

B(t) . The instruments S′k can be
thought of as the discounted versions of Sk.

Lemma 5.1.3. S′k is a standard process with the dynamics

dS′k(t) =
1

B(t)
dSk(t)− S′k(t)r(t) dt.

Proof. Since B is positive, we can use Itô’s lemma in the form of Corollary 3.6.4 on
the C2(R2 \ {0}) mapping (x, y) 7→ x

y and obtain

dS′k(t) =
1

B(t)
dSk(t)− Sk(t)

B(t)2
dB(t)− 1

2B(t)2
d[Sk, B]t +

Sk(t)
B(t)3

d[B]t

=
1

B(t)
dSk(t)− Sk(t)

B(t)2
r(t)B(t) dt

=
1

B(t)
dSk(t)− S′k(t)r(t) dt,

as desired.

Lemma 5.1.3 shows that the processes S′ = (S′1, . . . , S
′
m) also describe financial in-

struments in the sense introduced earlier in this section, the processes are nonnegative
standard processes. In particular, we can consider the normalized market consisting
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of a trivial risk-free asset B′ = 1 and the normalized instruments S′. Our next lemma
shows that to check arbitrage for the general market, it will suffice to consider the
normalized market.

Lemma 5.1.4. The market with instruments S and risk-free asset B is T -arbitrage
free if the normalized market with instruments S′ and risk-free asset B′ = 1 is T -
arbitrage free.

Proof. Assume that the normalized market is free of arbitrage at time T . Let the
portfolio h = (h0, hS) be an arbitrage opportunity at time T for the original market.
We will work to obtain a contradiction. Let V h

S be the value process when considering
h as a portfolio strategy for the original market. Let V h

S′ be the value process when
considering h as a portfolio strategy for the normalized market. Our goal is to show
that the portfolio h also is an arbitrage under the normalized market.

We first examine V h
S′ . Note that since B′ = 1, we obtain

V h
S′(t) = h0(t) +

m∑

k=1

hS
k (t)S′k(t) =

1
B(t)

(
h0(t)B(t) +

m∑

k=1

hS
k (t)Sk(t)

)
=

V h
S (t)
B(t)

.

In particular, since B is positive, we find that V h
S′ is nonnegative, so h is admissible

under the normalized market. To show that it is self-financing, we use Itô’s lemma
and Lemma 5.1.3 to obtain

dV h
S′(t) =

1
B(t)

dV h
S (t)− V h

S (t)
B(t)2

dB(t)− 1
2B(t)2

d[V h
S , B]t +

V h
S (t)

B(t)3
d[B]t

=
1

B(t)
h0(t) dB(t) +

1
B(t)

m∑

k=1

hS
k (t) dSk(t)− V h

S′(t)
B(t)

dB(t)

=
1

B(t)

m∑

k=1

hS
k (t) dSk(t)− 1

B(t)
(
V h

S′(t)− h0(t)
)

dB(t)

=
1

B(t)

m∑

k=1

hS
k (t) dSk(t)−

m∑

k=1

hS
k (t)S′k(t)r(t) dt

=
m∑

k=1

hS
k (t) dS′k(t),

so h is self-financing under the normalized market. It remains to show that h is
an arbitrage opportunity under the normalized market. Since h is an arbitrage for
the original market, V h

S (0) = 0, P (V h
S (T ) ≥ 0) = 1 and P (V h

S (T ) > 0) > 0. Now
note that since B(t) > 0 for all t ≥ 0, we obtain V h

S′(0) = 0, P (V h
S′(T ) ≥ 0) = 1
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and P (V h
S′(T ) > 0) > 0. We conclude that h is an arbitrage opportunity under the

normalized market. Since this market was assumed arbitrage free, we have obtained a
contradiction and must conclude that the original market is arbitrage free.

Next, we prove our main results for a market to be free of arbitrage. The theorem
below is the primary criterion, with its corollaries giving criteria for special cases which
are easier to check in practice. We say that a proces M is a local martingale on [0, T ]
if there exists a localising sequence τn such that Mτn is a martingale on [0, T ] for each
n.

Theorem 5.1.5. Let T > 0. If there exists a probability measure Q equivalent to
P such that each instrument of the normalized market is a local martingale on [0, T ]
under Q, then M is arbitrage-free at time T .

Proof. By Lemma 5.1.4, it will suffice to show that the normalized market is arbitrage
free at time T . Therefore, assume that h is an arbitrage opportunity at time T under
the normalized market with value process V h

S′ , we will aim to obtain a contradiction.
Let Q be the probability measure equivalent to P which makes S′k a local martingale
on [0, T ] for any k ≤ m. By definition of an arbitrage opportunity, we know

V h
S′(0) = 0,

P (V h
S′(T ) ≥ 0) = 1,

P (V h
S′(T ) > 0) > 0.

Since P and Q are equivalent, we also have Q(V h
S′(T ) ≥ 0) = 1 and Q(V h

S′(T ) > 0) > 0.
In particular, EQV h

S′(0) = 0 and EQV h
S′(T ) > 0. We will argue that h cannot be an

arbitrage opportunity by showing that V h
S′ is a supermartingale on [0, T ] under Q,

contradicting that EQV h
S′(0) < EQV h

S′(T ).

Under the normalized market, the price of the risk-free asset is constant, so we find
dV h

S′(t) =
∑m

k=1 hS
k (t) dS′k(t). Now, since P and Q are equivalent, S′k is a standard

process under Q according to Theorem 3.8.4. Because h is locally bounded, h is
integrable with respect to S′k both under P and Q, and Lemma 3.8.4 then yields that
the integrals are the same whether under P or Q.

Under Q, each S′k is a continuous local martingale on [0, T ]. Therefore, the Q stochastic
integral process

∑n
k=1

∫ t

0
hS

k (s) dS′k(s) is a continuous local martingale on [0, T ] under
Q. Under P , the stochastic integral process

∑n
k=1

∫ t

0
hS

k (s) dS′k(s) is equal to V h
S′(t).
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Since the integrals agree, as noted above, we conclude that V h
S′ is a continuous local

martingale on [0, T ] under Q. Because h is admissible, V h
S′ is nonnegative. Thus,

under Q, V h
S′ is a nonnegative continuous local martingale on [0, T ]. Using the same

argument as in the proof of Lemma 3.7.2, V h is then a Q supermartingale on [0, T ]. In
particular, EQV h

S′(t) is decreasing on [0, T ], in contradiction with our earlier conclusion
that EQV h

S′(0) < EQV h
S′(T ). Therefore, there can exist no arbitrage opportunities in

the normalized market. The result follows.

Comment 5.1.6 Note that it was our assumption that h is locally bounded which
ensured that the integral of h both under P and Q was well-defined. This is the
reason why we in our definitions have chosen only to consider locally bounded portfolio
strategies. The equivalent probability measure in the theorem making each instrument
of the normalized market a local martingale on [0, T ] is called an equivalent local
martingale measure for time T , or a T -EMM. ◦

The next two corollaries provide sufficient criteria for being arbitrage-free in the spe-
ciale case of a linear financial market, which we now define.

Definition 5.1.7. A financial market is said to be linear if each Sk has dynamics

dSk(t) = µk(t)Sk(t) dt +
n∑

i=1

σki(t)Sk(t) dW i(t)

where σki ∈ L2(W ), µk ∈ L1(t), and Sk(0) is some positive constant. Here, µ is known
as the drift vector process and σ is the volatility matrix process.

By Lemma 3.7.1, the price processes in a linear market has the explicit form

Sk(t) = Sk(0) exp

(∫ t

0

µk(s) ds +
n∑

i=1

∫ t

0

σki(s) dW i
s −

1
2

n∑

i=1

∫ t

0

σ2
ki(s) ds

)
,

unique up to indistinguishability. In particular, S is nonnegative, so it actually defines
a financial market in the sense introduced earlier.

Corollary 5.1.8. Assume that the market is linear and that there exists a process λ in
L2(W )n such that µk(t)− r(t) =

∑n
i=1 σki(t)λi(t) for any k ≤ m, λ⊗P almost surely.

Assume further that with Mt = −∑n
i=1

∫ t

0
λi(s) dW i

s , E(M) is a martingale. Then
the market is free of arbitrage, and there is a T -EMM Q such that the Q-dynamics on
[0, T ] are given by dSk(t) = r(t)Sk(t) dt +

∑n
i=1 σki(t)Sk(t) dW

i
(t), where W is a Ft

Brownian motion under Q.



5.1 Financial market models 185

Proof. We will use Theorem 5.1.5. Let T > 0 be given. Since E(M) is a martingale
and E(MT ) = E(M)T , we obtain EE(MT )∞ = EE(M)T = 1. Recalling that F = F∞,
we can then define the measure Q on F by Q(A) = EP 1AE(MT )∞. Since E(MT )∞
is almost surely positive and has unit mean, P and Q are equivalent. Now, with
Y i

t = −λi(t)1[0,T ](t), we obtain MT = Y ·W . Therefore, by the Girsanov Theorem of

Theorem 3.8.3, we can define W by W
k

t = W k
t +

∫ t

0
λk(s)1[0,T ](s) ds and obtain that

W is an Ft Brownian motion under Q.

We claim that under Q, S′k is a local martingale on [0, T ]. To this end, we note that,
using Lemma 5.1.3,

S′k(t)− S′k(0)

=
∫ t

0

(µk(s)− r(s))S′k(s) ds +
n∑

i=1

∫ t

0

σki(s)S′k(s) dW i
s

=
∫ t

0

(
(µk(s)− r(s)−

n∑

i=1

σki(s)λi(s)1[0,T ](s)

)
S′k(s) ds +

n∑

i=1

∫ t

0

σki(s)S′k(s) dW
i

s

=
∫ t

0

(µk(s)− r(s))1(T,∞)(s)S′k(s) ds +
n∑

i=1

∫ t

0

σki(s)S′k(s) dW
i

s,

where we have used that
∑n

i=1 σki(s)λi(s)1[0,T ](s) = (µk(s) − r(s))1[0,T ](s). Letting
τn be a determining sequence making the latter integral above into a martingale, it is
then clear that (S′k)τn is a martingale on [0, T ] under Q. Thus, S′k is a local martingale
on [0, T ] under Q, so Q is a T -EMM. By Theorem 5.1.5, the market is free of arbitrage.
Using the proof technique of Lemma 5.1.3, we find that the Q-dynamics of Sk on [0, T ]
are

dSk(t) = B(t) dS′k(t) + Sk(t)r(t) dt

=
n∑

i=1

σki(t)Sk(t) dW
i

k + Sk(t)r(t) dt,

as desired.

Comment 5.1.9 In the above, our assumption that F = F∞ became important. Had
we not known that F = F∞, we would only have obtained a measure on F∞ equivalent
to the restriction of P to F∞, and not a measure on all of F .

The equation µk(t)−r(t) =
∑n

i=1 σki(t)λi(t) is called the market price of risk equations,
and any solution λ is known as a market price of risk specification for the market. In
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the one-dimensional case, we have a unique solution λt = µt−rt

σt
, showing that λ can

be interpreted as the excess return per volatility. Therefore, λ can in an intuitive sense
be said to measure the price of uncertainty, or risk, in the market. ◦
Corollary 5.1.10. Assume that the market is linear and only has one asset. Let
µ denote the drift and let σ denote the volatility. Assume that the drift and short
rate are constant, and that σ is positive λ ⊗ P almost surely. If there is k ≤ n such
that E exp( (µ−r)2

2

∫ t

0
1

σk(s)2 ds) is finite for any t ≥ 0, the market is free of arbitrage,
and there is a T -EMM such that the Q-dynamics on [0, T ] are given on the form
dSk(t) = r(t)Sk(t) dt +

∑n
i=1 σki(t)Sk(t) dW

i
(t), where W is a Ft Brownian motion

under Q.

Proof. We want to solve the market price of risk equations of Corollary 5.1.8. Since
we only have one asset, they reduce to

µ− r =
n∑

i=1

σi(t)λi(t).

Let k be such that E exp( (µ−r)2

2

∫ t

0
1

σk(s)2 ds) is finite for any t ≥ 0. To simplify, we
define λi = 0 for i 6= k. We are then left with the equation µ − r = σk(t)λk(t).
Let A denote the subset of [0,∞) × Ω where σ is positive. Since σ is progressive,
A ∈ Σπ. Defining λk(t, ω) = µ−r

σk(t,ω) whenever (t, ω) ∈ A and zero otherwise, λ

satisfies the equations in the statement of Corollary 5.1.8. By that same corollary,
in order for the market to be arbitrage free, it will then suffice to show that with
Mt = −∑n

i=1

∫ t

0
λi(s) dW i

s , E(M) is a martingale, and to do so it will suffice to show
that E(M t) is a uniformly integrable martingale for any t ≥ 0. By the Novikov criterion
of Theorem 3.8.10, this is the case if E exp(1

2 [M t]∞) is finite for any t ≥ 0. But we
have

E exp
(

1
2
[M t]∞

)
= E exp

(
1
2
[M ]t

)

= E exp
(

1
2

∫ t

0

λk(s)2 ds

)

= E exp
(

(µ− r)2

2

∫ t

0

1
σk(s)2

ds

)
,

so that the Novikov criterion is satisfied follows directly from our assumptions. The
existence of a Q measure with the given dynamics then follows from Corollary 5.1.8.

We are now done with exploring sufficient criteria for no-arbitrage. Next, we consider
pricing of claims in markets without arbitrage. For T > 0, we define a T -claim as a
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FT measurable, integrable variable X. The intuition behind this is that the owner of
the claim receives the amount X at time T . Our goal is to argue for a reasonable price
of this contract at t ≤ T . We will not be able to do this in full generality, but will
only consider markets satisfying the criterion of Theorem 5.1.5. As discussed in the
notes, this actually covers all arbitrage-free markets, but we will not be able to show
this fact.

Theorem 5.1.11. Let T > 0 and consider a market with a T -EMM Q. Let X be any
T -claim. Assume that X ≥ 0 and define

Sm+1(t) = EQ

(
B(t)
B(T )

X

∣∣∣∣Ft

)
1[0,T ](t) +

B(t)
B(T )

X1(T,∞)(t).

The market with instruments (S1, . . . , Sm+1) is free of arbitrage at time T .

Proof. We first argue that (S1, . . . , Sm+1) is a well-defined financial market. Under Q,
S′m+1 is obviously a martingale. Since we are working under the augmented Brownian
filtration, it has a continuous version. Since X is nonnegative, S′m+1(t) is almost surely
nonnegative for ant t ≥ 0, and therefore there is a version of S′m+1 which is nonnegative
in addition to being continuous. Thus, S′m+1 is a nonnegative standard process under
Q. Therefore, Sm+1 is also a nonnegative standard process under Q, and so it is a
standard process under P . Finally, we conclude that (S1, . . . , Sm+1) defines a financial
market.

Under Q, each of the instruments S′1, . . . , S
′
m are local martingales on [0, T ]. Since

S′m+1 trivially is a martingale on [0, T ] under Q, Theorem 5.1.5 yields that the market
with instruments (S1, . . . , Sm+1) is free of arbitrage at time T .

Comment 5.1.12 The somewhat cumbersome form of Sm+1, splitting up into a part
on [0, T ] and a part on (T,∞), is an artefact of considering markets with infinite
horizon. ◦

What Theorem 5.1.11 shows is that for any nonnegative claim, using EQ( B(t)
B(T )X|Ft)

as the price for the claim X for t ≤ T is consistent with no arbitrage in the market
where the claim is traded. And since EQ(B(T )

B(T )X|FT ) = X, buying the asset with price

process EQ( B(t)
B(T )X|Ft) actually corresponds to buying the claim, in the sense that at

the time of expiry T , one owns an asset with value X. Assuming that prices are linear,
we conclude that a reasonable price for any T -claim for t ≤ T is EQ( B(t)

B(T )X|Ft), where
Q is a T -EMM.
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We are now done with our discussion of general financial markets. Our results are the
following. We have in Theorem 5.1.5 obtained general criteria for a market to be free
of arbitrage, and we have obtained specialised criteria for the case of linear markets in
the corollaries. Afterwards, we have shortly argued, based on the result of Theorem
5.1.11, what a reasonable price of a contingent claim should be modeled as. Note that
lack of uniqueness of T -EMMs can imply that the price of a T -claim is not uniquely
determined. This will not bother us particularly, however.

We will now proceed to discuss the practical matter of calculating the prices and
sensitivities associated with contingent claims. We will begin by a very short review
of some basic notions from the theory of SDEs and afterwards proceeed to go through
some methods for Monte Carlo evaulation of prices and sensitivities. Having done so,
we will apply these techniques to the Black-Scholes and Heston models.

5.2 Stochastic Differential Equations

We will review some fundamental definitions regarding SDEs of the form

dXk
t = µk(Xt) dt +

n∑

i=1

σki(Xt) dW i
t ,

where X0 is constant, k ≤ m, W is a n-dimensional Brownian motion and the mappings
µ : Rm → Rm and σ : Rm → Rm×n are measurable. We also consider a deterministic
initial condition x ∈ Rm. We write the SDE in the shorthand

dXt = µ(Xt) dt + σ(Xt) dWt,

the underlying idea being that the m-vector µ(Xt) is being multiplied by the scalar
dt, yielding a new m-vector, and the m × n matrix σ(Xt) is begin multiplied by the
n-vector dWt, yielding a m-vector, so that we formally obtain




dX1
t

...
dXm

t


 =




µ1(Xt)
...

µm(Xt)


 dt +




σ11(Xt) · · · σ1n(Xt)
...

...
σm1(Xt) · · · σmn(Xt)







dW 1
t

...
dWn

t




=




µ1(Xt) dt +
∑n

i=1 σ1i(Xt) dW i
t

...
µm(Xt) dt +

∑n
i=1 σmi(Xt) dW i

t


 ,
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in accordance with our first definition of the SDE.

Analogously with the conventions for linear markets in Section 5.1, µ is called the drift
coefficient and σ is called the the volatility coefficient. We define a set-up as a filtered
probability space (Ω,F , P,Ft) satisfying the usual conditions and being endowed with
a Ft Brownian motion W . We say that the SDE has a weak solution if there for any
set-up exists a m-dimensional standard process X satisfying the SDE. We say that the
SDE satisfies uniqueness in law if any two solutions on any two set-ups have the same
distribution. We say that the SDE satisfies pathwise uniqueness if any two solutions
on the same set-up are indistinguishable.

Furthermore, we say that the SDE has a strong solution if there exists a mapping
F : Rm × C([0,∞),Rn) such that for any set-up with Brownian motion W and any
x ∈ Rm, the process Xx = F (x,W ) solves the SDE with initial condition x. We call
F a strong solution of the SDE. If the SDE satisfies pathwise uniqueness, F (x, ·) is
almost surely unique when C([0,∞)×Rn) is endowed with the Wiener measure. When
the SDE has a strong solution F , we can define the flow of the solution as the mapping
φ : Rm×C([0,∞),Rn)× [0,∞) → Rm given by φ(x,w, t) = F (x,w)t. We say that the
flow is differentiable if the mapping φ(·, w, t) is differentiable for all w and t.

This concludes our review of fundamental notions for SDEs.

5.3 Monte Carlo evaluation of expectations

As we saw in the first section of this chapter, an arbitrage-free price of a contingent
T -claim is given as a discounted expected value under the Q-measure. The problem of
evaluating prices can therefore be seen as a special case of the problem of evaluating
expectations. As we shall see, the same is the case for the problem of evaluating
sensitivities of prices to changes in the model parameters. For this reason, we will
now review some basic Monte Carlo methods for evaluating expectations. Our basic
resource is Glasserman (2003), in particular Chapter 4 of that work.

Throughout the section, consider an integrable stochastic variable X. Our goal is to
find the expectation of X. The basis for the Monte Carlo methods of evalutating
expectations is the strong law of large numbers, stating that if (Xn) is a sequence of
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independent variables with the same distribution as X, then

1
n

n∑

k=1

Xk
a.s.−→ EX,

This means that if we can draw a sequence of independent numbers sampled from the
distribution of X and take their average, the result should approach the expectation of
X as the number of samples tend to infinity. Furthermore, we can measure the speed
of convergence by the variance,

V

(
1
n

n∑

k=1

Xk

)
=

1
n2

n∑

k=1

V Xk =
1
n

V X.

In reality, we can of course not truly draw independent random numbers, we are only
able to generate “pseudorandom” sequences, numbers which behave randomly in some
suitable sense. We will not discuss the implications of this observation, mostly because
the pseudorandom number generators available today are of sufficiently high quality
to ensure that the topic is of little practical significance. For more information on the
fundamentals of generating random numbers, see Chapter 2 of Glasserman (2003).

The methods which we will concentrate upon are how the basic application of the law
of large numbers can be modified to speed up the convergence to the expectation, in
the sense of reducing the variance calculated above. The methods we will consider are,
ordered by increased potential efficiency improvement:

1. Antithetic sampling.

2. Control variates.

3. Stratified sampling.

4. Importance sampling.

Antithetic sampling. The idea behind antithetic sampling is to even out deviations
from the sample mean in the i.i.d. sequence. As before, we let (Xn) be an i.i.d.
sequence with the same distribution as X. Let (X ′

n) be another sequence, and assume
that the sequence (Xn, X ′

n) is also i.i.d. Assume furthermore that EX ′
n = EXn.

Thus, the pairs are independent, and each marginal in any pair has the mean EX,
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it is however possible that Xn and X ′
n are dependent, in fact such dependence is the

very idea of antithetic sampling. We then find

1
2n

(
n∑

k=1

Xk +
n∑

k=1

X ′
k

)
=

1
2

(
1
n

n∑

k=1

Xk +
1
n

n∑

k=1

X ′
k

)
a.s.−→ EX.

Thus, sampling from each sequence and averaging yields a consistent estimator of the
mean. If the samples from X ′

k on average are larger than the mean when the samples
from Xk are smaller than the mean and vice versa, we could hope that this would even
out deviations from the mean and improve convergence. To make this concrete, let X ′

be such that (X, X ′) has the common distribution of (Xn, X ′
n). We then obtain

V

(
1
2n

(
n∑

k=1

Xk +
n∑

k=1

X ′
k

))
=

1
n2

n∑

k=1

V

(
Xk + X ′

k

2

)

=
1
n2

n∑

k=1

1
4

(2V Xk + 2Cov(Xk, X ′
k))

=
1
2n

V X +
1
2n

Cov(X, X ′).

The first term is the usual Monte Carlo estimator variance. Thus, we see that antithetic
sampling can reduce variance if Cov(X, X ′) is negative, precisely corresponding to the
values of X ′

k on average being larger than the mean when the values of Xk are smaller
than the mean and vice versa.

As a simple example of antithetic sampling, let us assume that we wanted to calculate
the second moment of the unit uniform distribution by antithetic sampling. We would
need to identify a two-dimensional distribution (X, X ′) such that X and X ′ both have
the means of the the second moment of the uniform distribution and are negatively
correlated. A simple possibility would be to let U be uniformly distributed and define
X = U2 and X ′ = (1 − U)2. X and X ′ are then both distributed as the squares
of uniform distributions. We would intuitively expect X and X ′ to be negatively
correlated, since large values of X corresponds to large values of U , corresponding to
small values of X ′. In this case, we can check that this is actually true, since

Cov(X, X ′) = Cov(U2, (1− U)2) = − 1
12

.

In practice, we would therefore consider a sequence (Un) of uniform distributions and
construct the expectation estimator

1
2n

(
n∑

k=1

U2
k +

n∑

k=1

(1− Uk)2
)

,
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which would be a consistent estimator of the mean, and its variance would be, since
V U2 = 4

45 , 1
2n

(
4
45 − 1

12

)
. The is an improvement over the ordinary Monte Carlo es-

timator of a factor 4
45 ( 4

45 − 1
12 )−1 = 16. This means that for any n, the antithetic

estimator would have a standard deviation four times smaller than the ordinary es-
timator. Usually, the efficiency boost of antithetic sampling is not much larger than
this, actually it is usually somewhat more modest. However, whenever we are con-
sidering random variables based on distributions with some kind of symmetry, such
as the uniform distribution or the normal distribution, antithetic sampling is easy to
implement and almost always provides an improvement. There is therefore rarely any
reason not to use antithetic sampling in such situations.

Control variates. Like antithetic sampling, the method of control variates operates
by attempting to balance samples which are below or above the true expectation by
correlation considerations. Instead of adding an extra sequence of variables with the
same mean as the original sequence, however, the method of control variates adds an
extra sequence of variables with some known mean which is not necessarily the same
as the mean of X.

Therefore, let X ′ be some variable with known mean, possibly correlated with X.
Suppose that the sequence (Xn, X ′

n) is i.i.d. with the common distribution being the
same as that of (X,X ′). With b ∈ R, We can then consider the estimator

1
n

(
n∑

k=1

Xk − b

n∑

k=1

(X ′
k − EX ′)

)
.

The law of large numbers applies to show that this yields a consistent estimator. The
idea behind the estimator is that if Xk and X ′

k are correlated, we can choose b such
that the deviations from the mean of Xk are evened out by the deviations from the
mean of X ′

k. In the case of positive correlation, this would mean choosing a positive
b, since large values of Xk then would be offset by large values of X ′

k and vice versa.
Likewise, in the case of negative correlation, we would expect that choosing a negative
b would yield the best results. We call X ′

k the control variate.

We will now analyze the variance of the control variate estimator. We find

V

(
1
n

(
n∑

k=1

Xk − b

n∑

k=1

(X ′
k − EX ′)

))
=

1
n2

n∑

k=1

V (Xk − b(X ′
k − EX ′))

=
1
n

(V Xk + b2V (X ′
k)− 2bCov(Xk, X ′

k))

=
1
n

V X +
1
n

(
b2V X ′ − 2bCov(X,X ′)

)
.



5.3 Monte Carlo evaluation of expectations 193

The first term is the variance of the ordinary Monte Carlo estimator. If the control
variate estimator is to be useful, the second term must be negative, corresponding to
b2V X ′−2bCov(X, X ′) < 0. To find out when we can make sure this is the case, we first
identify the optimal value of b. This is the value minimizing b2V X ′ − 2bCov(X, X ′)
over b. The formula for the minimum of a quadratic polynomial yields the optimal
value b∗ = Cov(X,X′)

V X′ . The corresponding variance change is

(b∗)2V X ′ − 2b∗Cov(X,X ′) = −Cov(X, X ′)2

V X ′ .

Since this is always negative, we conclude that, disregarding considerations of comput-
ing time, control variates can only improve convergence, and there is an improvement
whenever X and X ′ are correlated. The factor of improvement of the control variate
estimator to the ordinary estimator is

V X

V X − Cov(X,X′)2
V X′

=
1

1− Corr(X, X ′)2
.

This means that if, for example, the correlation is 1
2 , the variance of the control

variate estimator is a factor of 4
3 larger than the variance of the ordinary Monte Carlo

estimator. If the correlation is 3
4 , it is a factor of 16

7 larger and so on. The improvement
grows drastically as the correlation tends to one, with the limit corresponding to the
degenerated case where X ′ has the distribution of X, which is of course absurd since
EX then would be known, making the estimation unnecessary.

As an example, we can again consider the problem of numerically evaluating the second
moment of the uniform distribution. As we have seen, to find an effective control
variate, we need to identify a variable which is highly correlated with the variables
we are using to estimate the second moment, and whose mean we know. Thus, let U

be uniformly distributed and let X = U2. Assuming that we know that the mean of
the uniform distribution is 1

2 , we can use the control variate X ′ = U . Obviously, X

and X ′ should be quite highly correlated. Note that unlike the method of antithetic
sampling, it does not matter whether the correlation is positive or negative, this is
taken care of in the choice of coefficient. We find that the correlation is

Corr(X, X ′) =
Cov(U2, U)√

V U2
√

V U
=

√
45
48

,

which is pretty close to one, leading to an reduction in variance of the estimator to
the ordinary estimator of a factor 1

1− 45
48

= 16. The optimal coefficient is

Cov(X, X ′)
V X ′ =

Cov(U2, U)
V U

= 1.
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The corresponding control variate estimator is, letting (Un) be a sequence of i.i.d.
uniforms, 1

n

(∑n
k=1 U2

k −
∑n

k=1

(
Uk − 1

2

))
. As expected, very large values of Uk corre-

spond to shooting over the true mean, and this is offset by the control variate. Since
the control variate method in this case does not entail much extra calculation, we
can reasonably say that the associated computational time is the same as that of
the ordinary Monte Carlo estimator. Therefore, we appreciate that the control vari-
ate method provides an estimator with one fourth of the standard deviation of the
ordinary estimator with the same amount of computing time.

In practice, the optimal coefficient cannot be calculated explicitly. Instead, one can
apply the Monte Carlo simulations to estimate it, using

b̂∗ =
∑n

k=1(Xk −X)(X ′
k −X

′
)

∑n
k=1(X

′
k −X

′
)2

.

The extra computational effort required from this is usually more than offset by the
reduction in standard deviation.

Stratified sampling. Stratified sampling is a sampling method where the sample
space of the distribution being sampled is partitioned and the number of samples from
each part of the partition is being controlled. In this way, the deviation from the mean
cannot go completely awry.

We begin by introducing a stratification variable, Y . Let A1, . . . , Am be disjoint subsets
of R such that P (Y ∈ ∪m

i=1Ai) = 1 and P (Y ∈ Ai) > 0 for all i. We call these sets the
strata. The idea is that instead of sampling from the distribution of X to obtain the
mean of X, we will sample from the distribution of X given Y ∈ Ai.

Let Xi have the distribution of X given Y ∈ Ai. We then find, putting pi = P (Y ∈ Ai),

EX =
m∑

i=1

EX1(Y ∈Ai) =
m∑

i=1

piE

(
X1(Y ∈Ai)

pi

)
=

m∑

i=1

piEXi,

so if we can sample from each of the conditional distributions, we can make Monte
Carlo estimates of each term in the sum above and thereby obtain an estimate for
EX. To make this concrete, let for each i (Xik) be an i.i.d. sequence with the
common distribution being the same as that of Xi. All these variables are assumed
independent. Fix some n. We are free to choose how many samples to use from each
strata. We will restrict ourselves to what is known as proportional allocation, meaning
that we choose to draw a fraction pi of samples from the i’th stratum. Assume for
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simplicity that npi is an integer, we can then put ni = npi, obtain n =
∑m

i=1 ni and
define the stratified Monte Carlo estimator

1
n

m∑

i=1

ni∑

k=1

Xik.

By the law of large numbers,

1
n

m∑

i=1

ni∑

k=1

Xik =
m∑

i=1

pi

ni

ni∑

k=1

Xik
a.s.−→

m∑

i=1

piEXi = EX

so the estimator is consistent. Its variance is

V

(
1
n

m∑

i=1

ni∑

k=1

Xik

)
=

1
n2

m∑

i=1

ni∑

k=1

V Xik =
1
n

m∑

i=1

piV Xi.

To compare this with the variance of the ordinary Monte Carlo estimator, define U by
letting U = i if Y ∈ Ai. Then, the distribution of Y given U = i is the distribution of
Xi, and for the distribution of U we find P (U = i) = P (Y ∈ Ai) = pi. All in all, we
may conclude

1
n

m∑

i=1

piV Xi =
1
n

EV (X|U) =
1
n

V X − 1
n

V E(X|U),

where the first term is the variance of the ordinary Monte Carlo estimator. Since
the second term is a negative scalar times a variance, it is always negative. Therefore,
disregarding questions of computation time, the convergence of the stratified estimator
is always at least as fast as that of the ordinary estimator.

Let us review the components of the stratified sampling technique. We start out with
X, the distribution whose mean we wish to identify. We then consider a stratification
variable Y and strata A1, . . . , Am. It is the simultaneous distribution of (X,Y ) com-
bined with the strata which determine how our stratified estimator will function. We
define i.i.d. sequences Xik such that Xik has the distribution of X given Y ∈ Ai. The
estimator 1

n

∑m
i=1

∑ni

k=1 Xik is then consistent and has superior variance compared to
the ordinary Monte Carlo estimator.

In practice, the critical part of this procedure is to certify that it is possible and
computationally tractable to sample from the distribution of X given Y ∈ Ai. This
is often accomplished by ensuring that X = t(Y ) for some transformation t. In that
case, the distribution of X given Y ∈ Ai is just the distribution of Y given Y ∈ Ai

transformed with t. If Y is a distribution such that it is easy to sample from Y
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given Y ∈ Ai, we have obtained a simple procedure for sampling from the conditional
distribution. This is the case if, say, Y is a distribution with an easily computable
quantile function and Ai is an interval.

To see an example of how stratified sampling can be used, we will use it to numer-
ically calculate the second moment of the uniform distribution. Let U be uniformly
distributed, we then wish to identify the mean of U2. Fix m ∈ N, we will use U as
our stratification variable with the strata Ai = ( i−1

m , i
m ]. We then find pi = 1

m and
ni = n

m . We need to identify the distribution of U2 given U ∈ Ai. We know that
the distribution of U given U ∈ Ai is the uniform distribution on Ai. Therefore, U2

given U ∈ Ai has the same distribution as ( i−1
m + U

m )2. Letting Uik be unit uniformly
distributed i.i.d. sequences, we can write our stratified estimator as

1
n

m∑

i=1

n
m∑

k=1

(
i− 1
m

+
Uik

m

)2

.

Its variance is

1
n

m∑

i=1

1
m

V

(
i− 1
m

+
Ui

m

)2

=
1
n

m∑

i=1

1
m5

V (i− 1 + Ui)2

=
1
n

m∑

i=1

1
m5

V ((i− 1)2 + 2(i− 1)Ui + U2
i )

=
1
n

m∑

i=1

1
m5

(
4(i− 1)2V Ui + V U2

i + 4(i− 1)Cov(Ui, U
2
i )

)

=
1
n

m∑

i=1

1
m5

(
(i− 1)2

3
+

4
45

+
i− 1

3

)

=
1
n

1
m5

(
(m− 1)m(2m− 1)

18
+

4m

45
+

(m− 1)(m− 2)
3

)
,

which is of order O(m−2) when m tends to infinity. This basically shows that we in
theory can obtain as small a variance as we desire by picking as many strata as possible.
In reality, of course, it is insensible to pick more strata than observations. The moral
of the example, however, is the correct one: by using a large number of strata, a very
dramatic reduction of variance is sometimes possible. An example of how stratified
sampling can improve results can be seen in Figure 5.1, where we compare sampling
from squared uniforms with and without stratification. We see that the histogram
on the right, using stratified sampling, is considerably closer to the true form of the
distribution.
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Figure 5.1: Comparison of samples from a squared uniform distribution with and
without stratified sampling. On the left, 500 samples without stratification. On the
right, 500 samples with 100 strata.

The ease of implementation and potentially large improvements make stratified sam-
pling an very useful method for improving convergence.

Importance sampling. Importance sampling is arguably the method described here
which has the largest potential impact. Its usefulness varies greatly from situation
to situation, and if used carelessly, it can significantly reduce the effectivity of an
estimator. On the other hand, in situations where no other method is applicable, it
sometimes can be applied to obtain immense improvements.

The underlying idea of importance sampling is very simple. It is most naturally de-
scribed in the context where X = h(X ′) for some variable X ′ and some mapping h

with sufficient integrability conditions. Let µ be the distribution of X ′. Let Y ′ be
some other variable with distribution ν and assume that µ ¿ ν. We can then use the
Radon-Nikodym theorem to write

Eh(X ′) =
∫

h(x) dµ(x) =
∫

h(x)
dµ

dν
dν(x) = E

(
h(Y ′)

dµ

dν
(Y ′)

)
.

Letting Y ′
n be a i.i.d. sequence with common distibution being the same as that of Y ′,

we can then define the importance sampling estimator as

1
n

n∑

k=1

h(Y ′
k)

dµ

dν
(Y ′

k).

The law of large numbers yields that this is a consistent estimator of Eh(X ′). Its
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variance can be larger or smaller than that of the ordinary Monte Carlo estimator
depending on the choice of ν. Results on the effectiveness of the importance sampling
estimator as a function of the choice of ν can only be obtained in specialised situations.
Furthermore, the objective of the importance sampling method will in fact often not
be to reduce variance, but rather to change the shape of a distribution when it is
somehow suboptimal for the purposes of Monte Carlo estimation. Is is difficult to
describe quantitatively when this is the case, we will instead give a small example.

Let X ′ be the standard exponential distribution and consider the problem of estimating
P (X ′ > α) for some large α. This means considering the transformation h given by
h(x) = 1(α,∞)(x). Let p = P (X > α), the variance of h(X ′) is p(1−p), which is pretty
small. In theory, then, the ordinary Monte Carlo estimator should yield relatively
effective estimates. However, this is not actually the case.

To see why the ordinary estimator often will underestimate the true probability, we
cannot rely only on moment considerations, we need to analyze the distribution of
the estimator in more detail. To this end, note that 1

n

∑n
k=1 h(X ′

k) is binomially dis-
tributed with length n, probability parameter p and scale 1

n . A fundamental problem
with this is that the binomial distribution is discrete, this immediately puts an upper
limit to the accuracy of the estimator. Also, the estimator will often underestimate
the true probability. To see how this is the case, simply note that the probability of
the estimator being zero is (1− p)n. When p is small compared to n, this can be very
large. In the case α = 10, for example, we obtain p = e−10, (1 − p)10000 ≈ 63% and
(1 − p)100000 ≈ 6.3%. This means that with 10000 samples, our estimator will yield
zero in 63% of our trials. Using ten times as many simulations yields zero only 6.3%
percent of the time, but the distribution will still very often be far from the correct
probability, which in this case is e−10 ≈ 0.0000453.

We can use importance sampling to improve the efficiency of our estimator. We let
the importance sampling measure ν be the exponential distribution with scale λ. We
then have

dµ

dν
(x) =

e−x

1
λe−

x
λ

= λ exp
(
−x

(
1− 1

λ

))
,

and with (Y ′
n) being an i.i.d. sequence with distribution ν, the importance sampling

estimator is
1
n

n∑

k=1

h(Y ′
k)λ exp

(
−Y ′

k

(
1− 1

λ

))
.

In Figure 5.2, we have demonstrated the effect of using the importance sampling es-
timator. We use α = 10 and compare the histograms of 1000 independent ordinary
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Monte Carlo estimators with 1000 independent importance sampling estimators, let-
ting λ = 10 and basing the estimators on 1000 samples.
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Figure 5.2: Comparison of estimation of exponential probabilities with and without
importance sampling. From left to right, histogram of 1000 ordinary Monte Carlo
estimators, histogram of 1000 importance sampling estimators and finally, close-up
histogram of 1000 importance sampling estimators.

Obviously, the ordinary Monte Carlo estimator cannot get very close to the true value
of p because of its discreteness. As expected, it hits zero most of the time, with a
few samples hitting 1

1000 . On the other hand, the importance sampling estimator can
take any value in [0, nc) for some c > 0, removing any limits on the accuracy arising
from discreteness. We see that even with only the 1000 samples which were completely
useless in the ordinary Monte Carlo case, the importance sampling estimator hits the
true probability very well most of the time. Furthermore, the computational overhead
arising from the importance sampling technique is minimal. We conclude that with
very little effort, we have improved the ordinary estimator by an extraordinary factor.

5.4 Methods for evaluating sensitivities

Next, we turn our attention to methods specifically designed to evalutate sensitivities
such as the delta or gamma of a claim. We will cast our discussion in a general
framework, which will then be specialised to financial cases in the following sections.
We assume that we have a family of integrable variables X(θ) indexed by an open
subset Θ of the real line. Our object is to understand how to estimate ∆θ = d

dθ EX(θ),
assuming that the derivative exists. We will consider five methods, being:



200 Mathematical Finance

1. Finite difference.

2. Pathwise differentiation.

3. Likelihood ratio.

4. Malliavin weights.

5. Localisation.

These methods in general transform the problem of estimating a derivative into esti-
mating one or more expectations. These expectations can then be evaluated by the
methods described in Section 5.3. In the following we always assume that the mapping
θ 7→ EX(θ) is differentiable.

Finite difference. The finite difference method aims to calculate the sensitivity by
approximating the derivative by a finite difference quotient and estimating this by
Monte Carlo. Define α(θ) = EX(θ). Fixing θ and leting h > 0, our approximation is
defined by

∆̂θ =
α(θ + h)− α(θ − h)

2h
.

Introducing i.i.d. variables (Xn(θ + h), Xn(θ−h)) such that Xn(θ +h) and Xn(θ−h)
has the distributions of X(θ+h) and X(θ−h), respectively, but possibly are correlated,
we can define the finite difference estimator as

Xn(θ + h)−Xn(θ − h)
2h

.

The law of large numbers yields Xn(θ+h)−Xn(θ−h)
2h

a.s.−→ ∆̂θ, so the estimator is in general
biased. To analyze the bias, note that if α is C2, we can form second-order expansions
of α at θ, yielding

α(θ + h) = α(θ) + α′(θ)h +
1
2
α′′(θ)h2 + o(h2)

α(θ − h) = α(θ)− α′(θ)h +
1
2
α′′(θ)h2 + o(h2),

so that in this case, the bias has the form

∆̂θ − α′(θ) =
α(θ + h)− α(θ − h)

2h
− α′(θ) = o(h).

If α is C3, we can obtain the third-order expansions

α(θ + h) = α(θ) + α′(θ)h +
1
2
α′′(θ)h2 +

1
6
α′′′(θ)h3 + o(h3)

α(θ − h) = α(θ)− α′(θ)h +
1
2
α′′(θ)h2 − 1

6
α′′′(θ)h3 + o(h3),
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which yields the bias 1
6α′′′(θ)h2 + o(h2), which is not only o(h) but is O(h2).

Conditional on a level of smoothness of α, then, the finite difference estimator is at least
asymptotically unbiased. Letting (X ′(θ+h), X ′(θ−h)) have the common distribution
of (Xn(θ + h), Xn(θ − h)), the variance of the estimator is

V

(
Xn(θ + h)−Xn(θ − h)

2h

)
=

1
4h2n2

V

(
n∑

k=1

Xk(θ + h)−Xk(θ − h)

)

=
1

4h2n
V (X ′(θ + h)−X ′(θ − h)).

We see that the variance is highly dependent both on h and on the dependence struc-
ture between X ′(θ + h) and X ′(θ − h). Both of these are under our control, and we
can therefore seek to choose them in a manner which reduces the mean square error
as much as possible. This will provide a reasonable tradeoff between reducing bias
and reducing variance. The context which we are working in at present is too general
for us to be able to make any optimal choice of the dependence between X ′(θ + h)
and X ′(θ − h), so we will content ourselves with making some assumptions about the
asymptotic behaviour of the bias and variance and examining how best to choose h as
a function of n from this.

We will assume that

∆̂θ − α′(θ) = O(h2)

V (X ′(θ + h)−X ′(θ − h)) = O(hβ),

for some β > 0. This corresponds to situations often encountered in practice. We then
define hn = cn−γ and want to identify the rate of decrease γ yielding the asymptotically
minimal mean square error. The mean square error is

MSE(∆̂n) = V (∆̂n) + (E∆̂n − θ)2

=
1

4h2
nn

V (X ′(θ + hn)−X ′(θ − hn)) + O(h2
n)2

=
1

4h2
nn

O(hβ
n) + O(h4

n)

=
1

4c2n1−2γ
O(n−βγ) + O(n−4γ)

= O(n2γ−1)O(n−βγ) + O(n−4γ)

= O(nγ(2−β)−1) + O(n−4γ)
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This is O(nδ(γ)), where δ(γ) = max{γ(2 − β) − 1,−4γ}. From this we see that with
a small positive γ, we obtain δ(γ) < 0. This implies that n−δ(γ)MSE(∆̂n) is bounded
as n tends to infinity. Since n−δ(γ) tends to infinity, we conclude that in this case,
MSE(∆̂n) tends to zero. In other words, if we decrease h as n tends to zero, the
mean square error tends to zero and we obtain a consistent estimator. This is a very
reasonable conclusion.

However, if β < 2, choosing a γ which is too large, corresponding to a very fast
decrease in the step size, can end up yielding δ(γ) > 0, corresponding to increasing
mean square error. We see that choosing γ properly is paramount to obtaining effective
finite difference estimates. The condition β < 2 corresponds to the situation where
the decrease in V (X ′(θ + h) − X ′(θ − h)) cannot keep up with the factor 1

h2 in the
expression for the total variance of ∆̂n, and therefore large γ can cause an explosion
in variance. The optimal choice of γ is found by minimizing δ over γ, leading to the
fastest decrease of the mean squared error.

To this end, note that a negative γ always yields δ(γ) > 0, so this is never a good
choice. It will therefore suffice to optimize over positive γ. We split up according to
whether β < 2, β = 2 or β > 2. If β < 2, δ(γ) is the maximum of a line with increasing
slope and a line with decreasing slope. The minimum is therefore where the two lines
intersect, meaning the solution to γ(2−β)− 1 = −4γ, which is γ = 1

6−β . If β = 2, the
minimum is obtained for any γ ≥ 1

4 . The optimal choice of γ would in this case depend
on the explicit form of the mean squared error. If β > 2, δ is downwards unbounded
and γ should be chosen as large as possible. This latter case, however, probably will
not happen in reality, at least not in any of the practial cases we consider.

Note that our analysis is somewhat different from the one found in Section 7.1 of
Glasserman (2003), and the case β > 2 does not correspond to any of the cases
considered there. This is because Glasserman (2003) always assumes that the total
variance of the estimator tends to zero as h tends to zero. In a sense, the parametriza-
tion of the orders of decrease is different. The results, however, are equivalent.

To apply the finite difference method, then, very little actual implementation work is
needed, but it may be necessary to spend some time figuring out the best selection of
h.

We now consider two examples of application of the finite difference method. First, let
U(θ) have the normal distribution with unit variance and mean θ, assume that we are
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interested in estimating d
dθ EU(θ)2. If we let U ′(θ + h) and U ′(θ − h) be independent

normal variables with unit variance and means θ+h and θ−h, respectively, we obtain

V
(
U ′(θ + h)2 − U ′(θ − h)2

)
= V U ′(θ + h)2 + V U ′(θ − h)2

= 2(1 + 2(θ + h)2) + 2(1 + 2(θ − h)2)

= 4 + 4((θ + h)2 + (θ − h)2)

= 4 + 8θ2 + 8h2,

which is O(1) as h tends to zero. We have used that U ′(θ + h)2 has a noncentral χ2

distribution to obtain the variances. This corresponds to a β value of zero, and we
would therefore expect that the optimal choice of step size is hn = cn−

1
6 for some c.

This would yields a total variance of

4 + 8θ2 + 8c2n−
1
3

4c2n1− 1
3

,

which is of order o(n). To find the corresponding bias of the estimator, note that
putting α(θ) = EU(θ)2 = 1 + θ2, we find α′(θ) = 2θ. The bias is then

1 + (θ + h)2 − (1 + (θ − h)2)
2h

− 2θ = 0,

so the estimator is unbiased. On the other hand, if we let U be a standard normal and
define U ′(θ + h) = U + θ + h and U ′(θ − h) = U + θ − h, we find

V
(
U ′(θ + h)2 − U ′(θ − h)2

)
= V

(
U2 + 2(θ + h)U + h2 − (U2 + 2(θ − h)U + h2)

)

= V (4hU)

= 16h2,

which is O(h2). Using this simulation scheme then yields β = 2 and a reasonable
choice is hn = cn−γ for any γ ≥ 1

4 . The total variance becomes

16c2n−2γ

4c2n1−2γ
=

4
n

,

which, as expected, is asymptotically independent of γ (in fact, completely indepen-
dent). If the estimator were biased, we could have used our freedom in choosing γ to
minimize the bias.

Pathwise differentiation. In the finite difference method, we considered a finite
difference approximation to d

dθ EX(θ) and let the parameter increment tend to zero
at the same time as we let the number of samples tend to infinity. In the method of
pathwise differentiation, we instead simply exchange differentiation and mean and use
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ordinary Monte Carlo to estimate the result. Thus, the basic operation we desire to
make is

d

dθ
EX(θ) = E

d

dθ
X(θ).

While the left-hand side is only dependent on each of the marginal distributions X(θ),
the right-hand side is dependent on the distribution of the ensemble (X(θ))θ∈Θ. For
the interchange to make sense at all, we therefore assume that we are working in
a context where all of the variables Xθ are defined on the same probability space.
Furthermore, it is of course necessary that the variable d

dθ X(θ) is almost surely well-
defined and integrable, so we need to assume that Xθ is almost surely differentiable in
θ for any θ ∈ Θ. Finally, we need to make sure that the exchange of integration and
differentiation is allowed.

If all this is the case, we can let X ′
n(θ) be an i.i.d. sequence with common distribution

being the same as the distribution of d
dθ X(θ) and define the pathwise differentiation

estimator
1
n

n∑

k=1

X ′
k(θ),

which by the law of large numbers and our assumptions satisfies

1
n

n∑

k=1

X ′
k(θ) a.s.−→ E

d

dθ
X(θ) =

d

dθ
EX(θ),

so the pathwise differentiation estimator, when it exists, is always consistent. However,
we have no guarantees that the variance of the pathwise estimator is superior to that
of the finite difference estimator. Two definite benefits of the pathwise differentiation
method over the finite difference method, though, are its unbiasedness and that we no
longer need to worry about the optimal parameter increment in the difference quotient.
Other than that, we have no guarantees for improvement. General experience states
that the pathwise differentiation estimator rarely is worse than the finite difference
estimator, but also rarely yields more than moderate improvements in variance.

We will now consider sufficient conditions for the existence and consistency of the
pathwise differentiation estimator. For clarity, we reiterate that we at all times assume

1. The variables Xθ are all defined on the same probability space.

2. For each θ, X(θ) is almost surely differentiable.

3. The variable d
dθ X(θ) is integrable.
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A sufficient condition for the interchange of differentiation and integration is then
that θ is if the family (X(θ+h)−X(θ)

h ) is uniformly integrable over h in some punctured
neighborhood of zero: Since the variables converge almost surely to d

dθ X(θ), we also
have convergence in probability, and this combined with uniform integrability yields
convergence in mean and therefore convergence of the means, that is,

d

dθ
EX(θ) = lim

h→0
E

(
X(θ + h)−X(θ)

h

)
= E

(
lim
h→0

X(θ + h)−X(θ)
h

)
= E

d

dθ
X(θ),

as desired. We now claim that the following is a sufficient condition for the interchange
of differentiation and integration:

• V (X(θ + h)−X(θ)) = O(h2).

To see this, note that under this condition,

E(X(θ + h)−X(θ))2 = V (X(θ + h)−X(θ)) + E2(X(θ + h)−X(θ))

= O(h2) + h2

(
EX(θ + h)− EX(θ)

h

)2

= O(h2),

so the family X(θ+h)−X(θ)
h is bounded in L2 over a punctured neighborhood of zero. In

particular, it is uniformly integrable, so the interchange is allowed by what we already
have shown. Another sufficient condition is:

• For θ ∈ Θ, there is an integrable variable κθ such that |X(θ +h)−X(θ)| ≤ κθ|h|
for all h in a punctured neighborhood of zero.

In order the realize this, merely note that in this case, κθ is an integrable bound for
|X(θ+h)−X(θ)|

h , and therefore the dominated convergence theorem yields the result.

We now turn to a concrete example illustrating the use of the pathwise differentiation
method. We consider the same situation as in the subsection on the finite difference
method, estimating d

dθ EU(θ)2 where U(θ) is normally distributed with unit variance
and mean θ. To use the pathwise method, we first need to make sure that all of the
variables are defined on the same probability space. This is easily obtained by letting
U be some variable with the standard normal distribution and defining U(θ) = U + θ.
Clearly, then, θ 7→ (U + θ)2 is always everywhere differentiable, and the derivative is
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d
dθ (U + θ)2 = 2(U + θ), which is integrable. We earlier found

V (U(θ + h)2 − U(θ)2) = 4h2 = O(h2),

so by our earlier results, the interchange of differentiation and integration is allowed,
and we conclude

d

dθ
EU(θ)2 = E

d

dθ
U(θ)2 = E2(U + θ).

Now, we can of course evalutate this expectation directly, but for the sake of comparing
with the finite difference method, let us consider what would happen if we used a Monte
Carlo estimator. The variance based on n samples would then be 1

nV (2U + 2θ) = 4
n ,

which is the same as the finite difference estimator.

Likelihood ratio. The likelihood ratio method, like the pathwise differentiation
method, seeks to evaluate the sensitivity by interchanging differentiation and inte-
gration. But instead of differentiating the variables themselves, the likelihood ratio
method differentiates their densities. Since densities usually in most cases are rela-
tively smooth, while the stochastic processes often, in particular in the case of option
valuation, have discontinuities or breaks, this means that the likelihood ratio method
in many cases applies when the pathwise differentiation method does not.

To set the stage, assume that X(θ) = f(X ′(θ)) for some X ′(θ) with density gθ, where
f : R → R is some measurable mapping. This is the formulation best suited to later
applications. Our goal is then to evaluate d

dθ Ef(X ′(θ)). The basis of the likelihood
ratio method is the observation that if the interchange is allowed and the denominators
are nonzero, we have

d

dθ
Ef(X ′(θ)) =

d

dθ

∫
f(x)gθ(x) dx

=
∫

f(x)
d

dθ
gθ(x) dx

=
∫

f(x)
g′θ(x)
gθ(x)

gθ(x) dx

= Ef(X ′(θ))
g′θ(X

′(θ))
gθ(X ′(θ))

.

While the pathwise method rewrote the sensitivity as an expectation of a somewhat
different variable, the likelihood ratio method rewrites the sensitivity as a new trans-
formation of the old variable.

As with the pathwise method, there is no guarantee that the likelihood ratio method
yields better results than the finite difference estimator. In fact, it is easy to find
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cases where it yields substantially worse results than finite difference, and we shall see
examples of this later. As a rule of thumb, if the mapping f has discontinuities, the
likelihood ratio has a good chance of improving convergence, otherwise it may easily
worsen convergence. In this sense, the likelihood method complements the pathwise
method: the pathwise method is usually useful in the presence of continuity, and the
likelihood ratio is usually useful in the presence of discontinuities. A limitation of the
likelihood ratio method is that it is necessary to know the density of the variables and
their derivatives, as this is rarely the case in practice. However, the scheme can be
extended to cover very general cases by approximation arguments, see Section 7.3 of
Glasserman (2003).

There are no criteria in simple terms for when the interchange of differentiation and
integration of the likelihood ratio method is allowed. However, general criteria can be
expressed in the case where the family X ′(θ) is an exponential family. See for example
the comments to Lemma 1.3 of Jensen (1992), page 7.

Malliavin weights. The method of Malliavin weights, much as the likelihood method,
computes sensitivities by transforming the derivative of the expectation into another
expectation. The method does not work in general cases, but is specifically suited to
the context where the sensitivity to be calculated is with respect to a transformation
of the solution to an SDE. Specifically, consider a n-dimensional Brownian motion W

and assume that the SDE

dXt = µ(Xt) dt + σ(Xt) dWt

has a strong solution F , such that for each x ∈ Rn, Xx = F (x,W ) is a solution to the
above SDE with initial condition x ∈ Rn. We further assume that the corresponding
flow is differentiable and let Y x be the Jacobian of Xx. Furthermore, let T > 0 be
some constant and let f : Rn → R be some mapping such that Ef(Xx

T )2 is finite.
The basic result which we will need to derive the Malliavin estimator is that putting
u(x) = Ef(Xx

T ), it holds under suitable regularity conditions that

∇u(x) = E

(
f(Xx

T )
1
T

∫ T

0

(σ−1(Xx
t )Y x

t )t dWt

)

This result is Proposition 3.2 of Fournié et al. (1999). Here, σ−1 denotes matrix
inverse and not the inverse mapping. We are not able to prove this with the theory
that we have developed. The proof exploits several of the results from Section 4.5,
among others the duality formula. It also uses the Diffeomorphism Theorem and
certain criteria for uniform integrability from the theory of SDEs. See the notes for
further details and references.
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We will now see how this result specialises to the case of one-dimensional financial
markets. First consider the case where the financial instrument is given on the form
dSt = rSt dt + σ(St)St dWt for some positive measurable mapping σ. Let f be such
that Ef(ST )2 is finite, we will find the delta of the T -claim f(ST ). We assume that
the short rate is zero, our results will then obviously immediately extend to the case
of deterministic short rate. Assuming that the result from Fournié et al. (1999) can
be applied, we can use the fact that ∂

∂S0
ST = ST

S0
to immediately conclude

∂

∂S0
Ef(ST ) = E

(
f(ST )

1
T

∫ T

0

1
σ(ST )ST

ST

S0
dWt

)

= E

(
f(ST )

1
TS0

∫ T

0

1
σ(ST )

dWt

)
.

This is the basis for the Malliavin weight estimator of the delta in the case where the
volatility is of the local form. This applies, for example, to the Black-Scholes model.
Next, we consider a market of the form

dSt = rSt dt + σtSt

√
1− ρ2 dW 1

t + σtStρ dW 2
t

dσt = α(σt) dt + β(σt) dW 2
t ,

with constant initial conditions S0 and σ0, where we assume that α and β are differen-
tiable and ρ ∈ (−1, 1). We further assume that β is positive. This covers for example
the Heston model. As before, consider f such that Ef(ST )2 is finite, we desire to find
the delta of the T -claim f(ST ), that is, ∂

∂S0
Ef(ST ). To do so, we define

µ(x) =

(
rx1

α(x2)

)
and σ(x) =

(
x2x1

√
1− ρ2 x2x1ρ

0 β(x2)

)
,

and put Xt = (St, σt). We then obtain

dX1(t) = µ1(Xt) dt + σ11(Xt) dW 1
t + σ12(Xt) dW 2

dX2(t) = µ2(Xt) dt + σ21(Xt) dW 1
t + σ22(Xt) dW 2

t

with the initial conditions X0 = (S0, σ0). Note that ∂
∂S0

Ef(ST ) = ∂
∂X1(0)

Ef(X1(T )).
This observation leads us to believe that we may be able to use the result from Fournié
et al. (1999) to obtain an expression for the sensitivity. Therefore, we assume that
there is a strong solution to this SDE, yielding a differentiable flow, and we assume
that the results of Fournié et al. (1999) applies to our situation. Let Y be the first
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variation process of X under the initial condition X0. We find

σ−1(Xt)Yt =




1

X2
t X1

t

√
1−ρ2

− ρ√
1−ρ2β(X2

t )

0 1
β(X2

t )




(
Y 11

t Y 12
t

Y 21
t Y 22

t

)

=




Y 11
t

X2
t X1

t

√
1−ρ2

− ρY 21
t√

1−ρ2β(X2
t )

Y 12
t

X2
t X1

t

√
1−ρ2

− ρY 22
t√

1−ρ2β(X2
t )

Y 21
t

β(X2
t )

Y 22
t

β(X2
t )


 .

Because X2 does not depend on X1
0 , Y 21

t = ∂
∂X1

0
X2

t = 0. And since X1 is given as the

solution to an exponential SDE, Y 11 = ∂
∂X1

0
X1

t = 1
X1

0
X1

t . Therefore, we can reduce
the above to

σ−1(Xt)Yt =




1

X2
t X1

0

√
1−ρ2

Y 12
t

X2
t X1

t

√
1−ρ2

− ρY 22
t√

1−ρ2β(X2
t )

0 Y 22
t

β(X2
t )


 .

Transposing this, the result from Fournié et al. (1999) yields

∂

∂X1
0

Ef(X1
T ) = E

(
f(X1

T )
1
T

∫ T

0

1

X2
t X1

0

√
1− ρ2

dW 1
t

)
.

Collecting our results and substituting S and σ for X1 and X2, we may conclude

∂

∂S0
Ef(ST ) = E

(
f(ST )

1
S0T

∫ T

0

1

σt

√
1− ρ2

dW 1
t

)
,

and this is the Malliavin estimator for the delta. Note that this is not the same
estimator as is obtained in Benhamou (2001). We will return to this point later, when
considering the practical implementation of the Malliavin estimator in the Heston
model.

Localisation. The method of localisation is more of a shrewd observation than an
actual method. It can in principle be used in conjunction with any of the Monte
Carlo methods we have described, but its primary usefulness for us will be together
with the likelihood ratio and Malliavin methods. We show how the method applies to
the likelihood ratio method, the application to the Malliavin method is similar. We
therefore consider the same situation as in our discussion of the likelihood method,
where we put X(θ) = f(X ′(θ)) and desire to evaluate d

dθ EX(θ). Letting gθ be the
density of X ′(θ) and putting αθ(x) = g′θ(x)

gθ(x) , the likelihood ratio method yields the
equality

d

dθ
EX(θ) = Ef(X ′(θ))αθ(X ′(θ)).
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Now, if αθ has a large variability and the supports of f and αθ have a large common
support, the factor αθ(X ′(θ)) could be instrumental in making the variance of estima-
tors based upon the above rather large. Such detrimental effects are actually observed
in reality, which means that the removal of the derivative in such cases have a very
large price, and ordinary finite difference methods may be more effective.

One way to avoid such enlargements of variance is to make the simple observation that
for any sufficiently integrable mapping h, we have

d

dθ
EX(θ) =

d

dθ
Eh(X ′(θ)) +

d

dθ
E(f − h)(X ′(θ))

= Eh(X ′(θ))αθ(X ′(θ)) +
d

dθ
E(f − h)(X ′(θ)).

Here, we have split the mapping f into two parts, h and f − h, and have applied the
likelihood ratio method only to the first part. The second term can be evaluated using
other methods, such as the finite difference method or the pathwise method. If we can
choose h such that the variance of h(X ′(θ))αθ(X ′(θ)) is small, then we have obtained
an improvement over the usual likelihood ratio estimator provided that the second
term does not add too much variance. One way of obtaining this reduced variance
is to make sure that the h has a small support. The choice of h, however, should be
made such that the usefulness of the likelihood ratio method is preserved and such
that the remained term can be calculated with other methods. In other words, we we
would like the h to have small support and f −h to have reasonable smoothness. One
example of this is when working with the digital option, where f − h can be chosen
as a smoothened version of the digital payoff, and h is then a kind of small bump
function with a jump. This enables one to use the likelihood ratio to take care of
the discontinuity and using, say, the pathwise method, to evaluate the remainder. We
shall se examples of how to do this in the next section.

5.5 Estimation in the Black-Scholes model

We now consider the Black-Scholes model, given by the dynamics

dSt = µSt dt + σSt dWt,

endowed with a risk free asset B based on a constant short rate r with initial condition
B0 = 1. We will prove that the model is free of arbitrage and implement the Monte
Carlo methods discussed in the previous sections for the Black-Scholes model. Now,
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our main goal of our numerical work is to analyze the performance of the Malliavin
estimator and the Malliavin estimator combined with ordinary Monte Carlo methods,
comparing it to other estimators. As we shall see, in the Black-Scholes case, the
Malliavin method coincides with the Likelihood ratio method. Therefore, in this case,
the Malliavin calculus brings nothing new at all. As a consequence, the Black-Scholes
case is mostly a kind of warm-up case for us, allowing us to familiarize ourselves
with the various methods in a simple setting before turning to the somewhat more
cumbersome case of the Heston model.

Theorem 5.5.1. The Black-Scholes model is free of arbitrage, and there is a T -EMM
yielding the dynamics dSt = rSt dt + σSt dWt.

Proof. Both statements of the theorem follows immediately from Corollary 5.1.10.

Comment 5.5.2 The T -EMM is in fact in this case unique, corresponding to com-
pleteness of the Black-Scholes model. ◦

For the numerical experiments, we consider three problems:

1. The price of a call option.

2. The price of a digital option.

3. The delta of a digital option.

It is easy to check for consistency of our methods, because in all three cases, the correct
value has an analytical formula, as the following lemma shows.

Lemma 5.5.3. Define d1(s) = 1
σ
√

T
(log( s

K ) + (r + 1
2σ2)T ) and d2(s) = d1(s)− σ

√
T .

1. The price of a strike K T -call option is sΦ(d1(S0))− e−rT KΦ(d2(S0)).

2. The delta of a strike K T -call option is Φ(d1(S0)).

3. The delta of a strike K T -digital option is e−rT φ(d2(S0))

σ
√

TS0
.

Proof. The first result is the Black-Scholes formula, see Proposition 7.10 in Björk
(2004). The second is Proposition 9.5 in Björk (2004). To prove the last result, we
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first calculate the price of a digital option as

e−rT EQ(1(ST≥K))

= e−rT Q(ST ≥ K)

= e−rT Q

(
1

σ
√

T

(
log

ST

s
−

(
r − 1

2
σ2

)
T

)
≥ 1

σ
√

T

(
log

K

s
−

(
r − 1

2
σ2

)
T

))

= e−rT

(
1− Φ

(
1

σ
√

T

(
log

K

s
−

(
r − 1

2
σ2

)
T

)))

= e−rT Φ(d2(S0)).

From this we immediately obtain d
dS0

e−rT EQ(1(ST≥K)) = e−rT φ(d2(S0)) 1
σ
√

TS0
.

We now proceed to the numerical experiments. All three problems all yield differing
degrees of irregularity, and we shall see that the methods applicable are different for
all three cases.

The price of a call option. Letting W be a Brownian motion and letting S be
the corresponding geometric Brownian motion with drift r and volatility σ, we want
to evaluate e−rT E(ST − K)+. We consider r = 4%, σ = 0.2, S0 = 100, T = 1 and
K = 104. We consider a plain Monte Carlo estimator, an antithetic estimator, a
stratified estimator, a control variate estimator and finally, an estimator combining all
of these.

The plain Monte Carlo estimator is simply implemented by simulating scaled lognormal
variables with scale S0, log mean (r − 1

2σ2)T and log variance σ2T . The antithetic
estimator stratifies uniform variables and transforms them with the quantile function
of the lognormal distribution. The control variate estimator uses ST as a control
variate, which has the known mean erT S0 and has a correlation with (ST − K)+ of
around 60%. To analyze the results, we know that all the estimators are unbiased, so it
will suffice to compare standard deviations. We base our standard deviation estimates
on 80 Monte Carlo simulations for each method with batches from 2000 simulations to
90000 simulations with step sizes of 2000. Since some methods use more computational
time per simulation than others, we compare the standard deviations as functions of
computing time instead of as functions of number of simulations. The results can
be seen in Figure 5.3. We see that the stratified and the combined estimators have
graphs which contain no data before around 0.002 seconds of computing time. This
is because we base our results on the same batches of simulations. Since these two
methods take significantly longer time per simulation than the other methods, their
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Figure 5.3: Comparison of standard deviations of Monte Carlo estimators for the price
of a call option in the Black-Scholes model.

batches correspond to longer computational times. The effect is not particularly large
here, but the distinction between computing time and number of simulations will
become important for example when considering the digital delta, where the most
time-consuming method will spend six times as much computing time per simulation
compared to the simplest method. Comparing standard deviations as functions of the
number of simulations would therefore have made the more advanced methods seem
six times more effective than they really are.

The results show, consistently with the general rules of thumb set forth in Secion 4.7
of Glasserman (2003), that stratified sampling yields the greatest benefit, followed
by the control variate method and then antithetic sampling. Combining all of these
yields the best estimator. This estimator has a standard deviation which is up to 20
times smaller than the ordinary Monte Carlo estimator.

Importance sampling for OTM call options. So far, we have neglected the
importance sampling method. This is because for options which are not far out of the
money, it has little impact. For simplicity, we will in general only consider call and
digital options which are not far out of the money. For completeness, however, we now
illustrate how importance sampling can be used to facilitate computations for out of
the money options.
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We consider the same call as before, but change the strike from 104 to 225. Since the
initial value of the instrument is 100, this makes the call quite far out of the money.
This means that many of the simulated values of ST will yield a payoff of zero, which
makes the estimation of the mean difficult. We will use importance sampling to change
the distribution of the underlying normal distribution such that samples giving a payoff
are more likely. To this end, we note that with d2(x) = 1

σ
√

T
(log x

S0
− (r− 1

2σ2)T ) and

Z = WT

σ
√

T
, we have E(ST −K)+ = E(d2(Zσ

√
T )−K)+. Let µ be the distribution of

Z, µ is then the standard normal distribution. Let ν be the normal distribution with
mean ξ and unit variance. Let fµ and fν be the corresponding densities. We then
have

dµ

dν
(x) =

fµ(x)
fν(x)

=
exp

(− 1
2x2

)

exp
(− 1

2 (x− ξ)2
)

= exp
(
−1

2
(
x2 − (x− ξ)2

))

= exp
(
−ξx +

1
2
ξ2

)
.

Letting Y be a normal distribution with mean ξ and unit variance, we therefore obtain

E(ST −K)+ = E(d2(Y σ
√

T )−K)+ exp
(
−ξY +

1
2
ξ2

)
,

which is the basis of the importance sampling estimator based on ν. By trial and
error experimentation, we find that ξ = 2 is a good choice for the problem at hand.
Figure 5.4 compares estimated means and standard deviations for the ordinary Monte
Carlo estimator, the importance sampling estimator and the importance sampling
estimator with antithetic and stratified sampling and using Y as a control variate.
Not surprisingly, we see that the importance sampling estimators are clearly superior.
The combined estimator has a standard deviation which is up to 130 times smaller
than the ordinary estimator.

The delta of a call option. Next, we consider the delta of a call option. This
situation will allow us to use some of the Monte Carlo methods designed specifically
for evaluation of sensitivities. We implement the finite difference method, the pathwise
differentiation method and the likelihood ratio method. As we shall see, in this case
the pathwise differentiation method seems to be the optimal. We also consider an
estimator combining the pathwise differentiation method with antithetic and stratified
sampling. The methods for estimating sensitivities are not as straightforward to use
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Figure 5.4: Comparison of means and standard deviations of Monte Carlo estimators
for an OTM call option in the Black-Scholes model.

as those for plain Monte Carlo estimation. We will spend a short time reviewing the
analysis and implementation.

As we saw in Section 5.4, to implement the finite difference method, we need to choose
how fast to let the denominator in the finite difference approximation tend to zero as
the number of simulations increase, and this choice depends on the variance of the
numerator of the finite difference apprroximation. In practice, we also need to choose
the constant factor c in hn = cn−γ . In our case, the numerator is V (f(ST (S0 + h))−
f(ST (S0 − h))), where ST (S0) is the solution of the SDE for the financial instrument
with initial value S0, and f is the call payoff. Our simulation method is to simulate a
geometric Brownian motion with initial value one, multiply by S0 + h and S0 − h and
transform with the payoff function. f(ST (S0+h)) and f(ST (S0−h)) are then somewhat
correlated. This both improves convergence and saves time generating simulations.
When dicsussing the finite difference method in the last section, we gave arguments
for different choices according to different situations. We begin by examining how much
of a difference these choices really makes. Figure 5.5 shows the results. Basically, the
figure shows that as long as our choices aren’t completely unreasonable, the difference
is quite small, in particular for large samples. The behaviour is consistent with a β

value of 2. We pick γ = 1
6 and c = 100. For the pathwise differentiation method, we
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Figure 5.5: Comparison of standard deviations of Monte Carlo estimators for the delta
of a call option in the Black-Scholes model.

wish to make the interchange

∂

∂S0
E(ST −K)+ = E

∂

∂S0
E(ST −K)+.

We need to check the conditions in Section 5.4. Since we have the explicit formula
ST = S0 exp((r − 1

2σ2)T + σWT ), the variables for varying S0 are clearly defined on
the same probability space, and ST is always differentiable as a function of S0. Since
x 7→ (x−K)+ is everywhere differentiable except in K and ST = K with probability
zero for any value of S0, we conclude that (ST−K)+ is almost surely differentiable with
respect to S0, and since ∂ST

∂S0
= ST

S0
, a derivative is 1[K,∞)(ST )ST

S0
, which is integrable.

To check that the interchange of differentiation and integration is allowed, we merely
note that with ST (S0) = S0 exp((r − 1

2σ2)T + σWT ),

|(ST (S0 + h)−K)+ − (ST (S0)−K)+| ≤ |h| exp
((

r − 1
2
σ2

)
T + σWT

)
,

using that x 7→ (x−K)+ is Lipschitz with constant 1. Since the coefficient to |h| is in-
tegrable, by the results of Section 5.4, the interchange of differentiation and integration
is allowed, and the corresponding pathwise estimator is based on E1[K,∞)(ST )ST

S0
.
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For the likelihood ratio method, we want to make the interchange

∂

∂S0
E(ST −K)+ = E(ST −K)+

∂
∂S0

gS0(ST )
gS0(ST )

,

to obtain the right-hand side as the basis for the likelihood ratio estimator, where gS0

is the density of ST under the initial condition S0, which is given by the expression
gS0(x) = 1

xσ
√

T
φ(d2(S0, x)), with d2(S0, x) = 1

σ
√

T
(log x

S0
− (r − 1

2σ2)T ). We will not
try to justify the interchange, but merely conclude that numerical experiments show
that it in fact yields the correct result. To obtain a simpler expression, we note

∂
∂S0

gS0(x)
gS0(x)

=
1

xσ
√

T
1

S0σ
√

T
d2(S0, x)φ(d2(S0, x))

1
xσ
√

T
φ(d2(S0, x))

=
d2(S0, x)
S0σ

√
T

,

which shows, using the representation of ST in terms of WT ,

∂
∂S0

gS0(ST )
gS0(ST )

=
d2(S0, ST )
S0σ

√
T

=
WT

S0σ
√

T
,

so that we need to calculate the mean E(ST − K)+ WT

S0σ
√

T
. We mentioned in the

introduction to this section that the likelihood method and the Malliavin weights
method are equivalent for the Black-Scholes model. This is quite clear, since the
Malliavin weights method yields

∂

∂S0
E(ST −K)+ = E(ST −K)+

1
S0T

∫ T

0

1
σ

dWt = E(ST −K)+
WT

S0σ
√

T
,

which is precisely the same as the likelihood ratio method.

We know that the pathwise differentiation and likelihood ratio methods are unbiased,
but the finite difference method has a bias. Our simulation results show that this bias
generally is between 10−4 and 10−5. This is small enough that we can disregard it,
and to compare the estimators, it will then suffice to compare standard deviations.
We compare a finite difference estimator, a pathwise estimator, a likelihood ratio
estimator and finally, a pathwise estimator with antithetic and stratified sampling. As
in the previous case, we base our standard deviation estimates on 80 Monte Carlo
simulations for each method with batches from 2000 simulations to 90000 simulations
with step sizes of 2000. The results can be seen in Figure 5.6. We see that the finite
difference and the pathwise differentiation methods yield almost similar results. When
combined with antithetic and stratified sampling, a considerable boost in effectivity
is obtained. The likelihood ratio is in this case clearly inferior to the other methods,
approximately doubling the standard deviation. This conclusion supports the common
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Figure 5.6: Comparison of standard deviations of Monte Carlo estimators for the delta
of a call option in the Black-Scholes model.

wisdom that the likelihood ratio method mostly is useful when applied in the context
of discontinuities. This conclusion is consistent with the results of Benhamou (2001)
and Benhamou (2003). To see what goes wrong with the likelihood ratio method,
recall that the likelihood ratio estimator is based on the formula

d

dS0
E(ST −K)+ = E(ST −K)+

WT

S0σ
√

T
.

While the weight in the expectation on the right-hand side enables us to remove the
derivative, it also introduces extra variance: The variable (ST − K)+WT gets very
large when WT is large. We could use the localisation methods described in Section
5.4 to minimize this effect, but in reality, the likelihood ratio method simply is not
suited to this particular problem. When considering the delta of a digital option, we
will see a situation where the likelihood ratio and localised likelihood ratio methods
provide effective results.

The delta of a digital option. Our final numerical experiment for the Black-Scholes
model is the evaluation of the delta for a digital option. The methods which are a
priori at our disposal are that of finite difference, pathwise differentiation and likelihood
ratio. However, in this case, the pathwise differentiation method cannot be applied:
Even though 1[K,∞)(ST ) is almost surely differentiable for any initial condition, the
derivative is also almost surely zero, so the pathwise differentiation method yields a
delta for the digital option of zero, which is clearly nonsense. We conclude that the
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interchange of differentiation and integration required for application of the pathwise
differentiation method is not justified. Intuitively, this is because the payoff is not
Lipschitz. We are therefore left with the finite difference method and the likelihood
ratio method. We implement these, and we also implement a localised version of the
likelihood ratio method. Finally, we also consider a localised likelihood ratio estimator
with antithetic and stratified sampling.

The finite difference and likelihood ratio methods are implemented as for the call
delta. We will discuss the details of the localisation of the likelihood method, where
we proceed as described in Section 5.4. Let f(x) = 1[K,∞)(x) be the digital payoff.
Our goal is to make a decomposition of the form f(x) = hε(x) + (f − hε)(x), where
f − hε is reasonably smooth and hε has small support and contains the discontinuity
of the payoff. Led by Glasserman (2003), Section 7.3, we define hε by the relation

f(x)− hε(x) = min
{

1− 1
2ε

max{0, x−K + ε}
}

We have in this way ensured that f − hε is continuous. We then obtain

hε(x) = 1[K,∞)(x)(K − ε− x)− + 1(−∞,K)(K + ε− x)+.

hε is a function with small support containing the discontinuity of the payoff. f − hε

is continuous. See Figure 5.7 for illustrations of the decomposition of the payoff.
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Figure 5.7: From left to right: The payoff of a digital option, the smoothed payoff
f − hε and the jump part hε.

The likelihood ratio method applied to the hε term then yields

∂

∂S0
E(ST −K)+ =

∂

∂S0
Ehε(ST ) +

∂

∂S0
E(f − hε)(ST )

= Ehε(ST )
WT

S0σ
√

T
+

∂

∂S0
E(f − hε)(ST ).
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We will use pathwise differentiation on the second term. f − hε is almost surely
differentiable for any initial condition with ∂

∂S0
(f − hε)(ST ) = 1

2ε1(|ST−K|<ε). Note
that f − hε is Lipschitz with constant 1

2ε , and therefore

|(f − hε)(ST (S0 + h))− (f − hε)(ST (S0))| ≤ 1
2ε
|ST (S0 + h)− ST (S0)|

≤ 1
2ε
|h| exp

((
r − 1

2
σ2

)
T + σWT

)
,

so the interchange of differentiation and integration is justified, and we finally obtain

∂

∂S0
E(ST −K)+ = Ehε(ST )

WT

S0σ
√

T
+ E1(|ST−K|<ε)

ST

2εS0
,

which forms the basis of the localised likelihood ratio / pathwise estimator. The stan-
dard deviations of all of the estimators are compared in Figure 5.8. The picture is very
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Figure 5.8: Comparison of standard deviations of Monte Carlo estimators for the delta
of a digital option in the Black-Scholes model.

different from what we saw for the delta of the call. The likelihood ratio beats the
finite difference method even for the non-localised case. Localisation only improves ef-
fectivity further, and the combination with antithetic and stratified sampling yields an
estimator whose efficiency is a tremendous improvement over the plain finite difference
estimator.
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Method Improvement factor
Call price

Plain MC 1.0
Antithetic 1.2-1.8

Control variates 1.7-2.2
Stratified 7-12
Combined 14-22

OTM Call price
Plain MC 1.0

Importance sampling 20-37
Combined 69-132

Call delta
Plain finite difference 1.0

Pathwise 0.8-1.5
Likelihood ratio 0.3-0.5

Combined 9-14
Digital delta

Plain finite difference 1.0
Likelihood ratio 5-10

Localised likelihood ratio 16-29
Combined 122-205

Table 5.1: Comparison of results for estimation of the call price, call delta and digital
delta in the Black-Scholes model.

Conclusions. We have now analyzed various Monte Carlo methods for the price of
a call, the delta of a call and the delta of a digital in the context of the Black-Scholes
estimator. The overarching conclusion of our efforts is that when applied properly,
using more than just plain Monte Carlo methods for pricing and plain finite difference
for sensitivities can have a very large payoff.

Before proceeding to our numerical experiments for the Heston model, we compare
the efficiency improvements for the various methods. Table 5.5 shows the factor of
improvement for the standard deviations for the various methods implemented com-
pared to the simplest methods. The factors are calculated as the minimal and maximal
factors of improvement for the standard deviation for all computational times.
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We see that in all cases, the addition of antithetic and stratified sampling adds con-
siderably to the cost effectiveness of the estimators in terms of standard deviation per
computing time. In particular, the combination of antithetic and stratified sampling
with the localised likelihood ratio method for the digital delta yields almost unbeliev-
able results. Our results show that this method allows one to calculate the digital
delta with far more precision using the combined method with 2000 simulations than
using the plain finite difference method with 90000 simulations.

5.6 Estimation in the Heston Model

The Heston model is a model for a single financial asset given by

dSt = µS(t) dt +
√

σ(t)S(t)
√

1− ρ2 dW 1(t) +
√

σ(t)S(t)ρ dW 2
t

dσt = κ(θ − σt) dt + ν
√

σt dW 2(t),

where (W 1,W 2) is a two-dimensional Brownian motion, µ, κ, θ and ν are positive
parameters and ρ ∈ (−1, 1). We call this equation the Heston SDE for S and σ.
We also assume given a risk-free asset B based on a constant short rate r. As in
the previous section, our mission is to argue that the model is free of arbitrage and
analyze different estimation methods in this model. In contrast to the previous section,
it is not obvious that there exists a solution (S, σ) to the pair of SDEs describing the
model. The question of arbitrage is also considerably more difficult than in the previous
section. In order not to get carried away by too much theory, we will without proof
apply some results from the theory of SDEs to obtain the results necessary for our
purposes.

Theorem 5.6.1. Let κ, θ and ν be positive numbers. Assume that 2κθ ≥ ν2. The
SDE given by dσt = κ(θ − σt) dt + ν

√
σ+

t dWt has a weak solution, unique in law,
and the solution is strictly positive. In particular, the solution also satisfies the SDE
dσt = κ(θ − σt) dt + ν

√
σt dWt.

Comment 5.6.2 The process solving the SDE is known as the Cox-Ingersoll-Ross
process, from Cox, Ingersoll & Ross (1985). The criterion 2κθ ≥ ν2 ensures that the
mean reversion level θ is sufficiently large in comparison to the volatility so that the
variability of the solution cannot drive the process below zero. ◦

Proof. The existence of a positive weak solution is proved in Example 11.8 of Jacobsen
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(1989). To prove uniqueness in law, we use the Yamada-Watanabe uniqueness theorem,
Theorem V.40.1 of Rogers & Williams (2000b). This result states that the SDE is
unique in law if the drift cofficient is Lipschitz and the volatility coefficient satisfies
(σ(x) − σ(y))2 ≤ ρ(|x − y|) for some ρ : [0,∞) → [0,∞) with

∫∞
0

1
ρ(x) dx infinite. In

our case, the drift is µ(x) = κ(θ − x), which is clearly Lipschitz as it has constant
derivative. For the volatility, we have σ(x) =

√
x+. We put ρ(x) = x and note that

for 0 ≤ x ≤ y,

(σ(x)− σ(y))2 = x− 2
√

x
√

y + y ≤ y − x = ρ(|x− y|).

For x, y ≤ 0, we clearly also have (σ(x)− σ(y))2 = 0 ≤ ρ(|x− y|). Finally, in the case
x ≤ 0 ≤ y we find (σ(x)− σ(y))2 = y ≤ ρ(|x− y|). We conclude that for any x, y ∈ R,
(σ(x)−σ(y))2 ≤ ρ(|x−y|). Obviously, ρ satisfies the integrability criterion. Thus, the
hypotheses of the Yamada-Watanabe theorem are satisfied, and we have uniqueness
in law.

With Theorem 5.6.1 in hand, we can conclude that the volatility process of the Heston
model exists and is positive if 2κθ ≥ ν2. By positivity, we can also take its square root.
Therefore, the SDE for the financial instrument in the Heston SDE is well-defined, and
by Lemma 3.7.1, there exists a process S solving it. Because of these considerations,
we shall in the following always assume 2κθ ≥ ν2.

Next, we consider the question of arbitrage. Because the volatility is stochastic, we
cannot directly apply the criterions of Section 5.1. With a bit of work, however, we
can use the results to obtain the desired conclusion.

Theorem 5.6.3. The Heston model is free of arbitrage, and for any T > 0 there is a
T -EMM Q yielding the dynamics on [0, T ] given by

dSt = rS(t) dt +
√

σ(t)S(t)
√

1− ρ2 dW 1(t) +
√

σ(t)S(t)ρ dW 2
t

dσt = κ(θ − σt) dt + ν
√

σt dW 2(t),

that is, the dynamics for the volatility is preserved, and the drift for the instrument is
changed from µ to r.

Proof. We wish to use Corollary 5.1.8 to prove freedom from arbitrage. We therefore
need to analyze the equation

µ− r =
√

σt

√
1− ρ2λ1(t) +

√
σtρλ2(t).
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To solve this, we put λ2 = 0. The equation reduces to µ− r = σt

√
1− ρ2λ(t), where

we for notational simplicity have removed the subscript from the lambda. Since σ is
positive, this equation has a unique solution given by

λt =
µ− r√

1− ρ2
√

σt

.

Since σ is a standard process, it is clear that λ is progressive. By continuity, λ is locally
bounded and therefore in L2(W ). By Corollary 5.1.8, if we can prove that E(M) is
a martingale with Mt = − ∫ t

0
λt dW 1

t , the market is free of arbitrage. It is then clear
that the Q-dynamics of S and σ are as stated in the theorem.

To this end, it will by Lemma 3.8.6 suffice to show that EE(M)t = 1 for all t ≥ 0. Let
t ≥ 0 be given, let τn = inf{s ≥ 0||λs| ≥ n}. Since λ is continuous, τn increases to
infinity and λτn is bounded. Then [Mτn∧t]∞ =

∫ t

0
(λτn

s )2 ds is bounded, so the Novikov
criterion applies to show that E(Mτn∧t) is a uniformly integrable martingale for any
t ≥ 0.

Next, note that since τn increases, τn ≥ t from a point onwards and E(M) is non-
negative, the variables E(M)t1(τn≥t) converge upwards to E(M)t. By monotone con-
vergence, EE(M)t = limn EE(M)t1(τn≥t). But E(M)t1(τn≥t) = E(Mτn∧t)∞1(τn≥t), so
letting Qn be the measure such that dQn

∞
dP∞

= E(Mτn∧t)∞, we may now conclude

EE(M)t = lim
n

EE(M)t1(τn≥t) = lim
n

EE(Mτn∧t)∞1(τn≥t) = lim
n

Qn(τn ≥ t).

We need to show that the latter limit is equal to one. To do so, we first show that
Qn(τn ≥ t) = P (τn ≥ t). Under Qn, we know from Girsanov’s theorem that the
process (W 1

t +
∫ t

0
λs1[0,τn∧t](s) ds, W 2

t ) is a Ft Brownian motion. In particular, W 2 is
a Ft Brownian motion under Qn for all n. Now, we know that under P , σ satisfies

σt = σ0 +
∫ t

0

κ(θ − σs) ds +
∫ t

0

ν
√

σs dW 2
s .

By Theorem 3.8.4, integrals under P and Qn are the same. Since ν
√

σs is continuous,
it is integrable both under P and Qn, and therefore σ also satisfies the above equa-
tion under the set-up with the Qn Ft Brownian motion W 2. Since the SDE satisfies
uniqueness in law by Theorem 5.6.1, the Qn distribution of σ must be the same as
the P distribution. Since λ is a transformation of σ and τn is a transformation of λ,
we conclude that the distribution of τn is the same under Qn and P . In particular,
Qn(τn ≥ t) = P (τn ≥ t). Since τn tends almost surely to infinity, limn P (τn ≥ t) = 1.
Combining this with our earlier findings, we conclude EE(M)t = 1. Therefore, by
Lemma 3.8.6, E(M) is a martingale and by Corollary 5.1.8, the market is free of
arbitrage.
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We will now discuss estimating the digital delta in the Heston model. Fix a maturity
time T . Our first objective is to find out how to simulate values from ST . In the Black-
Scholes model, this was a trivial question as the stock price then followed a scaled
lognormal distribution. For the Heston model, there is no simple way to simulate from
ST , we need to discretise the SDE. Before considering how to do this, we will rewrite
the SDE to a form better suited for discretisation. Define Xt = log St, Itô’s lemma in
the form of Lemma 3.6.4 yields

dXt =
1
St

dSt − 1
2S2

t

d[S]t

= r dt +
√

σt

√
1− ρ2 dW 1

t +
√

σtρ dW 2
t −

1
2
σt dt,

with X0 = log S0. In other words, in order to simulate values of ST , it will suffice to
consider the SDE

dXt =
(

r − 1
2
σt

)
dt +

√
σt

√
1− ρ2 dW 1

t +
√

σtρ dW 2
t

dσt = κ(θ − σt) dt + ν
√

σt dW 2(t),

find a way to simulate from XT and then take the exponent of XT to obtain a simu-
lation from ST . A discretisation of the above set of SDEs will yield a way to simulate
from a distribution approximating that of XT . Such a discretisation consists of defin-
ing discrete processes X ′

n∆ and σ′n∆ for n ≤ N with N∆ = T such that the distribution
of X ′(T ) approximates that of X(T ). There are several ways to do this. Andersen
(2008) provides a useful overview. We will consider two methods: The full trunca-
tion modified Euler scheme and a scheme with exact simulation of the volatility. For
brevity, we will denote the full truncation modified Euler scheme as the FT scheme,
short for full truncation, and we will call the other scheme the SE scheme, short for
semi-exact.

The FT scheme. We first describe the modified Euler scheme. In Lord et al. (2006),
several ways of discretising the CIR process are considered, and the FT scheme is
found to be the one introducing the least bias. Let Z1 and Z2 be discrete processes
on {0, ∆, . . . , N∆} of independent standard normal variables, the FT scheme is the
discretisation defined by putting X ′(0) = X0, σ′(0) = σ0 and

X ′
(n+1)∆ = X ′

n∆ +
(

r − 1
2
σ′n∆

)
∆ +

√
σ′+n∆

√
1− ρ2

√
∆Z1

n∆ +
√

σ′+n∆ρ
√

∆Z1
n∆

σ′(n+1)∆ = σ′n∆ + κ(θ − σ′+n∆) + ν
√

σ′+n∆

√
∆Z2

n∆.

The discretisation means that the volatility process σ′ can turn negative. In this case,
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there is an upwards drift of rate κθ. Taking positive parts ensure that the square roots
are well-defined.

The SE scheme. The SE scheme takes advantage of the fact that the transition
probability of the CIR process is a scaled noncentral χ2 distribution. More explicitly,
the distribution of σt+∆ given σ∆ = v is a scaled noncentral χ2 distribution with scale
ν2

4κ (1− e−κ∆), non-centrality parameter 4vκe−κ∆

ν2(1−e−κ∆)
and degrees of freedom 4θκ

ν2 . That
this is the case is a folklore result, although it is quite unclear where to find a proof
of the result. In Feller (1951), Lemma 9, the Fokker-Planck equation for the SDE
is solved, yielding the density of the noncentral χ2 distribution. It would then be
reasonable to expect that one might obtain a complete proof by using some results on
when the solution to the Fokker-Planck equation in fact is the transition density of the
solution. In any case, the result allows exact simulation of values of the CIR process.
Thus, we can define σ′ by letting the conditional distribution of σ′(n+1)∆ given σ′n∆ be
the noncentral χ2 distribution defined above. This defines a discrete approximation of
σ. We will use this to obtain a discrete approximation of the price process. To do so,
we first note that

Xt+∆ −Xt = r∆− 1
2

∫ t+∆

t

σu du +
√

1− ρ2

∫ t+∆

t

√
σu dW 1

u + ρ

∫ t+∆

t

√
σu dW 2

u .

The process W 2 is correlated with σ. Since we desire to simulate directly from the
transition probabilities for σ, our discretisation scheme cannot depend on this corre-
lation. To remove the dW 2 integral, we note that

σt+∆ − σt =
∫ t+∆

t

κ(θ − σu) du + ν

∫ t+∆

t

√
σu dW 2

u .

Isolating the last integral and substituting, we find

Xt+∆ −Xt

= r∆−
∫ t+∆

t

σu

2
+

ρκ

ν
(θ − σu) dt +

√
1− ρ2

∫ t+∆

t

√
σu dW 1

u +
ρ(σt+∆ − σt)

ν

= r∆− ρκθ∆
ν

+
ρ(σt+∆ − σt)

ν
+

(
ρκ

ν
− 1

2

) ∫ t+∆

t

σu du +
√

1− ρ2

∫ t+∆

t

√
σu dW 1

u .

The right-hand side depends only on the joint distributions of σu and W 1. Since
σu and W 1 are independent, this is an important simplification compared to our
earlier expression, which included an integral with respect to W 2. Because of the
independence, the conditional distribution of

∫ t+∆

t

√
σu dW 1

u given σ is normal with
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mean zero and variance
∫ t+∆

t
σu du. We now make the approximations

∫ t+∆

t

σu du ≈ σt+∆
∆
2

+ σt
∆
2

∫ t+∆

t

√
σu dW 1

u ≈
√

σt+∆
∆
2

+ σt
∆
2

1√
∆

(W 1
t+∆ −W 1

t ).

Inserting these in our equation for Xt+∆, we obtain

Xt+∆ ≈ Xt + r∆− ρκθ∆
ν

+
ρ(σt+∆ − σt)

ν

+
(

ρκ

ν
− 1

2

)
∆(σt+∆ + σt)

2
+

√
1− ρ2

√
σt+∆ + σt

2
(W 1

t+∆ −W 1
t )

= Xt +
(

r − ρκθ

ν

)
∆ +

(
∆
2

(
ρκ

ν
− 1

2

)
− ρ

ν

)
σt

+
(

∆
2

(
ρκ

ν
− 1

2

)
+

ρ

ν

)
σt+∆ +

√
(1− ρ2)(σt+∆ + σt)

2
(W 1

t+∆ −W 1
t ).

We are thus lead to defining the discretisation scheme X ′ for X by

X ′
(n+1)∆ = X ′

n∆ + K0 + K1σ
′
n∆ + K2σ

′
(n+1)∆ +

√
K3(σ′(n+1)∆ + σ′n∆)Zn,

where Zn is a process of independent standard normal variables on {0,∆, . . . , N∆}
independent of σ′ and

K0 =
(

r − ρκθ

ν

)
∆

K1 =
∆
2

(
ρκ

ν
− 1

2

)
− ρ

ν

K2 =
∆
2

(
ρκ

ν
− 1

2

)
+

ρ

ν

K3 =
∆(1− ρ2)

2
.

Modulo a short rate and some weights in the discretisation of the integrals, this is the
same as obtained in Andersen (2008), page 20. To sum up, the SE scheme defines the
approximation σ′ to σ by directly defining the conditional distributions of the process
using the transition probabilities. The approximation X ′ to X is then obtained by

X ′
(n+1)∆ = X ′

n∆ + K0 + K1σ
′
n∆ + K2σ

′
(n+1)∆ +

√
K3(σ′(n+1)∆ + σ′n∆)Zn,

where Zn is a process of independent standard normal variables on {0, ∆, . . . , N∆},
independent of σ′. Note that while the FT scheme simulates a discretisation of the
two-dimensional process (W 1,W 2), the SE scheme simulates only a discretisation of
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W 1. This will be an important point when comparing our Malliavin estimator with
the one obtained in Benhamou (2001). Also note that because of the exact simulation
of the root volatility in the SE scheme, σ′ can never reach zero, but in the FT scheme,
it is quite probable that σ′ hits zero. This will be important for the implementation
of the Malliavin estimator.

Performance of the schemes. We will now see how well each of these two schemes
can approximate the true distribution of ST . As we have no way to obtain exact sim-
ulations from the distribution, we must contend ourselves with checking convergence
and compare results from each scheme. We will use S0 = 100, σ0 = 0.04, r = 0.04,
κ = 2, θ = 0.04, ν = 0.4, ρ = 0.3 and T = 1 and these parameter values will be
held constant throughout all of this section unless stated otherwise. Figure 5.9 shows
density estimates of ST for each of the two schemes, using 2, 5, 50 and 100 steps. The
figure shows that both schemes seem to converge to some very similar distributions.
Most of the error in the discretisations seem to come from the top shape of the hump,
with the SE scheme converging quicker than the FT scheme. This is not surprising,
considering that the SE scheme uses the exact distribution for the volatility, while
the FT scheme only has an approximation. Both the schemes seem to have achieved
stability at least at the 50-step discretisation.
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Figure 5.9: Density estimates for the FT and SE schemes based on 80000 simulations.

Next, we compare call pricing under each of the schemes. In Heston (1993), an ana-
lytical expression for the Fourier transform of the survival function of ST is obtained,
and it is explained how this can be inverted and used to obtain call prices in the Heston
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model. These results greatly contribute to the popularity of the Heston model and
its offspring. We use the pricer at http://kluge.in-chemnitz.de/tools/pricer to obtain
accurate values for call prices. This pricer seems to be reliable and is also used for the
numerical experiments in Alòs & Ewald (2008). Using strike 104 yields a call price of
7.71175.

We want to see how the call prices obtained using Monte Carlo with each of the
two schemes compare to this. The purpose of this is both to check how much bias is
introduced by the discretisation and to check that our fundamental simulation routines
work as they are supposed to. We will at the same time also check the functionality
of sampling from each of the schemes using latin hypercube sampling and antithetic
sampling. We have explained earlier how antithetic sampling works, but we have
not mentioned latin hypercube sampling. We will not explain this method in detail,
suffice it to say that it is can be thought of as a generalization of stratified sampling
for high-dimensional problems, see Glasserman (2003), Section 4.4.

In the left graph of Figure 5.10, we compare the relative errors of call prices for each
of the two schemes with and without latin hypercube and antithetic sampling, and
we compare the standard deviations. We use discretisations steps from 10 to 100
and consider 300 replications of the estimator, each estimate based on 20000 samples.
We see that as expected, each of the methods yield prices which fit well with the
true value. It seems that less than 50 steps yields some inaccuracy in excess of the
expected variability, with the 10-step results giving bias which is significantly larger
than those of the observations for higher levels of discretisation. However, the relative
error never exceeds 1%. In reality, models are inaccurate anyway, so this bias would be
unimportant in practical settings. In other words, for practical applications, it would
seem that 20 steps would by sufficient for the contract under investigation.

In the right graph, we compare standard deviation times computation time. This
is a general measure of efficiency, with low values corresponding to high efficiency.
We see that the efficiency decreases as the number of discretisation steps increases.
This is not particularly surprising, but an important point nonetheless: The higher
level of discretisation means that each sample from ST takes longer to generate, but
since the number of samples is held constant and the change in the distribution is
minuscule, the standard deviation does not decrease. Thus, the standard deviation
times computational time will increase as the number of discretisation steps increases,
lowering performance. Therefore, the choice of number of discretisation steps boils
down to choosing between optimising bias and optimising standard deviation times
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computational time.

Note that the right graph cannot be used to measure the efficiency of latin hypercube
and antithetic sampling, as the computational time is not held constant. However,
experimental results show an improvement factor of around 1.4. This is very moderate
compared to the improvement factors found for antithetic and stratified sampling in
the previous section. The reason for this is probably that the transformation from
the driving normal distributions to the final ST sample is very complex, and the latin
hypercube sampling basically just stratifies in a very simple manner. To obtain the
same type of efficiency gains for the Heston model as in the Black-Scholes model, it will
probably be necessary to implement a more sophisticated form of stratified sampling,
such as terminal stratification or one of the other methods discussed in Subsection
4.3.2 of Glasserman (2003).
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Figure 5.10: Left: Relative errors for call prices calculated using the FT and SE
schemes with and without latin hypercube sampling and antithetic sampling. Right:
Standard deviations times computational time.

Comparison of methods for calculating the digital delta. Being done with
the introductory investigations of the Heston model, we now proceed to the main
point of this section, which is the comparison of the Malliavin and localised Malliavin
methods with the finite difference method. Note that we cannot directly compare
these methods with the likelihood ratio and pathwise differentiation methods as in
the previous section, as the likelihood ratio method does not apply directly to the
Heston model (see, however, the arguments outlined in Glasserman (2003), page 414
or Chen & Glasserman (2006), for application of the likelihood ratio method to the
discretisation of the Heston model) and the pathwise differentiation method does not
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apply to the digital delta. In the remainder of this section, we will always sample from
our two schemes using latin hypercube sampling and antithetic sampling.

We consider a digital option with strike 104. Let f denote the corresponding payoff
function. As described above, we have six methods to consider: The finite difference
method, the Malliavin method and the localised Mallivin method, each combined with
one of the two simulation schemes. In Section 5.4, we found the basis of the Malliavin
method through the identity

∂

∂S0
Ef(ST ) = E

(
f(ST )

1
S0T

∫ T

0

1
√

σt

√
1− ρ2

dW 1
t

)
,

where we are using
√

σt instead of σt because in our model formulation, σt is the
root volatility and not the ordinary volatility. The localised Malliavin method is then
obtained by decomposing the payoff in two parts and applying the Malliavin method
to one part and the pathwise differentiation method to the other, as was also done
in Section 5.5. One problem with this is that we do not know how to sample from
the stochastic integral in the expectation above. Instead, we have to make to with an
approximation. Based on the theory of Chapter 3, we would expect that a reasonable
approximation of an integral of the form

∫ T

0
Hs dW 1

s is

∫ T

0

Hs dW 1
s =

n∑

k=1

Htk−1(Wtk
−Wtk−1),

where it is essential that we are using forward increments and not backwards incre-
ments in the Riemann sum. With X ′ and σ′ denoting the discretised versions of X

and σ and Z1 denoting the driving Brownian motion for the asset price process, it is
then natural to consider the approximation

∂

∂S0
Ef(ST ) ≈ E


f

(
eX′

T

) 1

eX′
0T

√
1− ρ2

N∑

k=1

√
∆Zk∆√
σ′(k−1)∆


 .

This works well when using the SE scheme, where we know that σ′ is positive. However,
if we are using the FT scheme, we have no such guarantee, and the above is not well-
defined. In this case, then, we resort to substituting max{σ′(k−1)∆, ε} for σ′(k−1)∆ in
the sum, where ε is some small positive number. Our experimental results show that
using an ε which is too small such as 0.00000001 can lead to considerable numerical
instability. We use 0.0001, this leads to stable results and reasonable efficiency.

We are now ready for the numerical experiments. We begin by investigating the bias
of our estimators. We expect two sources of bias. First, there is an inherent bias
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from the sampling of ST since we are only sampling from a distribution approximating
that of ST . Second, each of the methods involve certain approximations - the finite
difference method approximates the derivative by a finite difference, and the Malliavin
estimators approximate the Itô integral by a sum.

In Figure 5.11, we have plotted the means for each of the six methods. We use 300
replications of estimators based on samples of size 1000 to 29500 with increments of
1500. We repeat the experiment for a 15-step and a 100-step discretisation. We see
that in the 15-step experiment, there is a considerable variation in the means, but this
variation is almost gone in the 100-step experiment. Expecting that the finite differ-
ence method produces the least bias, we obtain from the experiment an approximate
value for the digital delta of 0.02132436, we will use this value as a benchmark. Note
that we could also have used the semi-analytical results from Heston (1993) to ob-
tain benchmark values, however, the results from the finite difference method will be
sufficient for our needs. Using this benchmark, we find that the Malliavin methods in
the 15-step experiment yields average relative errors of -6.8% and 7.7% percent for the
FT and SE schemes, respectively. The localised methods have average relative errors
of -3.3% and 3.7%, while the finite difference relative errors are less than 0.1%. In the
100-step experiment, the Malliavin methods have average relative errors of -0.8% and
1.9% for the FT and SE schemes, respectively, while the localised Malliavin methods
have average relative errors of -0.3% and 0.9%, respectively. We conclude that it would
seem that all of our estimators are asymptotically unbiased.
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Figure 5.11: Estimated estimator means for estimating the digital delta. 15-step
discretisation on the left, 100-step discretisation on the right.
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Next, we consider standard deviation. The results can be found in Figure 5.12. For
both the 15-step and 100-step experiments and both the FT and SE schemes, we see
that the Malliavin method is superior to the finite difference method and the localised
Malliavin method is superior to the ordinary Malliavin method.

For the 15-step experiment, the SE scheme yields the better performance, while the
situation is reversed for the 100-step experiment. The explanation for this probably
has something to do with the FT scheme being faster than the SE scheme since it
is faster to generate normal distributions than noncentral χ2 distributions. Thus, for
fine discretisations, the resulting distributions of ST are nearly the same, but the FT
scheme is computationally faster.
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Figure 5.12: Estimated estimator standard deviations for estimating the digital delta.
15-step discretisation on the left, 100-step discretisation on the right.

The difference between our results and those of Benhamou (2001). We
mentioned in Section 5.4 that the expression we have obtained for the Malliavin method
is not the same as is obtained in Benhamou (2001). We will now explain what exactly
the difference is and investigate how this difference manifests itself in practice.

We will first detail the model description and corresponding Malliavin estimator used
by ourselves and by Benhamou (2001). Our description of the Heston model and the
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corresponding Malliavin estimator is

dSt = µS(t) dt +
√

σ(t)S(t)
√

1− ρ2 dW 1(t) +
√

σ(t)S(t)ρ dW 2
t

dσt = κ(θ − σt) dt + ν
√

σt dW 2(t)

∂

∂S0
Ef(ST ) = E

(
f(ST )

1
S0T

∫ T

0

1
√

σt

√
1− ρ2

dW 1
t

)
,

where (W 1, W 2) is a two-dimensional Brownian motion. In contrast to this, Benhamou
(2001) list the model description and Malliavin estimator as

dSt = µS(t) dt + σ(t)S(t) dB1(t)

dσ2
t = κ(θ − σ2

t ) dt + νσt dB2(t)

∂

∂S0
Ef(ST ) = E

(
f(ST )

1
S0T

∫ T

0

1
σt

dB1
t

)
,

where (B1, B2) is a two-dimensional Brownian motion with correlation ρ. Rewriting
this with our model formulation, we obtain

dSt = µS(t) dt +
√

σ(t)S(t)
√

1− ρ2 dW 1(t) +
√

σ(t)S(t)ρ dW 2
t

dσt = κ(θ − σt) dt + ν
√

σt dW 2(t)

∂

∂S0
Ef(ST ) = E

(
f(ST )

1
S0T

(√
1− ρ2

∫ T

0

1√
σt

dW 1
t + ρ

∫ T

0

1√
σt

dW 2
t

))
.

Obviously, there seems to be some difference here. The two expressions for the Malli-
avin estimator are equal in the case of zero correlation, but different whenever there
is nonzero correlation. We will now see how this difference manifests itself when cal-
culating the digital delta. We will compare the results of the estimator of Benhamou
(2001) with our estimators and the finite difference estimator. Since the estimator of
Benhamou (2001) involves an integral with respect to both W 1 and W 2, we cannot
use the SE scheme with this method. We therefore restrict ourselves to comparing the
Malliavin estimator of Benhamou (2001) under the FT scheme with our Malliavin
estimator under both the FT and SE schemes. Finally, we also consider the finite
difference method under the SE scheme. Since we have already seen that the finite
difference method is quite insensitive to the choice of discretisation scheme, it should
be unnecessary to consider also the finite difference method under the FT scheme.

We compare the digital delta estimators when the correlation varies between -0.95 and
0.95. We use 300 replications of estimators based on 20000 simulations each. The
results can be seen in the left graph of Figure 5.13. As expected, the results from
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Benhamou (2001) fits with our results in the case of zero correlation. However, it is
quite obvious that when the correlation is nonzero, in particular when there is very
strong positive or negative correlation, the estimator from Benhamou (2001) does not
fit with the otherwise very reliable finite difference estimator, whereas our Malliavin
estimator works well.

To do a more formal check that there is an actual difference, we have in the right
graph of Figure 5.13 plotted density estimates for the finite difference estimator and
the Benhamou estimator for the case of correlation −0.95. The thin lines are moment-
matched normal densities. We see that the estimators are approximately normal, with
the finite difference estimator having some minor fluctuations in the right tail. It
would therefore be reasonable to use the Welch t-test for testing equality of means for
normal distributions with unequal variances to test whether the two estimators have
different means. The p-value of the test comes out less than 10−15. For comparison,
when using the same test to compare our FT scheme based Malliavin estimator with
the finite difference estimator, we obtain a p-value of 71%. This strongly suggests that
even when taking the bias from the approximation to the Itô integral in the Benhamou
estimator into account, the Benhamou estimator does not yield the correct value of
the digital delta.
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Figure 5.13: Left: Comparison of the estimator from Benhamou (2001) with our
Malliavin estimators and a finite difference estimator. Right: Density plots for the
finite difference and Benhamou estimators for correlation -0.95. Thick lines are density
estimates, thin lines are normal approximations.
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Method Improvement factor
15-step digital delta

FT scheme, finite difference 1.0
SE scheme, finite difference 0.9-1.1

FT scheme, Malliavin 1.0-1.4
SE scheme, Malliavin 1.0-2.5

FT scheme, localised Malliavin 1.6-2.4
SE scheme, localised Malliavin 2.6-3.8

100-step digital delta
FT scheme, finite difference 1.0
SE scheme, finite difference 0.9-1.1

FT scheme, Malliavin 2.3-3.1
SE scheme, Malliavin 1.3-2.4

FT scheme, localised Malliavin 3.4-5.1
SE scheme, localised Malliavin 2.7-3.8

Table 5.2: Comparison of results for estimation of the digital delta in the Heston
model.

Conclusions. We have considered the digital delta for three types of estimators, each
combined with two different discretisation schemes. As in the previous section, we
conclude that methods more exotic than just plain Monte Carlo with finite difference
can make a considerable difference. Table 5.5 shows the factor of improvement for the
standard deviations for the various methods implemented compared to the simplest
methods.

We see that the Malliavin and localised Malliavin methods indeed yield an improve-
ment, but the improvement is somewhat disappointing compared to the results we
obtained for the Black-Scholes model, where the likelihood ratio and localised likeli-
hood ratio methods yielded improvement factors for the digital delta of respectively 5
to 10 and 16 to 29. It is difficult to say why the improvement factors are so small in
this case. The Malliavin method requires no extra simulations, only the calculation of
the approximation to the Itô integral, which is merely a simple sum.

We also again note that while the SE scheme is most effective for the 15-step case,
the FT scheme is most effective for the 100-step scheme. Now, the localised Malliavin
method for the 15-step case yielded a bias of up to 3.7%, which may be a little much.
One might get more satisfactory results using, say, a 30-step discretisation. In this
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case, the SE scheme is probably still the most effective. We conclude that for practical
purposes, the SE scheme should be preferred above the FT scheme.

5.7 Notes

The main references for the material in Section 5.1 are Björk (2004) and Øksendal
(2005), Chapter 12. Other useful resources are Karatzas & Shreve (1998) and Steele
(2000). Our results are not as elegant as they could be because of the limited theory
available to us. In general, the result of Theorem 5.1.5 on the existence of EMMs
and freedom from arbitrage goes both ways, in the sense that under certain regularity
conditions and appropriate concepts of freedom from arbitrage, a market is free from
arbitrage if and only if there exists an EMM. For a precise result, see for example
Delbaen & Schachermayer (1997), Theorem 3. The theory associated with the neces-
sity of the existence of EMMs in order to preclude arbitrage is rather difficult and is
presented in detail in Delbaen & Schachermayer (2008). The simplest introduction to
the field seems to be Levental & Skorohod (1995).

All of the Monte Carlo methods introduced in Section 5.3 and Section 5.4 except the
results on the Malliavin method are described in the excellent Glasserman (2003).
Rigorous resources on the Malliavin calculus applied to calculation of risk numbers
are hard to come by. Even today, the paper Fournié et al. (1999) seems to be the
best, because of its very clear statement of results. Di Nunno et al. (2008) is also
refreshingly explicit. Other papers on the applications of the Malliavin calculus for
calculations of risk numbers are Fournié et al. (2001), which extends the investigations
started in Fournié et al. (1999), and also Benhamou (2001) and Benhamou (2003). A
very interesting paper is Chen & Glasserman (2006), which proves, using results from
the theory of weak convergence of SDEs, that the Malliavin method in a reasonably
large class of cases is equivalent to the limit of an average of likehood ratio estimators
for Euler discretisations of the SDEs under consideration. Montero & Kohatsu-Higa
(2002) provides an informal overview of the role of Malliavin calculus in the calculation
of risk numbers. Nualart (2006), Chapter 6, also provides some resources.

Other applications of the Malliavin calculus in finance such as the calculation of con-
ditional expectations, insider trading and explicit hedging strategies are discussed in
Schröter (2007), Di Nunno et al. (2008), Nualart (2006) and Malliavin & Thalmaier
(2005). Here, Schröter (2007) is very informal, and Malliavin & Thalmaier (2005) is
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extremely difficult to read.

Much of the SDE theory used in the derivation of the Malliavin estimator in Section
5.4 and Fournié et al. (1999) is described in Karatzas & Shreve (1988) and Rogers
& Williams (2000b). Readable results on differentiation of flows is hard to find. The
classical resource is Kunita (1990). A seemingly more readable proof of the main
result can be found in Ikeda & Watanabe (1989), Proposition 2.2 of Chapter V.

Several of the numerical results of Section 5.5 can be compared with those of Fournié
et al. (1999) and Benhamou (2001). Glasserman (2003) is, as usual, a useful general
guide to the effectivity of Monte Carlo methods.

The proof in Section 5.6 that the Heston model does not allow arbitrage is based on
the techniques of Cheridito et al. (2005), specifically the proof of Theorem 1 in that
paper. Numerical results on the performance of Malliavin methods for the calculation
of risk numbers in the Heston model are, puzzlingly, very difficult to find, actually
seemlingly impossible to find. Also, the only paper giving an explicit form of the
Malliavin weight for the Heston model seems to be Benhamou (2001), so it is unclear
whether it is generally understood, as we concluded, that the form given is erroneous.
There are, however, several other papers on applications of the Malliavin calculus to
the Heston model, but these applications are not on the calculation of risk numbers.
See for example Alòs & Ewald (2008).

Pertaining discretisation of the Heston model, Andersen (2008) seems to be the best
resource available, and contains references to many other papers on the subject. For
an curious paper giving a semi-analytical formula for the density of the log of the asset
price in the Heston model, see Dragulescu & Yakovenko (2002). This could perhaps
be useful as a benchmark for the true density.

The methods for calculating risk numbers considered here all have one major advantage
over the finite difference method, an advantage which is not seen in our context. In our
case, we only consider risk numbers with respect to changes in the initial value S0 of the
the underlying asset. Since ST is linear in S0, we can in the finite difference method
reuse our simulations for the estimation of both means by scaling our simulations.
Therefore, in spite of the finite difference method requiring the calculation of two
means instead of just one, as in the other methods we consider, the computational time
spent on simulations is not much different from the other methods. For risk numbers
with respect to general parameters, the connection between ST and the risk number
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variable is not as straightforward, and in such cases we would have to simulate twice as
many variables in the finite difference method as for the other methods for calculating
risk numbers. When having to calculate many different risk numbers, which is often
the case in practice, this observation can have a major impact on computational time.

All of the numerical work in this chapter is done in R. We also considered using
the language OCaml instead, hoping for improvements in both elegance and speed.
However, in the end, the mediocrity of the IDE available for OCaml and the strong
and efficient statistical library available for R made R the better choice.
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Chapter 6

Conclusions

In this chapter, we will discuss the results which we have obtained in all three main
parts of the thesis, and we will consider opportunities for extending this work.

6.1 Discussion of results

We wil discuss the results obtained for stochastic integrals, the Malliavin calculus and
the applications to mathematical finance.

Stochastic integrals. In Chapter 3, we successfully managed to develop the theory
of stochastic integration for integrators of the form At +

∑n
k=1

∫ t

0
Y k

t dW k
t , where A

is a continuous process of finite variation and Y k ∈ L2(W ), and we proved the basic
results of the theory without reference to any external results. However, the increase in
rigor compared to Øksendal (2005) or Steele (2000) came at some price, resulting in
some honestly very tedious work. Furthermore, while we managed to prove Girsanov’s
theorem without reference to external results, the resulting proof was rather long
compared to the modern proofs based on stochastic integration for general continuous
local martingales.

We must therefore conclude that the ideal presentation of the theory would be based
on general continuous local martingales. And with the proof of the existence of the
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quadratic variation of Section C.1, the biggest difficulty of that theory could be con-
veniently separated from the actual development of the integral.

The Malliavin calculus. We presented in Chapter 3 the basic results on the Malli-
avin derivative. While we only managed to cover a very small fraction of the results
in Nualart (2006), we have managed to develop the proofs in much higher detail,
including the development of some results used in the proofs such as Lemma 4.4.19
which curiously are completely absent from other accounts of the theory. The value
of this work is considerable, clarifying the fundamentals of the theory and therefore
paving the way for higher levels of detail in further proofs as well.

Also, the extension of the chain rule proved in Theorem 4.3.5 is an important new
result. Considering how fundamental the chain rule is to the theory, this extension
should make the Malliavin derivative somewhat easier to work with.

Mathematical finance. Chapter 5 contained our work on mathematical finance. We
managed to use the theory developed Chapter 3 to set up a basic class of financial
market models and proved sufficient conditions for absence of arbitrage, demonstrating
that the theory of stochastic integration developed in Chapter 3 was sufficiently rich
to obtain reasonable results. The use of the Theorem 3.8.4 in the proof of Theorem
5.1.5 and the Itô representation theorem in the proof of Theorem 5.1.11 were crucial,
details which are often skipped in other accounts.

We also made an in-depth investigation of different estimation methods for prices
and sensitivities in the Black-Scholes model, documenting the high effectivity of more
advanced Monte Carlo methods and confirming results found in the literature. We
applied the Malliavin methods to the Heston, obtaining new results. We saw that the
efficiency gains seen in the Black-Scholes case could not be sustained in the Heston
model. We also noted a problem with the Malliavin estimator given Benhamou (2001)
and corrected the error.

6.2 Opportunities for further work

All three main parts of the thesis presents considerable oppportunities for further work.
We will now detail some of these.
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Stochastic integration for discontinuous FV processes. It is generally accepted
that while the theory of stochastic integration for continuous semimartingales is some-
what manageable, the corresponding theory for general semimartingales is very diffi-
cult, as can be seen for example in Chapter VI of Rogers & Williams (2000b) or in
Protter (2005). Nonetheless, financial models with jumps are becoming increasingly
popular, see for example Cont & Tankov (2004). It would therefore be convenient to
have a theory of stochastic integration at hand which covers the necessary results. To
this end, we observe that the vast majority of financial models with jumps in use only
uses the addition of a compound poisson process as a driving term in, say, the asset
price. Such a process is of finite variation. Therefore, if it were possible to develop a
theory of stochastic integration for integrators of the form A+M where A is a possibly
discontinuous process of finite variation and M is a continuous local martingale, one
could potentially obtain a simplification of the general theory which would still be ver-
satile enough to cover most financial applications. A theory alike to this is developed
in Chapter 11 of Shreve (2004).

Measurability results. There are several problems relating to measurability prop-
erties in the further theory of the Malliavin calculus. As outlined in Section 4.5, if u

is in the domain of the Skorohod integral with ut ∈ D1,2 for all t ≤ T and there are
measurable versions of (t, s) 7→ Dtus and

∫ T

0
DtusδWs, then

Dt

∫ t

0

usδWs =
∫ T

0

DtusδWs + ut.

It would be useful for the theory if there were general criteria to ensure that all of the
measurability properties necessary for this to hold were satisfied. Another problem
raises its head when considering the Itô-Wiener expansion. Also described in Section
4.5, this is a series expansion for variables F ∈ L2(FT ), stating that there exists square-
integrable deterministic functions fn on ∆n such that we have the L2-summation
formula

F =
∞∑

n=0

n!
∫ T

0

∫ tn

0

· · ·
∫ t3

0

∫ t2

0

fn(t) dW (t1) · · · dW (tn).

Here, it is not trivial to realize that the iterated integrals are well-defined. To see the
nature of the problem, consider defining the single iterated integral

∫ T

0

∫ t2

0

f(t1, t2) dW (t1) dW (t2).

Fix t2 ≤ T . The process
∫ t

0
f(t1, t2) dW (t1) is well-defined if t1 7→ f(t1, t2) is pro-

gressively measurable. However, for varying t2, the processes
∫ t

0
f(t1, t2) dW (t1) are
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based on different integrands, and there is therefore a priori no guarantee that these
can be combined in such a way as to make t2 7→

∫ t2
0

f(t1, t2) dW (t1) progressively
measurable, which is necessary to be able to integrate this process with respect to
the Brownian motion. Thus, it is not clear at all how to make the statement of the
Itô-Wiener expansion rigorous. A further problem is that in the proof of the expansion
based on the Itô representation theorem, it is necessary to know that the integrands
in the representations can be chosen in certain measurable ways.

The simplest problems are those involving the Wiener-Itô expansion. As usual, putting
θ(f) =

∫ T

0
f(t) dWt, θ is a continuous mapping from L2[0, T ] to L2(FT ). Furthermore,

if we let R(X) denote the Itô representation of a variable X ∈ L2(FT ) in the sense
that

X =
∫ T

0

R(X)t dWt,

then R is a continuous linear mapping from L2(FT ) to L2(Σπ[0, T ]). Thus, the prob-
lems related to the Wiener-Itô expansion are both in some sense about iterating con-
tinuous linear operators over L2 spaces. In contrast to this, the problems related to the
Malliavin derivative are in some sense about selecting measurable versions of closed
linear operators over subspaces of L2 spaces.

It is not clear how to solve these problems in general. However, a first step would be to
show a result which for example would allow us to, given a process X indexed by [0, T ]2

and being B[0, T ]2 ⊗ Σπ[0, T ] measurable, select a version of (s, t) 7→ ∫ t

0
X(s, t) dW (t)

which is B[0, T ]2⊗Σπ[0, T ] measurable. Applying this several times in an appropriate
manner could help defining the iterated integrals, and it is also a result of this type
necessary in the Malliavin calculus.

In order to cover all of our cases, let us consider a mapping A : L2(E,E) → L2(K,K)
between two L2 spaces. We endow these L2 spaces with their Borel-σ-algebras B(E)
and B(K) and assume that A is B(E)-B(K) measurable. This obviously covers the
cases from the Wiener-Itô expansion, since continuous mappings are measurable. And
by Corollary, 4.4.16, the Malliavin derivative is continous on Hn for each n ≥ 0,
where L2(FT ) = ⊕∞n=0Hn, leading us to suspect that the Malliavin derivative indeed
is measurable as well on its domain.

Let (D,D) be another measurable space. We will outline how to prove the following
result: If X : D × E → R is D⊗ E measurable such that for each x ∈ D it holds that
X(x, ·) ∈ L2(E,E), there exists a D⊗K measurable version of (x, y) 7→ A(X(x, ·))(y).
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This can be directly applied to obtain measurable versions of stochastic integrands
where only one coordinate is integrated.

Let X : D × E → R be given with the properties stated above. We first define
Y : D → L2(E,E) by putting Y (x)(y) = X(x, y). By a monotone class argument,
we prove that Y is D-B(E) measurable. We can then use that A is measurable to
obtain that x 7→ A(Y (x)) is D-B(K) measurable. Defining Z(x, z) = A(Y (x))(z), Z

is a mapping from D ×K to R. By definition, Z(x, ·) = A(Y (x)) = A(X(x, ·)). We
are done if we can argue that there exists a measurable version of Z. This is the most
difficult part of the argument. It is easy in the case where x 7→ A(Y (x)) is simple.
For the general case, we use that L2 convergence implies almost sure convergence for
a subsequence. Selecting a subsequence for each x in a measurable manner, we can
obtain a measurable version. The argument is something like that found in Protter
(2005), Theorem IV.63. However, the technique of that proof depends on the linearity
of the integral mapping. We need to utilize measurability properties directly, making
the proof more cumbersome.

Risk numbers. In our investigation of the Malliavin method for the Heston model,
we only considered the digital delta. Furthermore, we only applied a few extra Monte
Carlo methods to our routines, namely latin hypercube sampling and antithetic sam-
pling. There are several other methods available, such as those of Fries & Yoshi (2008)
or those detailed in Glasserman (2003), which would be interesting to attempt to apply
to the Heston model.

Furthermore, it would be interesting to investigate the efficiency gains possible for
path-dependent options, both of european, bermudan or american type, and it would
be interesting to extend the results to other models. Here, the extension to models
with jumps poses an extra challenge, as the Malliavin calculus we have developed only
works in the case of Brownian motion. For Malliavin calculus for processes with jumps
such as Lévy processes, see Di Nunno et al. (2008).
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Appendix A

Analysis

In this appendix, we develop the results from pure analysis that we will need. We
will give some main theorems from analysis, and we will consider the basic results
on spaces Lp(µ), C∞c (Rn) and C∞(Rn). We also consider Hermite polynomials and
Hilbert spaces. The appendix is more or less a smorgasbord, containing a large variety
of different results. For some results, references are given to proofs. For other results,
full proofs are given. The reason for using so much energy on these proofs is basically
that there does not seem to be any simple set of sources giving all the necessary results.
Our main sources for the real analysis are Carothers (2000), Berg & Madsen (2001),
Rudin (1987) and Cohn (1980). For Hilbert space theory, we use Rudin (1987),
Hansen (2006) and Meise & Vogt (1997).

A.1 Functions of finite variation

We say that a function F : [0,∞) → R has finite variation if

VF (t) = sup
n∑

k=1

|F (tk)− F (tk−1)|

is finite for all t > 0, where the supremum is taken over all partitions of [0, t]. In this
case, we call VF the variation of F over [0, t]. We will give the basic properties of
functions of finite variation. This will be used when defining the stochastic integral
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for integrators which have paths of finite variation.

Lemma A.1.1. VF is continuous if and only of F is continuous.

Proof. See Carothers (2000), Theorem 13.9.

Theorem A.1.2. There is a unique measure µF such that µF (a, b] = F (b)−F (a) for
any 0 ≤ a ≤ b < ∞.

Proof. See Theorem 3.2.6 of Dudley (2002) for the case where F is monotone. The
general case follows easily by applying the decomposition of F into a difference of
monotone functions.

Lemma A.1.3. If F is continuous, then µF has no atoms.

Proof. This follows directly from the definition of µF given in Theorem A.1.2.

Since functions of finite variation corresponds to measures by Theorem A.1.2, we can
define the integral with respect to a function of finite variation.

Definition A.1.4. We put L1(F ) = L1(µF ) and define, for any function x ∈ L1(F ),∫ t

0
xu dFu =

∫ t

0
xu dµF (u).

Lemma A.1.5. Let F be continuous and of finite variation. If g is continuous, then
g is integrable with respect to F over [0, t], and the Riemann sums

n∑

k=1

g(tk−1)(F (tk)− F (tk−1))

converge to
∫ t

0
g(s) dF (s) as the mesh of the partition tends to zero.

Proof. We have

n∑

k=1

g(tk−1)(F (tk)− F (tk−1)) =
n∑

k=1

g(tk−1)µF ((tk−1, tk]) =
∫ t

0

sn dµF ,

where sn =
∑n

k=1 g(tk−1)1(tk−1,tk]. As the mesh tends to zero, sn tends to g by the
uniform continuity of g on [0, t]. Since g is continous, it is bounded on [0, t]. Therefore,
by dominated convergence,

∫ t

0
sn dµF tends to

∫ t

0
g(s) dµF (s), as desired.
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Lemma A.1.6. If x ∈ L1(F ), then t 7→ ∫ t

0
xu dF (u) has finite variation.

Proof. This follows by decomposing F into a difference between monotone functions
and applying the linearity of the integral in the integrator.

A.2 Some classical results

In this section, we collect a few assorted results. These will be used in basically
every part of the thesis. Gronwall’s lemma is used in the proof of Itô’s representation
theorem, the multidimensional mean value theorem is used in various approximation
arguments, the Lebesgue differentiation theorem, is used in density arguments for the
Itô integral and the duality result on Lp and Lq is used when extending the Malliavin
derivative.

Lemma A.2.1 (Gronwall). Let g, b : [0,∞) → [0,∞) be two measurable mappings
and let a be a nonnegative constant. Let T > 0 and assume

∫ T

0
b(s) ds < ∞. If

g(t) ≤ a +
∫ t

0
g(s)b(s) ds for t ≤ T , then g(t) ≤ a exp(

∫ t

0
b(s) ds) for t ≤ T .

Proof. Define B(t) =
∫ t

0
b(s) ds and G(t) =

∫ t

0
g(s)b(s) ds. Then

d

dt
e−B(t)G(t) = e−B(t)b(t)g(t)−e−B(t)G(t)b(t) = e−B(t)b(t)(g(t)−G(t)) ≤ ae−B(t)b(t)

for t ≤ T . Integrating this equation from 0 to T , we find

e−B(t)G(t) ≤
∫ t

0

ae−B(s)b(s) ds = a
(
1− e−B(t)

)
.

This shows G(t) ≤ a(eB(t) − 1) and therefore

g(t) ≤ a +
∫ t

0

g(s)b(s) ds = a + G(t) ≤ aeB(t),

as was to be proved.

Lemma A.2.2. Let ϕ ∈ C1(R). For any distinct x, y ∈ Rn, there exists ξ on the line
between x and y such that

ϕ(y)− ϕ(x) =
n∑

k=1

∂ϕ

∂xk
(ξk)(yk − xk).



250 Analysis

Proof. Define g : [0, 1] → Rn by g(t) = ty + (1 − t)x. Then, by the ordinary mean
value theorem and the chain rule, for some θ ∈ [0, 1],

f(y)− f(x) = (f ◦ g)(1)− (f ◦ g)(0)

= (f ◦ g)′(θ)

=
n∑

k=1

∂f

∂xk
(g(θ))g′k(θ)

=
n∑

k=1

∂f

∂xk
(θy + (1− θ)x)(yk − xk),

as desired.

Theorem A.2.3 (Lebesgue’s differentiation theorem). Let f ∈ L1(R) and put
F (x) =

∫ x

−∞ f(y) dy. Then F is almost everywhere differentiable with derivative f .

Proof. See Rudin (1987), Theorem 7.11 and Theorem 7.7.

Corollary A.2.4. Let f : R→ R be bounded. Then it holds that

lim
1
1
n

∫ t

t− 1
n

f(x) dx = f(t)

almost everywhere for t ∈ R.

Proof. Consider any bounded interval (a, b), and put g(a,b) = f(x)1(a,b)(x). Then
g ∈ L1(R), and theorem A.2.3 yields for almost all t ∈ (a, b) that

lim
1
1
n

∫ t

t− 1
n

f(x) dx = lim
1
1
n

∫ t

t− 1
n

g(x) dx = g(t) = f(t).

Since a countable union of null sets is again a null set, the conclusion of the lemma
follows.

Theorem A.2.5. Let p, q ≥ 1 be dual exponents and let (E, E , µ) be a measure space.
The dual of Lp(E, E , µ) is isometrically isomorphic to Lq(E, E , µ), and an isometric
isomorphism ϕ : Lq(E, E , µ) → Lp(E, E , µ)′ is given by

ϕ(G)(F ) =
∫

G(x)F (x) dµ(x).

In particular, an element F ∈ Lp(E, E , µ) is almost surely zero if and only if it holds
that

∫
G(x)F (x) dµ(x) = 0 for all G ∈ Lq(E, E , µ).
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Proof. For the duality statement and the isometric isomorphism, see Proposition 13.13
of Meise & Vogt (1997). The last statement of the theorem follows from Proposition
6.10 of Meise & Vogt (1997).

A.3 Dirac families and Urysohn’s lemma

In this section, we wil develop a version of Urysohn’s Lemma for smooth mappings.
We first state the original Urysohn’s Lemma.

Theorem A.3.1 (Urysohn’s Lemma). Let K be a compact set in Rn, and let V be
an open set. Assume K ⊆ V . There exists f ∈ Cc(Rn) such that K ≺ f ≺ V .

Proof. This is proven in Rudin (1987), Theorem 2.12.

The mappings which exist by Theorem A.3.1 are called bump functions. Our goal
is to extend Theorem A.3.1 to show the existence of bump functions which are not
only continuous, but are smooth. To do so, recall that for two Lebesgue integrable
mappings f and g, the convolution f ∗ g is defined by (f ∗ g)(x) =

∫
f(x− y)g(y) dy.

Fundamental results on the convolution operation can be found in Chapter 8 of Rudin
(1987). The convolution of f with g has an averaging effect. The following two results
will allow us to use this averaging effect to smooth out nonsmooth functions, allowing
us to prove the smooth version of Urysohn’s lemma.

Lemma A.3.2. If f : Rn → R is Lebesgue integrable and g ∈ C∞(Rn), then the
convolution f ∗ g is in C∞(Rn).

Proof. By definition, (f ∗ g)(x) =
∫

f(y)g(x − y) dy. Now, since g is differentiable,
g is bounded on bounded sets and therefore, by Theorem 8.14 in Hansen (2004b),
(f ∗g)(x) is differentiable in the k’th direction with ∂

∂xk
(f ∗g)(x) =

∫
f(y) ∂g

∂xk
(x−y) dy.

Here ∂g
∂xk

is in C∞(Rn), so it follows inductively that f ∗ g ∈ C∞(Rn).

Theorem A.3.3 (Dirac family). Let µ be a Radon measure on Rn and let ‖ · ‖ be
any norm on Rn. There exists a family of mappings ψε ∈ C∞(Rn) such that ψε ≥ 0,
suppψε ⊆ Bε(0) and

∫
ψε(x) dµ(x) = 1. Here, Bε(0) is the ε-ball in ‖ · ‖. We call (ψε)

a Dirac family with respect to ‖ · ‖ and µ.
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Proof. Since all norms on Rn are equivalent, it will suffice to prove the result for ‖ · ‖2.
Therefore, Bε(0) will in the following denoted the centered ε-ball in ‖ · ‖2. As seen
in Berg & Madsen (2001), page 190, there exists χ ∈ C∞(Rn) such that 0 ≤ χ ≤ 1
and suppχ ⊆ B1(0). Then χε given by χε(x) = χ(x

ε ) is also in C∞(Rn), 0 ≤ χε ≤ 1
and suppχε ⊆ Bε(0). Since µ is Radon, any open ball in Rn has finite µ-measure, and
therefore χε ∈ L1(µ). Putting ψε = 1

‖χε‖1 χε, ψε then has the desired properties.

Theorem A.3.4 (Smooth Urysohn’s Lemma). Let K be a compact set in Rn, and
let V be an open set. Assume K ⊆ V . There exists f ∈ C∞c (Rn) such that K ≺ f ≺ V .

Proof. By Theorem A.3.1, there exists f ∈ Cc(Rn) such that K ≺ f ≺ V . Let
ε ∈ (0, 1

2 ) and choose δ parrying ε for the uniform continuity of f . Define the sets
K ′ = f−1([1− ε, 1]) and V ′ = f−1(ε,∞).

Since K ≺ f ≺ V , clearly K ⊆ K ′ ⊆ V ′ ⊆ V . Furthermore, K is compact and V is
open. If x is such that ‖y−x‖ ≤ δ for some y ∈ K, then |f(x)−1| = |f(x)−f(y)| ≤ ε

and therefore f(x) ≥ 1 − ε, so x ∈ K ′. On the other hand, if x ∈ V ′ then f(x) > ε,
so if ‖y − x‖ ≤ δ, |f(y) − f(x)| ≤ ε and therefore f(y) > 0, showing y ∈ V . In other
words, Bδ(x) ⊆ V .

Now let g ∈ Cc(Rn) with K ′ ≺ g ≺ V ′ and let h = g ∗ψδ. We claim that h satisfies the
properties in the theorem. By Lemma A.3.2, h ∈ C∞c (Rn). We will show that h ≺ V .
Let x ∈ V , we need to prove that h(x) = 0. We have h(x) =

∫
g(y)ψδ(x− y) dy. Now,

whenever ‖x − y‖ ≤ δ, the integrand is zero because ψδ(x − y) is zero. On the other
hand, if ‖x− y‖ > δ, we must have y /∈ V ′, because if y ∈ V ′, Bδ(y) ⊆ V . Therefore,
g(y) is zero and we again find that the integrand is zero. Thus, h(x) is zero and h ≺ V .

Next, we show that K ≺ h. Let x ∈ K. Whenever ‖y − x‖ ≤ δ, we have y ∈ K ′ and
therefore g(y) is one. On the other hand, whenever ‖y − x‖ > δ, ψδ is zero. Thus,
h(x) =

∫
g(y)ψδ(x− y) dy = 1 and K ≺ h. We conclude K ≺ h ≺ V , as desired.

We are also going to need a version of Urysohn’s lemma for closed sets instead of
compact sets.

Lemma A.3.5. Let F be a closed set in Rn, and let V be an open set. Assume F ⊆ V .
There exists f ∈ C∞(Rn) such that F ≺ f ≺ V .

Proof. Defining f(x) = d(x,V c)
d(x,F )+d(x,V c) , we find that f is continuous and F ≺ f ≺ V .
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Using the same technique as in the proof of Theorem A.3.4, we extend this to provide
smoothness of the bump function.

A.4 Approximation and density results

In this section, we will review an assortment of approximation and density results
which will be used throughout the thesis. In particular the Malliavin calculus makes
good use of various approximation results.

Whenever our approximation results involve smooth functions, we will almost always
apply a Dirac family as a mollifier and take convolutions. The next three results are
applications of this technique, showing how to approximate respectively continuous,
Lipschitz and a class of differentiable mappings.

Lemma A.4.1. Let f ∈ C(Rn), and let ψε be a Dirac family. Then f ∗ ψε converges
uniformly to f on compacts.

Proof. Let M > 0. For any x with ‖x‖2 ≤ M , we have

|f(x)− (f ∗ ψε)(x)| =
∣∣∣∣
∫

f(x)ψε(x− y) dy −
∫

f(y)ψε(x− y) dy

∣∣∣∣

≤
∫
|f(x)− f(y)|ψε(x− y) dy

≤ sup
y∈Bε(x)

|f(x)− f(y)|.

We may therefore conclude

sup
‖x‖2≤M

|f(x)− (f ∗ ψε)(x)| ≤ sup
‖x‖2≤M

sup
y∈Bε(x)

|f(x)− f(y)|.

Since f is continuous, f is uniformly continuous on compact sets. In particular, f is
uniformly continuous on BM+δ(0) for any δ > 0, and therefore the above tends to
zero.

Lemma A.4.2. Let f : Rn → R be a Lipschitz mapping with respect to ‖ · ‖∞ such
that |f(x)− f(y)| ≤ K‖x−y‖∞. There exists a sequence of mappings (gε) in C∞(Rn)
with partial derivatives bounded by K such that gε converges uniformly to f .
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Proof. Let (ψε) be a Dirac family on Rn with respect to ‖ · ‖∞ and define gε = f ∗ψε.
Then gε ∈ C∞(Rn), and we clearly have, with ek the k’th unit vector,

|gε(x + hek)− gε(x)| =
∣∣∣∣
∫

f(x + hek − y)ψε(y) dy −
∫

f(x− y)ψε(y) dy

∣∣∣∣

≤
∫
|f(x + hek − y)− f(x)|ψε(y) dy

≤ Kh.

It follows that gε has partial derivatives bounded by K. It remains to show uniform
convergence of gε to f , but this follows since

|f(x)− gε(x)| =
∣∣∣∣
∫

f(x)ψε(x− y) dy −
∫

f(y)ψε(x− y) dy

∣∣∣∣

≤
∫
|f(x)− f(y)|ψε(x− y) dy

≤ K

∫
‖x− y‖∞ψε(x− y) dy

≤ εK.

The proof is finished.

Lemma A.4.3. Let f ∈ C1(Rn), and assume that f has bounded partial derivatives.
The exists a sequence (gε) ⊆ C∞p (Rn) with the following properties:

1. gε converges uniformly to f .

2. ∂xk
gε converges pointwise to ∂xk

f for k ≤ n.

3. ‖∂xk
g‖∞ ≤ ‖∂xk

f‖∞ for k ≤ n.

Proof. Let (ψε) be a Dirac family on Rn. Define gε = f ∗ ψε. We then have gε ∈
C∞(Rn). We claim that gε satisfies the properties of the lemma.



A.4 Approximation and density results 255

Step 1: Uniform convergence. We find

|f(x)− gε(x)| =
∣∣∣∣
∫

f(x)ψε(x− y) dy −
∫

f(y)ψε(x− y) dy

∣∣∣∣

≤
∫
|f(x)− f(y)|ψε(x− y) dy

≤
∫ ∣∣∣∣∣

n∑

k=1

∂f

∂xk
(ξk)(xk − yk)

∣∣∣∣∣ ψε(x− y) dy

≤ max
k≤n

∥∥∥∥
∂f

∂xk
(ξk)

∥∥∥∥
∞

∫
‖x− y‖1ψε(x− y) dy

≤ √
n max

k≤n

∥∥∥∥
∂f

∂xk
(ξk)

∥∥∥∥
∞

∫
‖x− y‖2ψε(x− y) dy

≤ ε
√

n max
k≤n

∥∥∥∥
∂f

∂xk
(ξk)

∥∥∥∥
∞

,

so gε converges uniformly to f .

Step 2: Pointwise convergence of partial derivatives. We have

∂gε

∂xk
(x) =

∂

∂xk

∫
f(x− y)ψε(y) dy =

∫
∂

∂xk
f(x− y)ψε(y) dy = (∂xk

f) ∗ ψε.

By the same calculations as in the first step, we therefore find

|∂xk
gε(x)− ∂xk

f(x)| ≤
∫
|∂xk

f(x)− ∂xk
f(y)|ψε(x− y) dy

≤ sup
y∈Bε(x)

|∂xk
f(x)− ∂xk

f(y)|,

where Bε(x) denotes the ε-ball around x in ‖·‖2. Continuity of ∂xk
f shows the desired

pointwise convergence.

Step 3: Boundedness of partial derivatives. To show the boundedness condition
on the partial derivatives of gε, we calculate

∣∣∣∣
∂gε

∂xk
(x)

∣∣∣∣ =
∣∣∣∣

∂

∂xk

∫
f(x− y)ψε(y) dy

∣∣∣∣

≤
∫ ∣∣∣∣

∂f

∂xk
(x− y)

∣∣∣∣ ψε(y) dy

≤
∥∥∥∥

∂f

∂xk

∥∥∥∥
∞

,

showing the final claim of the lemma. This also shows gε ∈ C∞p (Rn).
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We now prove that for any Radon measure µ on Rn and any p ≥ 1, the space C∞c (Rn)
is dense in Lp(µ).

Lemma A.4.4. C∞c (Rn) is uniformly dense in Cc(Rn). Furthermore, for any element
f ∈ Cc(Rn), the approximating sequence in C∞c (Rn) can be taken to have a common
compact support.

Proof. Let f ∈ Cc(Rn), and let ψε be a Dirac family on Rn. Let M > 0 be such
that suppf ⊆ BM (0). Put fε = f ∗ ψε. By Lemma A.3.2, fε ∈ C∞(Rn). And since
suppψε ⊆ Bε(0), it holds that for x with ‖x‖2 ≥ M + ε,

fε(x) =
∫

f(y)ψε(x− y) dy =
∫

1BM (0)(y)1Bε(x)(y)(x− y) dy = 0,

so fε has compact support. Therefore fε ∈ C∞c (Rn). By Lemma A.4.1, fε converges
uniformly to f on compacts. Since suppfε ⊆ BM+ε(0), our approximating sequence
has a common compact support. In particular, the uniform convergence on compacts
is actually true uniform convergence. This shows the claims of the lemma.

Theorem A.4.5. Let µ be a Radon measure on Rn. Then C∞c (Rn) is dense in Lp(µ)
for p ≥ 1.

Proof. First note that by combining Theorem 2.14, Theorem 2.18 and Theorem 3.14
of Rudin (1987), we can conclude that Cc(Rn) is dense in Lp(µ). It will therefore
suffice to show that we can approximate elements of Cc(Rn) in Lp(µ) with elements
of C∞c (Rn). Let f ∈ Cc(Rn). By Lemma A.4.4, there exists fn ∈ C∞c (Rn) converging
uniformly to fn, and by the same lemma, we can assume that all the functions fn and
f have the same compact support K. Then,

lim
n

∫
|f(x)− fn(x)|p dµ(x) ≤ lim

n
‖f − fn‖∞µ(K) = 0.

A.5 Hermite polynomials

In this section, we present and prove some basic results on Hermite polynomials. A
source for results such as these is Szegö (1939), Chapter V, where a good deal of
results on Hermite polynomials are gathered. Most results are presented without
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proof, however. Also note that what is called Hermite polynomials in Szegö (1939) is
a little bit different than what is called Hermite polynomials here.

Definition A.5.1. The n’th Hermite polynomial is defined by

Hn(x) = (−1)ne
x2
2

dn

dxn
e−

x2
2 .

We put H0(x) = 1 and H−1(x) = 0.

It is not completely obvious from Definition A.5.1 that the Hermite polynomials are
polynomials at all. Before showing that this is actually the case, we will obtain a
recursion relation for the Hermite polynomials.

Lemma A.5.2. It holds that

exp
(

tx− t2

2

)
=

∞∑
n=0

Hn(x)
n!

tn,

so that for any x, Hn(x) is the n’th coefficient of the Taylor expansion of exp(tx− t2

2 )
as a function of t. In particular,

Hn(x) =
∂n

∂tn
exp

(
tx− t2

2

)∣∣∣∣
t=0

.

Proof. The mapping t 7→ exp(− 1
2 (x − t)2) is obviously entire when considered as a

complex mapping, and therefore given by its Taylor expansion. We then obtain

exp
(

tx− t2

2

)
= exp

(
x2

2
− 1

2
(x− t)2

)

= e
x2
2

∞∑
n=0

tn

n!
dn

dtn
exp

(
−1

2
(x− t)2

)∣∣∣∣
t=0

= e
x2
2

∞∑
n=0

tn

n!
(−1)n dn

dtn
exp

(
−1

2
t2

)∣∣∣∣
t=x

=
∞∑

n=0

tn

n!
e

x2
2 (−1)n dn

dxn
exp

(
−1

2
x2

)

=
∞∑

n=0

Hn(x)
n!

tn.

Lemma A.5.3. It holds that for n ≥ 0, H ′
n(x) = nHn−1(x).
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Proof. We see that

∞∑
n=0

H ′
n(x)
n!

tn =
d

dx

∞∑
n=0

Hn(x)
n!

tn

=
d

dx
exp

(
tx− t2

2

)

= t exp
(

tx− t2

2

)

=
∞∑

n=0

Hn(x)
n!

tn+1

=
∞∑

n=1

nHn−1(x)
n!

tn.

Recalling that H−1(x) = 0, uniqueness of coefficients yields the result.

Lemma A.5.4. It holds that for n ≥ 0, Hn+1(x) = xHn(x)− nHn−1(x).

Proof. We find, using the product rule and Lemma A.5.3,

Hn+1(x) = (−1)n+1e
x2
2

dn+1

dxn+1
e−

x2
2

= (−1)n+1e
x2
2

d

dx

dn

dxn
e−

x2
2

= (−1)n+1

(
d

dx

(
e

x2
2

dn

dxn
e−

x2
2

)
−

(
d

dx
e

x2
2

)
dn

dxn
e−

x2
2

)

= −H ′
n(x) + (−1)nxe

x2
2

dn

dxn
e−

x2
2

= −nHn−1(x) + xHn(x),

as was to be proved.

Lemma A.5.2, Lemma A.5.3 and Lemma A.5.4 along with the definition are the basic
workhorses for producing results about the Hermite polynomials. In particular, we
can now show that the Hermite polynomials actually are polynomials.

Lemma A.5.5. The n’th Hermite polynomial Hn is a polynomial of degree n.

Proof. We use complete induction. The result is clearly true for n = 0. Assume that
it is true for all k ≤ n. We know that Hn+1(x) = xHn(x) − nHn−1(x), by Lemma
A.5.4. Here, nHn−1(x) is a polynomial of degree n − 1 by assumption, and Hn is a
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polynomial of degree n. Therefore, xHn(x) is a polynomial of degree n + 1, and the
result follows.

Lemma A.5.6. The span of the n first Hermite polynomials H0, . . . , Hn−1 is the same
as the span of the n first monomials 1, x, x2, . . . , xn−1.

Proof. From Lemma A.5.5, it is clear that the span of the n first monomials includes
the n first Hermite polynomials. To show the reverse inclusion, we use induction.
Since H0(x) = 1, the result is trivially true for n = 1. Assume that it has been proven
for n. Let Hn+1 be the span of the first n + 1 Hermite polynomials. We need to prove
that xk ∈ Hn+1 for k ≤ n. By our induction hypothesis, xk ∈ Hn+1 for k ≤ n− 1. To
prove that xn ∈ Hn+1, note that by Lemma A.5.5, we know that Hn is a polynomial
of degree n, that is,

Hn(x) =
n∑

k=0

akxk,

where an 6= 0. Since xk ∈ Hn+1 for k ≤ n− 1, we obtain anxn ∈ Hn+1. Since an 6= 0,
this implies xn ∈ Hn+1, as desired.

A.6 Hilbert Spaces

In this section, we review some results from the theory of Hilbert spaces. Our main
sources are Hansen (2006) and Meise & Vogt (1997).

Definition A.6.1. A Hilbert Space H is a complete normed linear space over R such
that the norm of H is induced by an inner product.

In the remainer of the section, H will denote a Hilbert space with inner product 〈·, ·〉
and norm ‖ · ‖. We say that two elements x, y ∈ H are orthogonal and write x⊥y if
〈x, y〉 = 0. We say that two subsets M and N of H are orthogonal and write M⊥N

if it holds that for each x ∈ M and y ∈ N , x⊥y. The elements orthogonal to M are
denoted M⊥. We write span M for the linear span of M , and we write span M for
the closure of the span of M .

Lemma A.6.2. Let M and N be subsets of H. If M and N are orthogonal, then so
are span M and span N .
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Proof. By the linearity of the inner product, span M and span N are orthogonal. By
the continuity of the inner product, span M and span N are orthogonal as well.

Lemma A.6.3. If U is a subspace of H, then U⊥ is a closed subspace of H.

Proof. See Rudin (1987), p. 79.

Lemma A.6.4. Let M is a subspace of H. M is dense in H if and only if M⊥ = {0}.

Proof. This follows from Corollary 11.8 of Meise & Vogt (1997).

Theorem A.6.5 (Pythagoras’ Theorem). Let x1, . . . , xn be orthogonal elements
of H. Then ∥∥∥∥∥

n∑

k=1

xk

∥∥∥∥∥

2

=
n∑

k=1

‖xk‖2.

Proof. See Hansen (2006), Theorem 3.1.14.

Theorem A.6.6. Let U be a closed subspace of H. Each element x ∈ H has a unique
decomposition x = Px + x − Px, where Px ∈ U and x − Px ∈ U⊥. The mapping
P : H → U is a linear contraction and is called the orthogonal projection onto U .

Proof. The existence of the decomposition and the linearity of P is proved in Rudin
(1987), Theorem 4.11. That P is a contraction follows by applying Theorem A.6.5 to
obtain

‖Px‖2 ≤ ‖Px‖2 + ‖x− Px‖2 = ‖Px + x− Px‖2 = ‖x‖2.

Lemma A.6.7. Let U be a closed subspace of H. The orthogonal projection P onto
U satisfies P 2 = P , R(P ) = U and N(P ) = U⊥. Also, ‖x − Px‖ = d(x,U), where d

denotes the metric induced by ‖ · ‖.

Proof. Let x ∈ H. Then Px ∈ U , and therefore P 2x = Px, showing the first claim.
Since P maps into U and Px = x for x ∈ U , it is clear that range satisfies R(P ) = U .
To show the claim about the null space, is is clear that N⊥ ⊆ N(P ). To show the
other inclusion, let x ∈ N(P ). Then x = Px + x− Px = x− Px ∈ U⊥, as desired.
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Finally, the formula ‖x − Px‖ = d(x,U) follows by Lemma 11.5 of Meise & Vogt
(1997).

If M and N are orthogonal subspaces of H, we define the orthogonal sum M ⊕N by

M ⊕N = {x + y|x ∈ M,y ∈ N}.

Lemma A.6.8. If M and N are closed orthogonal subspaces of H, then M ⊕N is a
closed subspace of H as well. Letting P and Q be the orthogonal projections onto M

and N , the orthogonal projection onto M ⊕N is P + Q.

Proof. That M ⊕ N is closed is proved in Lemma 3.5.8 of Hansen (2006). Let an
element x ∈ H be given. We write x = (P + Q)x + x− (P + Q)x, and if we can argue
that x− (P + Q)x ∈ (M ⊕N)⊥, we are done, since (P + Q)x obviously is in M ⊕N .

To this end, first note that we have x = Px + (x − Px), where x − Px ∈ M⊥ by
the definition of the orthogonal projection P . Using the definition of the orthogonal
projection Q, we also have x − Px = Q(x − Px) + (x − Px − Q(x − Px)), where
x − Px − Q(x − Px) ∈ N⊥. Since R(Q) = N , Q(x − Px) ∈ M⊥. We conclude
that x − Px − Q(x − Px) is orthogonal to both N and M . In particular, then, it is
orthogonal to M ⊕N .

Finally, by Lemma A.6.7, N(Q) = N⊥ ⊇ M = R(P ). Thus, QP = 0 and we obtain

x− (P + Q)x = x− Px−Q(x− Px) ∈ (M ⊕N)⊥,

as desired.

Lemma A.6.9. Letting M and N be orthogonal subspaces of H, it holds that M ⊕N

is the span of M ∪N .

Proof. Clearly, M ⊕ N ⊆ span M ∪ N . On the other hand, if x ∈ span M ∪ N , we
have x =

∑n
k=1 λkxk where xk ∈ M ∪N . Splitting the sum into parts in M and parts

in N , we obtain the reverse inclusion.

Lemma A.6.10. Let xn be an orthogonal sequence in H.
∑∞

n=1 xn is convergent if
and only if

∑∞
n=1 ‖xn‖2 is finite.
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Proof. Both directions of the equivalence follows from the relation, with n > m,
∥∥∥∥∥

n∑

k=1

xk −
m∑

k=1

xk

∥∥∥∥∥

2

=
n∑

k=m+1

‖xk‖2

combined with the completeness of H.

We are also going to need infinite sums of orthogonal subspaces. If (Un) is a sequence
of orthogonal subspaces of H, we define the orthogonal sum ⊕∞n=1Un of the subspaces
by

∞⊕
n=1

Un =

{ ∞∑
n=1

xn

∣∣∣∣∣ xn ∈ Un and
∞∑

n=1

‖xn‖2 < ∞
}

This is well-defined, since we know from Lemma A.6.10 that
∑∞

n=1 xn is convergent
whenever

∑∞
n=1 ‖xn‖2 is finite.

Lemma A.6.11. ⊕∞n=1Un is a closed subspace of H, and ⊕∞n=1Un = span ∪∞n=1 Un.

Proof. We first prove that ⊕∞n=1Un is closed. From the second assertion of the lemma,
it will follow that ⊕∞n=1Un is a subspace.

Let xn ∈ ⊕∞n=1Un with xn =
∑∞

k=1 xk
n, and assume that xn converges to x. We need to

prove x ∈ ⊕∞n=1Un. From Lemma A.6.10,
∑∞

k=1 ‖xk
n‖2 is finite for any n. In particular,

by the triangle inequality and the relation (x + y)2 ≤ 2x2 + 2y2,
∑∞

k=1 ‖xk
n − xk

m‖2 is
finite for any n,m. This implies that

∑∞
k=1 xk

n − xk
m is convergent, and we obtain

‖xn − xm‖2 =

∥∥∥∥∥
∞∑

k=1

xk
n − xk

m

∥∥∥∥∥

2

=
∞∑

k=1

∥∥xk
n − xk

m

∥∥2
.

Now, since xn is convergent, it is in particular a cauchy sequence. From the above
equality, we then obtain that xk

n is a cauchy sequence for every k, convergent to a limit
xk. Since Uk is closed, xk ∈ Uk. We want to prove x =

∑∞
k=1 xk. To this end, define

αn = (‖xk
n‖)k≥1. αn is then a member of `2, and

‖αn − αm‖2`2 =
∞∑

k=1

(‖xk
n‖ − ‖xk

m‖)2 ≤
∞∑

k=1

‖xk
n − xk

m‖2 = ‖xn − xm‖2,

so αn is cauchy in `2, therefore convergent to a limit α. In particular, αk
n converges

to αk. But αk
n = ‖xk

n‖, and ‖xk
n‖ converges to ‖xk‖. Therefore, αk = ‖xk‖. We may

now conclude

lim
n

∞∑

k=1

(‖xk
n‖ − ‖xk‖)2 = lim

n
‖αn − α‖2`2 = 0,
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in particular limn

∑∞
k=1 ‖xk

n‖2 =
∑∞

k=1 ‖xk‖2. We then obtain by orthogonality,

∥∥∥∥∥x−
n∑

k=1

xk

∥∥∥∥∥

2

= lim
m

∥∥∥∥∥
∞∑

k=1

xk
m −

n∑

k=1

xk

∥∥∥∥∥

2

= lim
m

n∑

k=1

‖xk
m − xk‖2 +

∞∑

k=n+1

‖xk
m‖2

= lim
m

∞∑

k=n+1

‖xk
m‖2

=
∞∑

k=n+1

‖xk‖2,

and since
∑∞

k=1 ‖xk‖2 is finite, it follows that x =
∑∞

k=1 xk. Then x ∈ ⊕∞n=1Un, and
we may finally conclude that ⊕∞n=1Un is closed.

Next, we need to prove the equality ⊕∞n=1Un = span ∪∞n=1 Un. As in the proof of
Lemma A.6.9, it is clear that ⊕∞n=1Un ⊆ span ∪∞n=1 Un. To prove the other inclusion,
note that we clearly have span ∪∞n=1 Un ⊆ ⊕∞n=1Un. Since we have seen that ⊕∞n=1Un

is closed, it follows that span ∪∞n=1 Un ⊆ ⊕∞n=1Un.

Lemma A.6.12. Let (Un) be a sequence of closed orthogonal subspaces and let Pn be
the orthogonal projection onto Un. For any x ∈ ⊕∞n=1Un, it holds that x =

∑∞
n=1 Pnx.

Proof. Since x ∈ ⊕∞n=1Un, we know that x =
∑∞

n=1 xn for some xn ∈ Un. Since Pk is
continuous and the subspaces are orthogonal, we find

Pkx =
∞∑

n=1

Pkxn = xn,

as desired.

Lemma A.6.13. For any subset A, it holds that A ∩A⊥ = {0}.

Proof. Let x ∈ A ∩A⊥. We find ‖x‖2 = 〈x, x〉 = 0, showing x = 0.

Lemma A.6.14. Let M and N be orthogonal closed subspaces. Assume x ∈ M ⊕N .
If x ∈ M⊥, then x ∈ N .
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Proof. Since N and M are orthogonal, N ⊆ M⊥. Let x = y + z with y ∈ M and
z ∈ N . Then y = x − z ∈ M⊥. Since also y ∈ M , Lemma A.6.13 yields y = 0 and
therefore x = z ∈ N , as desired.

Lemma A.6.15. Let U , M and N be closed subspaces. Assume that U and M are
orthogonal, and assume that U and N are orthogonal. If U ⊕ M = U ⊕ N , then
M = N .

Proof. By symmetry, it will suffice to show M ⊆ N . Assume that x ∈ M . Then
x ∈ U ⊕ M , and therefore x ∈ U ⊕ N . Now, since M ⊆ U⊥, we have x ∈ U⊥. By
Lemma A.6.14, x ∈ N .

Lemma A.6.16. Let (Un) be a sequence of closed orthogonal subspaces. It then holds
for any n ≥ 1 that

∞⊕

k=1

Uk =

(
n⊕

k=1

Uk

)
⊕

( ∞⊕

k=n+1

Uk

)
.

Proof. It is clear that (⊕n
k=1Uk)⊕(⊕∞k=n+1Uk) ⊆ ⊕∞k=1Uk. To show the other inclusion,

let x ∈ ⊕∞k=1Uk. We then have x =
∑∞

k=1 xk for some xk ∈ Uk, where
∑∞

k=1 ‖xk‖2.
Therefore, in particular

∑∞
k=n+1 ‖xk‖2. Thus, by the decomposition

x =

(
n∑

k=1

xk

)
+

( ∞∑

k=n+1

xk

)
,

we obtain the desired result.

Lemma A.6.17. Let x, x′ ∈ H and assume that 〈y, x〉 = 〈y, x′〉 for all y ∈ H. Then
x = x′.

Proof. It follows that x− x′ is orthogonal to H. From Lemma A.6.13, x− x′ = 0 and
therefore x = x′.

Lemma A.6.18. Let H be a Hilbert space and let U be a closed subspace. Let P

denote the orthogonal projection onto U . Let x ∈ H and let x′ ∈ U . If it holds for all
y ∈ U that 〈y, x〉 = 〈y, x′〉, then x′ = Px.
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Proof. Let Q be the orthogonal projection onto U⊥. We then have, for any y ∈ U ,

〈y, Px〉 = 〈y,Qx + Px〉
= 〈y, x〉
= 〈y, x′〉.

Since Px and x′ are both elements of U , and U is a Hilbert space since it is a closed
subspace of H, we conclude by Lemma A.6.17 that Px = x′.

We end with a few results on weak convegence. We say that a sequence xn is weakly
convergent to x if 〈y, xn〉 tends to 〈y, x〉 for all y ∈ H.

Lemma A.6.19. If xn has a weak limit, it is unique.

Proof. See Lemma 3.6.3 of Hansen (2006).

Lemma A.6.20. If xn converges to x, it also converges weakly to x.

Proof. This follows immediately by the continuity properties of the inner product.

Theorem A.6.21. Let H be a Hilbert space and let (xn) be a bounded sequence in H.
Then (xn) has a weakly convergent subsequence.

Proof. See Schechter (2002), Theorem 8.16, where the theorem is proved for reflexive
Banach spaces. Since every Hilbert space is reflexive according to Corollary 11.10 of
Meise & Vogt (1997), this proves the claim.

Lemma A.6.22. Assume that (xn) converges weakly to x. Then ‖x‖ ≤ lim inf ‖xn‖.

Proof. See Theorem 3.4.11 of Ash (1972).

Lemma A.6.23. Let xn be a sequence in H converging weakly to x. Let A : H → H

be linear and continuous. Then Axn converges weakly as well.

Proof. This follows from Theorem 3.4.11 of Ash (1972).
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A.7 Closable operators

In this section, we consider the concept of closable and closed operators. This will be
used when extending the Malliavin derivative. Let X and Y be Banach spaces, that
is, complete normed linear spaces. Consider a subspace D(A) of X and an operator
A : D(A) → Y. We say that A is closable if it holds that whenever (xn) is a sequence
in D(A) converging to zero and Axn is convergent, then the limit of Axn is zero. We
say that A is closed if it holds that whenever (xn) is a sequence in D(A) such that
both xn and Axn are convergent, then limxn ∈ D(A) and A(limxn) = lim Axn.

Lemma A.7.1. Let A be some operator with domain D(A). A is closed if and only
if the graph of A is closed.

Proof. This follows since the graph of A is closed precisely if it holds for any convergent
sequence (xn, Axn) where xn ∈ D(A) that lim xn ∈ D(A) and A(lim xn) = lim Axn.

Lemma A.7.2. Let A be a closable operator. We define the domain D(A) of the
closure of A as the set of x ∈ X such that there exists xn in D(A) converging to x and
such that Axn is convergent. The limit of Axn is independent of the sequence xn and
D(A) is a linear space.

Proof. We first prove the result on the uniqueness of the limit. Assume that x ∈ D(A)
and consider two different sequences xn and yn in D(A) converging to x such that
Axn and Ayn are both convergent. We need to prove that the limits are the same.
But xn − yn converges to zero and A(xn − yn) is convergent, so since A is closable, it
follows that A(xn − yn) converges to zero and thus limn Axn = limn Ayn, as desired.

Next, we prove that D(A) is a linear space. Let x, y ∈ D(A) and let λ, µ ∈ R. Let xn

and yn be sequences in D(A) converging to x and y, respectively. Then λxn + µyn is
a sequence in D(A) converging to λx + µy, and let A(λxn + µyn) is convergent since
A is linear. Thus, λx + µy ∈ D(A) and D(A) is a linear space.

Theorem A.7.3. Assume that A is closable. There is a unique extension A of A as
a linear operator from D(A) to D(A), and the extension is closed.

Proof. Let x ∈ D(A). From Lemma A.7.2, we know that there is xn in D(A) converg-
ing to x and such that Axn is convergent, and the limit of Axn is independent of xn.
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We can then define Ax as the limit of Axn. We need to prove that this extension is
linear and closed.

To prove linearity, let x, y ∈ D(A) and let λ, µ ∈ R. Let xn and yn be sequences in
D(A) converging to x and y, respectively, such that Axn and Ayn converges to Ax

and Ay, respectively. Then λxn + µyn converges to λx + µy and A(λxn + µyn) is
convergent. By definition, the limit is A(λx + µy), and we conclude

A(λx + µy) = lim
n

A(λxn + µyn) = lim
n

λAxn + µAyn = λAx + µAy,

as desired. To show that the extension is closed, we show that the graph of A is the
closure of the graph of A. Assume that (x, y) is a limit point of the graph of A, then
there exists xn in D(A) such that x = lim xn and y = Axn. By definition, we obtain
x ∈ D(A) and Ax = y. Therefore, (x, y) is in the graph of A. On the other hand, if
(x, y) is in the graph of A, in particular x ∈ D(A) and Ax = y. Then, there exists
xn in D(A) converging to x such that Axn is convergent as well, and the limit is Ax.
Thus, (xn, Axn) converges to (x,Ax), so (x, y) is a limit point of the graph of A. We
conclude that the graph of A is the closure of the graph of A, and by Lemma A.7.1,
A is closed.
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Appendix B

Measure theory

This appendix contains some results from abstract measure theory and probability
theory which we will need. Our main sources are Hansen (2004a), Berg & Madsen
(2001), Jacobsen (2003) and Rogers & Williams (2000a).

B.1 The Monotone Class Theorem

In this section, we state the monotone class theorem and develop an important corol-
lary, used when analysing the Brownian motion under the usual conditions.

Definition B.1.1. A monotone vector space H on Ω is a subspace of the vector space
B(Ω) of bounded real functions on Ω, such that H contains all constant functions and
such that if (fn) is a sequence of nonnegative functions increasing pointwise towards
a bounded function f , then f ∈ H.

Theorem B.1.2 (Monotone Class Theorem). Let K ⊆ B(Ω) be stable under
multiplication, and let H ⊆ B(Ω) be a monotone vector space. If K ⊆ H, H contains
all σ(K)-measurable bounded functions.

Proof. The theorem is stated and proved as Theorem I.21 in Dellacherie & Meyer
(1975), under the assumption that H is closed under uniform convergence. Since
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Sharpe (1988) proves that any monotone vector space is closed under uniform con-
vergence, the claim follows.

By C([0,∞),Rn), we denote the continuous mappings from [0,∞) to Rn. We endow
this space with the σ-algebra C([0,∞),Rn) induced by the coordinate projections X◦

t ,
X◦

t (f) = f(t) for any f ∈ C([0,∞),Rn).

Lemma B.1.3. Let F be closed in Rn. There exists (fn) ⊆ C∞c (Rn) such that fn

converges pointwise to 1F .

Proof. By Cohn (1980), Proposition 7.1.4, there exists a sequence Gn of open sets
such that F ⊆ Gn and F = ∩∞n=1Gn. Let Kn be an increasing sequence of compact
sets with ∪∞n=1Kn. Then F ∩Kn is compact, so by Theorem A.3.4, there is fn with
F ∩ Kn ≺ fn ≺ Gn. We claim that this sequence of functions fulfills the conditions
in the lemma. Let x ∈ F . From a certain point onwards, x ∈ F ∩ Kn, and then
fn(x) = 1. Assume next x /∈ F . Then, x /∈ Gn from a certain point onwards, and then
fn(x) = 0. We conclude lim fn = 1F .

Corollary B.1.4. Let H ⊆ B(C([0,∞,Rn)) be a monotone vector space. If H con-
tains all functions of the form

∏n
k=1 fk(X◦

tk
) with fk ∈ Cc(Rn), then H contains all

C([0,∞),Rn) measurable functions.

Proof. Since the compact sets are closed under finite intersections, it is clear that
Cc(Rn) is an algebra. Therefore, putting

K =

{
n∏

k=1

fk(X◦
tk

)

∣∣∣∣∣ 0 ≤ t1 ≤ · · · ≤ tn and f1, . . . , fn ∈ Cc(R)

}
,

it is clear that K is an algebra. By Theorem B.1.2, H contains all σ(K) meausrable
mappings. We wish to argue that K = C([0,∞),Rn). It is clear that K ⊆ C([0,∞),Rn),
so it will suffice to show the other inclusion. To do so, we only need to show that all
coordinate projections are K meausrable. Let t ≥ 0 and let F be closed in Rn. From
Lemma B.1.3, there exists a sequence (fn) ⊆ C∞c (Rn) converging pointwise to 1F .
This means that 1F (X◦

t ) is the pointwise limit of fn(X◦
t ), so 1F (X◦

t ) is K-measurable.
This shows that (X◦

t ∈ F ) ∈ K. Therefore X◦
t is K measurable, as desired.
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B.2 Lp and almost sure convergence

This section contains some of the classical results on Lp and almost sure convergence.
Most of these results are surely well-known, we repeat them here for completeness.

Lemma B.2.1. Let (E, E , µ) be a measure space. Assume that fn converges to f and
gn converges to g in L2(E). Then fngn converges to fg in L1(E).

Proof. By the Cauchy-Schwartz inequality,

‖fngn − fg‖1 ≤ ‖fngn − fng‖1 + ‖fng − fg‖1
≤ ‖fn‖2‖‖gn − g‖2 + ‖fn − f‖2‖g‖2,

so since ‖fn‖2 is bounded, the conclusion follows.

Lemma B.2.2. Let (E, E , µ) be a measure space. Assume that fn converges in L1 to
f , and assume that gn converges almost surely to g. If the sequence gn is dominated
by a constant, then fngn converges in L1 to fg.

Proof. We have

‖fngn − fg‖1 ≤ ‖fngn − fgn‖1 + ‖fgn − fg‖
≤ M‖fn − f‖1 + ‖fgn − fg‖1.

Here, the first term trivially tends to zero. By dominated convergence with bound
2Mf , the second term also tends to zero.

Lemma B.2.3 (Scheffé). Let (E, E , µ) be a measure space and let fn be a sequence of
probability densities with respect to µ. Let f be another probability density with respect
to µ. If fn converges µ-almost surely to f , then fn converges to f in L1.

Proof. This is Lemma 22.4 of Hansen (2004a).

Lemma B.2.4. Let (E, E , µ) be a finite measure space. If 1 ≤ p ≤ r, it holds that
Lr(E) ⊆ Lp(E) and Lr convergence implies Lp convergence.

Proof. See Theorem 7.11 of Berg & Madsen (2001).
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Lemma B.2.5. Let (E, E , µ) be a measure space. If fn converges to f in Lp, there is
a subsequence fnk

converging µ almost surely to f , dominated by a mapping in Lp.

Proof. This is proved as Corollary 7.20 in Berg & Madsen (2001).

B.3 Convergence of normal distributions

In this section, we prove a result on convergence of normal distributions which will be
essential to our development of the Malliavin calculus. We begin with a few lemmas.

Lemma B.3.1 (Hölder’s inequality). Let (E, E , µ) be a measure space and let
f1, . . . , fn be real measurable mappings for some n ≥ 2. Let p1, . . . , pn ∈ (1,∞) with∑n

k=1
1
pk

= 1. It then holds that ‖∏n
k=1 fk‖1 ≤

∏n
k=1 ‖fk‖pn . We say that p1, . . . , pn

are conjugate exponents.

Proof. We use induction. The case n = 2 is just the ordinary Hölder’s inequality,
proving the induction start. Assume that the results holds in the case of n, we will
prove it for n + 1. Let q = pn+1

pn+1−1 , then q is the conjugate exponent to pn+1, so the

ordinary Hölder’s inequality yields ‖∏n+1
k=1 fk‖ ≤ ‖∏n

k=1 fk‖q
‖fn+1‖pn+1 . Next, note

that
∑n

k=1
1
pk

= 1 − 1
pn+1

= pn+1−1
pn+1

= 1
q , so applying the induction hypothesis with

the conjugate exponents p1
q , . . . , pn

q , we obtain

∥∥∥∥∥
n∏

k=1

fk

∥∥∥∥∥
q

=

(∥∥∥∥∥
n∏

k=1

|fk|q
∥∥∥∥∥

1

) 1
q

≤
(

n∏

k=1

‖|fk|q‖ p1
q

) 1
q

=

(
n∏

k=1

(∫
|fk|p1 dµ

) q
p1

) 1
q

=
n∏

k=1

‖fk‖pk
,

which, combined with our earlier finding, yields the desired result.
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Lemma B.3.2. Let X be a normal distribution with mean µ and variance σ2. Let
n ∈ N0. Then we have

EXn =
[n/2]∑

k=0

(2k)!
2kk!

σ2kµn−2k.

Proof. Since the odd central moments of X are zero, we obtain

EXn = E(X − µ + µ)n

=
n∑

k=0

(
k

n

)
E(X − µ)kµn−k

=
[n/2]∑

k=0

(
2k

n

)
E(X − µ)2kµn−2k

=
[n/2]∑

k=0

(2k)!
2kk!

σ2kµn−2k,

as desired.

Lemma B.3.3. Let Xk be a sequence of n-dimensional normally distributed variables.
Assume that for any i ≤ n, Xi

k converges weakly to X. Let f Rn to R have polynomial
growth. Then f(Xk) is bounded over k in Lp for any p ≥ 1.

Proof. If f has polynomial growth, then so does |f |p for any p ≥ 1. Therefore, it
will suffice to show that f(Xk) is bounded in L1 for any f with polynomial growth.
Let p be a polynomial in n variables dominating f . Assume that p has degree m

and p(x) =
∑
|a|≤m λa

∏n
i=1 xai

i , using usual multi-index notation. Obviously, we then
obtain

|f(Xk)| ≤ |p(Xk)|

≤
∑

|a|≤m

|λa|
n∏

i=1

|(Xi
k)ai |

≤
∑

|a|≤m

|λa|
n∏

i=1

(1 + (Xi
k)2)ai).

Letting q(x) =
∑
|a|≤m |λa|

∏n
i=1(1 + x2

i )
ai , q is a polynomial of degree 2m in n vari-

ables, and we have E|f(Xk)| ≤ E|q(Xk)|. Furthermore, the exponents in q are all
even. Thus, it will suffice to show the result in the case f is a polynomial with even
exponents.
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Therefore, assume that f is a polynomial in n variables of degree m. Assume that
we have f(x) =

∑
a∈Inm λa

∏n
i=1 xai

i , where λa is zero whenever a has an odd element.
The generalized Hölder’s inequality of Lemma B.3.1 then yields

E|f(Xk)| ≤
∑

|a|≤m

|λa|E
(

n∏

i=1

(Xi
k)ai

)

≤
∑

|a|≤m

|λa|
n∏

i=1

(
E(Xi

k)nai
) 1

n .

Let µi
k denote the mean of Xi

k and σi
k denote the standard deviation of Xi

k. Since
Xi

k is normally distributed and converges weakly, µi
k and σi

k are convergent, therefore
bounded. Now, by Lemma B.3.2, E(Xi

k)n is a continuous function of µi
k and σi

k for
fixed i and n. Therefore, k 7→ E(Xi

k)n is bounded for any i and any n. This shows
that E|f(Xk)| is bounded over k, as was to be proved.

Theorem B.3.4. Let Xk be a sequence of n-dimensional variables converging in prob-
ability to X. Assume that (Xk, X) is normally distributed for any k. Let f ∈ C1

p(Rn).
Then f(Xk) converges to f(X) in Lp, p ≥ 1.

Proof. Let f ∈ C1
p(Rn) be given. Let pi be a polynomial in n variables dominating

∂f
∂xi

. The mean value theorem yields, for some ξk on the line segment between Xk and
X,

|f(Xk)− f(X)| =
n∑

i=1

∣∣∣∣
∂f

∂xi
(ξk)(Xi

k −Xi)
∣∣∣∣

≤
n∑

i=1

|pi(ξk)||Xi
k −Xi|.

Now, defining Y i
k = 2 + (Xi

k)2 + (Xi)2, we have |ξi
k| ≤ |Xi

k|+ |Xi| ≤ Y i
k and therefore

|pi(ξk)| ≤ qi(Yk) for some other polynomial qi. Using Jensen’s inequality and the
Cauchy-Schwartz inequality, we obtain

E|f(Xk)− f(X)|p ≤ E

(
n∑

k=1

qi(Yk)|Xi
k −Xi|

)p

≤ Enp
n∑

i=1

(
qi(Yk)|Xi

k −Xi|)p

= np
n∑

i=1

Eqi(Yk)p|Xi
k −Xi|p

≤ np
n∑

i=1

‖qi(Yk)p‖2‖|Xi
k −Xi|p‖2.
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Now, qi(Yk) is a polynomial transformation of the 2n-dimensional normally distributed
variable (Xk, X). Since Xk converges in probability to Xk, we also have weak conver-
gence. Thus, (Xk, X) converges coordinatewisely weakly to (X, X). By Lemma B.3.3,
we may then conclude that ‖qi(Yk)p‖2 is bounded over k for any i ≤ n. Let C be a
bound, we can then conclude

E|f(Xk)− f(X)|p ≤ Cnp
n∑

i=1

‖|Xi
k −Xi|p‖2

= Cnp
n∑

i=1

(
E|Xi

k −Xi|2p
) 1

2 .

To prove the desired result, it will therefore suffice to prove that Xi
k tends to Xi in

Lp for any p ≥ 1. It will be enough to prove that we have L2n convergence for n ∈ N.
Let n ∈ N be given. Since Xi

k converges in probability to Xi, Xi
k −Xi converges in

probability to zero, so Xi
k−Xi converges in distribution to the point measure at zero.

Because we have asumed that (Xk, X) is normally distribued, Xi
k − Xi is normally

distributed. Let ξi
k be the mean and let νi

k be the standard deviation. We then
concluce that ξi

k and νi
k both tend to zero as k tends to infinity. By Lemma B.3.2, we

then conclude that E(Xi
k − Xi)2n tends to zero, showing the desired convergence in

L2n and implying the result of the lemma.

B.4 Separability and bases for L2-spaces

This section yields some results on L2 spaces which will be necessary for the develop-
ment of the Hilbert space results of the Malliavin calculus.

Lemma B.4.1. If (E, E , µ) is a finite measure space which is countably generated,
then L2(E) is separable as a pseudometric space.

Proof. Let D be a countable generating family for E . We can assume without loss
of generality that E ∈ D. Let H denote the family of sets ∩n

k=1Ak where Ak ∈ D
for k ≤ n. Then H is countable, D ⊆ H, and H is stable under intersections. Put
S = {1A|A ∈ E} and SH = {1A|A ∈ H}.

Step 1: span SH is dense in L2(E, E , µ). We will begin by showing that span SH is
dense in L2(E). After doing so, we will identify a dense subset of span SH. To show
that span SH is dense, first note that from Theorem 7.27 of Berg & Madsen (2001),
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span S is dense in L2(E). Therefore, to show that span SH is dense in L2(E), it will
suffice to show that span SH is dense in span S. And to do so, it will suffice to show
that S ⊆ span SH.

Define K = {A ∈ E|A ∈ span SH}. To show that S ⊆ span SH, we must show that
K = E . Clearly, H ⊆ K. Since H is a generating family for E stable under intersections,
it will suffice to show that K is a Dynkin class.

Clearly, E ∈ K. Assume that A,B ∈ K with B ⊆ A. Then 1A\B = 1A − 1B . Since
each of these is in span SH, so is 1A − 1B and therefore A \ B ∈ K. Finally, assume
that An is an increasing sequence in K and put A = ∪∞n=1An. Since µ is finite, 1An

tends to 1A in L2(E) by dominated convergence. Since 1An
∈ span SH for all n and

span SH is closed, 1A ∈ span SH and therefore A ∈ K. Thus, K is a Dynkin class. We
conclude that K = E and therefore S ⊆ span SH, from which we deduce that span SH
is dense in L2(E).

Step 2: Identification of a dense countable set. In order to show separability
of L2(E), it will suffice to show that there exists a dense countable subset of span SH.
Define

V =

{
n∑

k=1

λk1Ak

∣∣∣∣∣ λk ∈ Q, Ak ∈ H, k ≤ n

}
.

Since H is countable, V is countable. We will show that V is dense in span SH. Let
f ∈ span SH be given, f =

∑n
k=1 λk1Ak

. Let λj
k tend to λk through Q and define

fj =
∑n

k=1 λj
k1Ak

. Then fj ∈ V and

‖f − fj‖2 ≤
n∑

k=1

|λk − λj
k|‖1Ak

‖2,

showing the desired result.

Lemma B.4.2. Let (E, E , µ) and (K,K, ν) be two finite measure spaces which are
countably generated. Let ([fi]) and ([gj ]) be countable orthonormal bases for L2(E) and
L2(K), respectively. Then the family ([fi⊗ gj ]) is an orthonormal basis for L2(E ⊗K).

Proof. We first show that the family is orthonormal. By the Tonelli theorem, we find
‖fi ⊗ gj‖2 = ‖fi‖2‖gj‖2 = 1. To show that the family is orthogonal, consider fi ⊗ gj

and fk ⊗ gn. We then obtain by the Fubini theorem,

〈fi ⊗ gj , fk ⊗ gn〉 =
∫

fi(s)gj(t)fk(s)gn(t) d(µ⊗ ν)(s, t)

= 〈fi, fk〉〈gj , gn〉,
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showing that if i 6= k or j 6= n, fi ⊗ gj is orthogonal to fk ⊗ gn, as desired. It remains
to show that the family is complete. To this end, consider ψ ∈ L2(E ⊗K) and assume
that ψ is orthogonal to fi ⊗ gj for any i and j. We need to show that ψ is almost
surely zero. To this end, we first calculate

〈ψ, fi ⊗ gj〉 =
∫

ψ(s, t)fi(s)gj(t) d(µ⊗ ν)(s, t)

=
∫ ∫

ψ(s, t)fi(s) dµ(s)gj(t) dν(t)

=
∫
〈ψ(·, t), fi〉gj(t) dν(t).

Put φi(t) = 〈ψ(·, t), fi〉. By the Cauchy-Schwartz inequality and Fubini’s theorem, ψi

is in L2(K), and the above shows that 〈φi, gj〉 = 〈ψ, fi ⊗ gj〉 = 0, so since ([gj ]) is
an orthonormal basis of L2(K), we conclude that φi is ν almost surely zero. Since a
countable union of null sets again is a null set, we find that ν almost surely, φi(t) = 0
for all i. For any such t, ψ(·, t) is orthogonal to all fi, showing that ψ(·, t) is zero µ

almost surely. All in all, we can then conclude that ψ is zero µ ⊗ ν almost surely, as
desired.

B.5 Uniform integrability

Let (Xi)i∈I be a family of stochastic variables. We say that Xi is uniformly integrable
if

lim
x→∞

sup
i∈I

E|Xi|1(|Xi|>x) = 0.

We will review some basic results about uniform integrability. We refer the results
mainly for discrete sequences of variables, but the result extend to sequences indexed
by [0,∞) as well.

Lemma B.5.1. Let (Xi)i∈I be a family of stochastic variables. If (Xi) is bounded in
Lp for some p > 1, then (Xi) is uniformly integrable.

Proof. See Lemma 20.5 of Rogers & Williams (2000a).

Lemma B.5.2. Let (Xi)i∈I be uniformly integrable. Then (Xi) is bounded in L1.

Proof. This follows from Lemma 20.7 of Rogers & Williams (2000a).
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Lemma B.5.3. Let Xn be a sequence of stochastic variables, and let X be another
variable. Xn converges in L1 to X if and only if Xn is uniformly integrable and
converges in probability to X.

Proof. This is Theorem 21.2 of Rogers & Williams (2000a).

Lemma B.5.4. Let Xn be a sequence of nonnegative integrable variables, and let X

be another integrable variable. Assume that Xn converges almost surely to X. (Xn) is
uniformly integrable if and only if EXn converges to EX.

Proof. First assume that (Xn) is uniformly integrable. Since Xn also converges in
probability to X, it follows from Lemma B.5.3 that Xn converges in L1 to X, and
therefore the means converge as well.

Conversely, assume that EXn converges to EX. We have

|Xn −X| = (Xn −X)+ + (Xn −X)−

= Xn −X + (Xn −X)− + (Xn −X)−

= Xn −X + 2(Xn −X)−.

Now, since Xn converges to X almost surely, Xn − X converges to 0 almost surely.
Because x 7→ x− is continuous, (Xn − X)− converges to 0 almost surely. Clearly,
X must be nonnegative. Thus, both Xn and X are nonnegative. Since x 7→ x− is
decreasing, this yields (Xn−X)− ≤ (−X)− = X. By dominated convergence, we then
obtain

lim
n

E|Xn −X| = lim
n

EXn − EX + 2 lim
n

E(Xn −X)− = 2E lim
n

(Xn −X)− = 0.

B.6 Miscellaneous

This final section of the appendix contains a variety of results which do not really fit
anywhere else. We begin with some results on density of a certain class of stochastic
variables in L2 spaces.
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Lemma B.6.1. Let (E, E , µ) be a measure space and let f1, . . . , fn be real mappings
on E. If f1, . . . , fn has exponential moments of all orders, then so does

∑n
k=1 λkfk,

where λ ∈ Rn.

Proof. We proceed by induction. For n = 1, there is nothing to prove. Assume that
we have proved the claim for n. We find for λ ∈ R by the Cauchy-Schwartz inequality
that

∫
exp

(
λ

n+1∑

k=1

λkfk

)
dµ

=
∫

exp

(
n∑

k=1

λλkfk

)
exp (λλn+1fn+1) dµ

≤
(∫

exp

(
2λ

n∑

k=1

λkfk

)
dµ

) 1
2 (∫

exp (2λλn+1fn+1) dµ

) 1
2

,

which is finite by the induction hypothesis, proving the claim.

Theorem B.6.2. Let (E, E , µ) be a measure space, where µ is a finite measure. As-
sume that E is generated by a family of real mappings K, where all mappings in K
have exponential moments of all orders. Then the variables

exp

(
n∑

k=1

λkfk

)
,

where f1, . . . , fn ∈ K and λ ∈ Rn, are dense in L2(E).

Proof. Let H denote the family of variables of the form exp (
∑n

k=1 λkfk). Note that
by Lemma B.6.1, all elements of H have moments of all orders, so H is a subset of
L2(E) and the conclusion of the theorem is well-defined.

Now, let g ∈ L2(E) be given, orthogonal to H. We wish to show that g is µ almost
surely equal to zero. Consider f1, . . . , fn ∈ K. Since g ∈ L2(E) and µ is finite, g ∈
L1(E), so g ·µ is a well-defined signed measure. Define ν = (f1, . . . , fn)(g ·µ), then ν is
also a signed measure, and for any A ∈ Bk, we then have ν(A) =

∫
1A(f1, . . . , fn)g dµ.

The Laplace transform of ν is
∫

exp

(
n∑

k=1

λkxk

)
dν(x) =

∫
exp

(
n∑

k=1

λkfk

)
d(g · µ)

=
∫

exp

(
n∑

k=1

λkfk

)
g dµ,
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and the last expression is equal to zero by assumption. Thus, ν has Laplace trans-
form identically equal to zero, so by Lemma B.6.6, ν is the zero measure. That is,∫

1A(f1, . . . , fn)g dµ for any A ∈ Bk. Since the sets ((f1, . . . , fn) ∈ A) is stable under
intersections and generates E , the Dynkin Lemma yields that

∫
1Gg dµ for any G ∈ E .

This shows that g is µ almost surely zero.

Next, we review some basic results on measurability on product spaces.

Lemma B.6.3. Let (E, E) and (K,K) be measurable spaces. Let E and K be generating
systems for E and K, respectively, closed under intersections. If E contains E and K
contains K, then E ⊗ K is generated by the sets of the form A×B, where A ∈ E and
B ∈ K.

Proof. Let H be the σ-algebra generated by the sets of the form A×B, where A ∈ E
and B ∈ K. We need to prove E ⊗ K = H. Clearly, H ⊆ E ⊗ K, we need to prove the
other inclusion. To do so, note that letting D be the family of sets A×B where A ∈ E
and B ∈ K, E ⊗ K is generated by D. It will therefore suffice to prove D ⊆ H.

To this end, let F be the family of sets B ∈ K such that E ×B ∈ H. Then F is stable
under complements and increasing unions, and since E ∈ E, K ⊆ F. In particular,
K ∈ F. We conclude that F is a Dynkin class containing K, therefore K ⊆ F. This
shows that E ×B ∈ H for any B ∈ K. Analogously, we can prove that A×K ∈ H for
any A ∈ E . Letting A ∈ E and B ∈ K, we then obtain A×B = (A×K)∩(E×B) ∈ H,
as desired. We conclude D ⊆ H and therefore H = E ⊗ K.

Lemma B.6.4. Let (E, E) and (K,K) be measurable spaces. Let E and K be classes
of real functions on E and K, respectively. Assume that there exists sequences of
functions in E and K, respectively, converging towards a nonzero constant. Assume
that E = σ(E) and K = σ(K). The σ-algebra E ⊗ K is generated by the functions on
the form f ⊗ g, where f ∈ E and g ∈ K.

Proof. Let H be the σ-algebra generated by the functions f ⊗ g, where f ∈ E and
g ∈ K. Clearly, H ⊆ E ⊗K. We need to show the other inclusion. By definition, f ⊗ g

is H-measurable whenever f ∈ E and g ∈ K. Now, let f ∈ E be fixed. By assumption,
there is a sequence gn in K converging towards a constant, say c. Then we find that

cf(x) = c(f(x) lim gn(y)) = lim c(f ⊗ gn)(x, y),
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showing that the function (x, y) 7→ f(x) is H-measurable for any f ∈ E. This means
that f−1(A) ×K ∈ H for any f ∈ E and A ∈ B. Now, the sets {B ∈ E|B ×K ∈ H}
form a σ-algebra, and by what we have just shown, this σ-algebra contains the family
{f−1(A)|f ∈ E, A ∈ B}, which generates E . We can therefore conclude that B×K ∈ H
for any B ∈ E . In the samme manner, we can conclude that E×C ∈ H for any C ∈ K.
Therefore, for B ∈ E and C ∈ K, we find

B × C = (B ×K) ∩ (E × C) ∈ H.

These sets generate E ⊗ K, and we may therefore conclude that E ⊗ K ⊆ H.

Lemma B.6.5. Let (E, E , µ) and (K,K, ν) be two measure spaces. Let fn be a se-
quence of real mappings on E ×K, measurable with respect to E ⊗ K. Let p ≥ 1 and
assume that fn tends to f in Lp(E ⊗K). There is a subsequence such that for ν almost
all y,

∫ |fnk
(x, y)|p dµ(x) tends to

∫ |f(x, y)|p dµ(x).

Proof. Since
∫ |fn − f |p d(µ ⊗ ν) tends to zero, the mapping in y on K given by∫ |fn(x, y) − f(x, y)|p dµ(x) tends to zero in L1(K). By Lemma B.2.5, there is a

subsequence converging ν almost surely. Let y be an element of K such that we have
convergence. By the inverse triangle inequality of the norm in Lp(E), we obtain
∣∣∣∣∣
(∫

|fnk
(x, y)|p dµ(x)

) 1
p

−
(∫

|f(x, y)|p dµ(x)
) 1

p

∣∣∣∣∣ ≤
∫
|fnk

(x, y)− f(x, y)|p dµ(x),

showing that
∫ |fnk

(x, y)|p dµ(x) tends to
∫ |f(x, y)|p dµ(x), as desired.

Finally, a few assorted results.

Lemma B.6.6. Let µ and ν be two bounded signed measures on Rk with Laplace
transforms ψ and ϕ, respectively. If ψ = ϕ, then µ = ν.

Proof. See Jensen (1992), Theorem C.1.

Lemma B.6.7 (Doob-Dynkin lemma). Let X be a variable on (Ω,F , P ) taking
values in a polish space S. Let Y be another variable on the same probability space
taking its values in a measurable space (E, E). X is σ(Y ) measurable if and only if
there exists a measurable mapping ψ : E → S such that X = ψ(Y ).

Proof. See Dellacherie & Meyer (1975), Theorem 18 of Section 12.1. The original
proof can be found in Doob (1953), p. 603.
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Lemma B.6.8. Let (E, E , µ) be a measure space and let K be a sub-σ-algebra of E.
Let f be K measurable. With µ|K denoting the restriction of µ to K, we have

∫
f dµ =

∫
f dµ|K.

Proof. If A ∈ K, we clearly have
∫

1A dµ = µ(A) = µ|K(A) =
∫

1A dµ|K.

By linearity, the result extends to simple K measurable mappings. By monotone
convergence, it extends to nonnegative K measurable mappings. By splitting into
positive and negative parts, the proof is finished.

Lemma B.6.9. Let (Ω,F , P ) be a probability space. Let N be the null sets of the
space and define G = σ(F ,N ). Any G measurable real variable is almost surely equal
to some F measurable variable.

Proof. Let X be G measurable. Let ξ be a version of X − E(X|F). If we can prove
that ξ is almost surely zero, we are done. Note that with A denoting the almost sure
sets of F , G = σ(F ,A). Since both F and A contains Ω, the sets of the form A ∩ B

where A ∈ F and B ∈ A form a generating system for G stable under intersections.
By the Dynkin lemma, to prove that ξ is almost surely zero, it will suffice to prove
that E1A∩Bξ for A ∈ F and B ∈ N . To this end, we simply rewrite

E1A∩Bξ)E1Aξ) = E1A(X − E(X|F)) = E1AX − EE(1AX|F) = 0.

The lemma is proved.



Appendix C

Auxiliary results

This appendix contains some results which were developed in connection with the main
parts of the thesis, but which eventually turned out not to fit in or became replaced
by simpler arguments. Since the results have independent interest, their proofs are
presented here.

C.1 A proof for the existence of [M ]

In this section, we will discuss the existence of the quadratic variation for a continuous
bounded martingale. This existence is proved in several different ways in the litteratur.
Protter (2005) defines the quadratic variation directly through an integration-by-parts
formula and derives the properties of the quadratic variation afterwards. Karatzas &
Shreve (1988) uses the Doob-Meyer Theorem to obtain the quadratic variation as the
compensator of the squared martingale. The most direct proof seems to be the one
found in Rogers & Williams (2000b). This proof, however, still requires a substantial
background, including preliminary results on stochastic integration with respect to
elementary processes. Furthermore, even though the proof may seem short, a good
deal of details are omitted, and the full proof is actually very lengthy and complicated,
as may be seen in, say, Jacobsen (1989) or Sokol (2005), including a good deal of
cumbersome calculations.
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We will here present an alternative proof. The proof is a bit longer, but its structure is
simpler, using quite elementary theory and requiring few prerequisites. In particular,
no development of the stochastic integral is needed for the proof. The virtue of this
is that it allows the development of the quadratic variation before the development
of the stochastic integral. This yields a separation of concerns and therefore a more
transparent structure of the theory. Before beginning the proof, we will outline the
main ideas and the progression of the section.

In the remainder of the section, we work in the context of a filtered probability space
(Ω,F , P,Ft) and a continuous bounded martingale M .

Consider a partition π of [0, t] and let s ≤ t. By πs, we denote the partition of [0, s]
given by πs = {s}∪π∩ [0, s]. Our plan is to show that the limit of the process given as
s 7→ Qπs(M) converges uniformly in L2 on [0, t] as the partition grows finer. We will
then define the limit as the quadratic variation of M . Demonstrating this convergence
will require two main lemmas, the relatively easy Lemma C.1.3 and the somewhat
difficult Lemma C.1.4. After having defined the quadratic variation in this manner,
we will argue that it is continuous and increasing and show that it can alternatively
be characterised as the unique increasing process such that M2 − [M ] is a uniformly
integrable martingale. We will show how to extend the definition of the quadratic
variation to continuous local martingales and show how to characterise the quadratic
variation when M is a square-integrable martingale and when M is a continuous local
martingale.

We begin with a few definitions concerning convergence of sequences indexed by par-
titions. Let t ≥ 0, and let (xπ) be a family of elements of a pseudometric space (S, d),
indexed by the partitions of [0, t]. We call (xπ) a net, inspired by the usual definition
of nets as given in, say, Munkres (2000).

We say that xπ is convergent to x if it holds that for any ε > 0, there exists a partition
π such that whenever $ ⊇ π is another partition, d(x$, x) < ε. We say that xπ is
cauchy if it holds that for any ε > 0, there exists a partition π such that whenever
$,ϑ ⊇ π are two other partitions, d(x$, xϑ) < ε. Clearly, to show that a net is cauchy,
it will suffice to show that for any ε > 0, there exists a partition such that whenever
$ ⊇ π, d(x$, xπ) ≤ ε.

Lemma C.1.1. Let xπ be a net in (S, d). If xπ has a limit, it is unique. If (S, d) is
complete and xπ is cauchy, then xπ has a limit.
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Proof. Assume that xπ has limits x and y. For any partition π, it clearly holds that
d(x, y) ≤ d(x, xπ) + d(xπ, y). From this, it immediately follows that limits are unique.

Now assume that (S, d) is a complete pseudometric space and that xπ is cauchy. For
each n, let πn be the partition such that whenever $, ϑ ⊇ πn, d(x$, xϑ) ≤ 1

2n . By
expanding the partitions, we can assume without loss of generality that πn is increasing.
We then obtain d(xπn

, xπn+1) ≤ 1
2n , and in particular, for any n ≥ m,

d(xπn , xπm) ≤
m∑

k=n+1

d(xπk−1 , xπk
) ≤ 1

2n
.

Therefore, xπn
is a cauchy sequence, therefore convergent. Let x be the limit. We

wish to show that x is the limit of the net xπ. By continuity of the metric, we obtain
d(xπn

, x) ≤ 1
2n . Let ε > 0 be given. Let n be such that 1

2n < ε. Then we have, for
any $ ⊇ πn,

d(x$, x) ≤ d(x$, xπn) + d(xπn , x) ≤ 2
2n

≤ 2ε.

Since ε was arbitrary, we have convergence.

Lemma C.1.2. Let xπ be convergent with limit x. Let εn be a positive sequence tending
to zero. For each n, let πn be a partition such that whenever $ ⊇ πn, d(x$, x) ≤ εn.
Then xπn is a sequence converging to x.

Proof. This is immediate.

The following two concepts will play important roles in the coming arguments. We
define the oscillation ωM [s, t] of M over [s, t] by ωM [s, t] = sups≤u,r≤t |Mu−Mr|. With
π = (t0, . . . , tn) a partition, by δπ(M) we denote the modulus of continuity over π,
defined as δπ(M) = max0≤i<j≤n ωM [ti, tj ].

We are now ready to begin the work proper on the existence of the quadratic variation.
In the following, we will generically write π = (t0, . . . , tn) and $ = (s0, . . . , sm). These
will be our generic partitions.

We begin by proving a few lemmas. With these lemmas, we will be able to prove the
existence of the quadratic variation. Recall that with π a partition of [s, t], we define
πu = {u} ∪ π ∩ [s, u] for s ≤ u ≤ t. πu is then a partition of [s, u]. Note that

Qπu(M) =
n∑

k=1

(Mtk∧u −Mtk−1∧u)2.
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Lemma C.1.3. Let π be a partition of [s, t]. It holds that

EQπ(M)2 ≤ 3Eω2
M [s, t]Qπ(M).

We also have the weaker bound EQπ(M)2 ≤ 12‖M∗‖2∞E(Mt −Ms)2.

Proof. We first expand the square to obtain

EQπ(M)2

= E

(
n∑

k=1

(Mtk
−Mtk−1)

2

)2

= E

n∑

k=1

(Mtk
−Mtk−1)

4 + 2E

n−1∑

i=1

n∑

j=i+1

(Mti
−Mti−1)

2(Mtj
−Mtj−1)

2.

The last term can be computed using Lemma 2.4.12,

2E

n−1∑

i=1

n∑

j=i+1

(Mti −Mti−1)
2(Mtj −Mtj−1)

2

= 2
n−1∑

i=1

E


(Mti −Mti−1)

2E




n∑

j=i+1

(Mtj −Mtj−1)
2

∣∣∣∣∣∣
Fti







= 2
n−1∑

i=1

E
(
(Mti −Mti−1)

2E((Mt −Mti)
2|Fti)

)

= 2
n−1∑

i=1

E(Mti −Mti−1)
2(Mt −Mti)

2

≤ 2Eω2
M [s, t]

n−1∑

i=1

(Mti −Mti−1)
2

= 2Eω2
M [s, t]Qπ(M).

We then find,

EQπ(M)2 ≤ E

n∑

k=1

(Mtk
−Mtk−1)

4 + 2Eω2
M [s, t]Qπ(M)

≤ Eω2
M [s, t]

n∑

k=1

(Mtk
−Mtk−1)

2 + 2Eω2
M [s, t]Qπ(M)

≤ 3Eω2
M [s, t]Qπ(M),

as desired. Since ω2
M [s, t] ≤ 2‖M∗‖∞, we also get

EQπ(M)2 ≤ 12‖M∗‖2∞EQπ(M) = 12‖M∗‖2∞E(Mt −Ms)2.
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Lemma C.1.4. Let π be a partition of [s, t]. Then

E sup
s≤u≤t

(
(Mu −Ms)2 −Qπu(M)

)2 ≤ 17Eω2
M [s, t]

(
(Mt −Ms)2 + Qπ(M)

)
.

Proof. Considering ((Mu−Ms)2−Qπu(M))2, we note that both terms in the square are
nonnegative. Therefore, the mixed term in the expansion of the square is nonpositive
and we obtain the bound

E sup
s≤u≤t

(
(Mu −Ms)2 −Qπu(M)

)2 ≤ E sup
s≤u≤t

(Mu −Ms)4 + E sup
s≤u≤t

Qπu(M)2.

The proof of the lemma will proceed by first making an estimate that allows us to get
rid of the suprema above. Then, we will evaluate the resulting expression to obtain
the result of the lemma. Specifically, we will remove the suprema by proving

E sup
s≤u≤t

(Mu −Ms)4 + E sup
s≤u≤t

Qπu(M)2

≤ 5E(Mt −Ms)4 + 2Eω2
M [s, t]Qπ(M) + 5EQπ(M)2.

This is a somewhat intricate task. We will split it into two parts, yielding the following
total structure of the proof: We first estimate the term E sups≤u≤t(Mu −Ms)4, then
estimate the term E sups≤u≤t Qπu(M)2, and ultimately, we finalize our estimates and
conclude.

Step 1: Removing the suprema, first term. We begin by considering the term
given by E sups≤u≤t(Mu−Ms)4. Note that whenever 0 ≤ u ≤ r, we have the equality
E(Ms+r −Ms|Fs+u) = Ms+u −Ms. Therefore, Ms+u −Ms is a martingale in u with
respect to the filtration (Fs+u)u≥0. Since the dual exponent of 4 is 4

3 , the Doob Lp

inequality yields

E sup
s≤u≤t

(Mu −Ms)4 ≤
(

4
3

)4

E(Mt −Ms)4 ≤ 5E(Mt −Ms)4,

removing the supremum.

Step 2: Removing the suprema, second term. Turning our attention to the
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second term, E sups≤r≤t Qπr (M)2, let s ≤ u ≤ t. We know that

Qπu(M)2

=

(
n∑

k=1

(Mtk∧u −Mtk−1∧u)2
)2

=
n∑

k=1

(Mtk∧u −Mtk−1∧u)4 +
n∑

i 6=j

(Mti∧u −Mti−1∧u)2(Mtj∧u −Mtj−1∧u)2.

Therefore, we also have

E sup
s≤u≤t

Qπu(M)2

≤ E sup
s≤u≤t

n∑

k=1

(Mtk∧u −Mtk−1∧u)4

+ E sup
s≤u≤t

n∑

i 6=j

(Mti∧u −Mti−1∧u)2(Mtj∧u −Mtj−1∧u)2.

We need to bound each of the two terms above. We begin by developing a bound for
the first term. Applying Doob’s Lp inequality used with the martingale M tk −M tk−1

yields

E sup
s≤u≤t

n∑

k=1

(Mtk∧u −Mtk−1∧u)4 ≤
n∑

k=1

E sup
s≤u≤t

(M tk
u −M tk−1

u )4

≤
n∑

k=1

256
81

E(M tk
t −M

tk−1
t )4

≤ 5
n∑

k=1

E(Mtk
−Mtk−1)

4.

Next, we consider the second sum, that is,

E sup
s≤u≤t

n∑

i 6=j

(Mti∧u −Mti−1∧u)2(Mtj∧u −Mtj−1∧u)2.

We start out by fixing s ≤ u ≤ t. Assume that u < t, the case u = t will trivially satisfy
the bound we are about to prove. Letting c be the index such that tc−1 ≤ u < tc, we
can separate the terms where one of the indicies is equal to c and obtain three types
of terms: Those where i is distinct from c and j is equal to c, those where i is equal to
c and j is distinct from c and those where i and j are distinct and both distinct from
c as well. Note that since we are only considering off-diagonal terms, we do not need
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to consider the case where i and j are both equal to c. We obtain

n∑

i6=j

(Mti∧u −Mti−1∧u)2(Mtj∧u −Mtj−1∧u)2

≤
n∑

i6=c

(Mti∧u −Mti−1∧u)2(Mu −Mtc−1)
2

+
n∑

j 6=c

(Mu −Mtc−1)
2(Mtj∧u −Mtj−1∧u)2

+
n∑

i 6=j,i6=c,j 6=c

(Mti∧u −Mti−1∧u)2(Mtj∧u −Mtj−1∧u)2.

Now note that when i < c, ti ∧ u = ti and ti−1 ∧ u = ti−1. And when i > c, ti ∧ u = u

and ti−1 ∧ u = u. Therefore,

n∑

i 6=c

(Mti∧u −Mti−1∧u)2(Mu −Mtc−1)
2 =

n∑

i<c

(Mti −Mti−1)
2(Mu −Mtc−1)

2

≤ ω2
M [s, t]

n∑

i<c

(Mti −Mti−1)
2

≤ ω2
M [s, t]Qπ(M),

and analogously for the second term. Likewise,

n∑

i 6=j,i 6=c,j 6=c

(Mti∧u −Mti−1∧u)2(Mtj∧u −Mtj−1∧u)2

=
n∑

i 6=j,i<c,j<c

(Mti −Mti−1)
2(Mtj −Mtj−1)

2

≤
n∑

i 6=j

(Mti −Mti−1)
2(Mtj −Mtj−1)

2.

All in all, inserting the bounds just obtained for each of the three terms in the sum,
we obtain the pointwise bound

n∑

i 6=j

(Mti∧u −Mti−1∧u)2(Mtj∧u −Mtj−1∧u)2

≤ 2ω2
M [s, t]Qπ(M) +

n∑

i 6=j

(Mti −Mti−1)
2(Mtj −Mtj−1)

2.
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Since this bound holds for all s ≤ u ≤ t, we finally obtain

E sup
s≤u≤t

n∑

i 6=j

(Mti∧u −Mti−1∧u)2(Mtj∧u −Mtj−1∧u)2

≤ 2Eω2
M [s, t]Qπ(M) + E

n∑

i 6=j

(Mti
−Mti−1)

2(Mtj
−Mtj−1)

2.

Combining our results, we finally obtain

E sup
s≤u≤t

Qπu(M)2

≤ 5
n∑

k=1

E(Mtk
−Mtk−1)

4 + 2Eω2
M [s, t]Qπ(M) + E

n∑

i 6=j

(Mti
−Mti−1)

2(Mtj
−Mtj−1)

2

≤ 2Eω2
M [s, t]Qπ(M) + 5EQπ(M)2.

We have now developed the bounds announced earlier, and may all in all conclude

E sup
s≤r≤t

(Mr −Ms)4 + E sup
s≤r≤t

Qπr (M)2

≤ 5E(Mt −Ms)4 + 2Eω2
M [s, t]Qπ(M) + 5EQπ(M)2,

as promised.

Step 3: Final estimates and conclusion. We will now make an estimate for the
first and last terms in the expression above, uncovering the result of the lemma. For
the first term, we easily obtain

5E(Mt −Ms)4 ≤ 5Eω2
M [s, t](Mt −Ms)2.

For the other term, Lemma C.1.3 yields

5EQπ(M)2 ≤ 15Eω2
M [s, t]Qπ(M).

Combining our findings, we conclude that

E sup
s≤u≤t

(
(Mu −Ms)2 −Qπu(M)

)2

≤ 5E(Mt −Ms)4 + 2Eω2
M [s, t]Qπ(M) + 5EQπ(M)2

≤ 5Eω2
M [s, t](Mt −Ms)2 + 2Eω2

M [s, t]Qπ(M) + 15Eω2
M [s, t]Qπ(M)

≤ 17Eω2
M [s, t]

(
(Mt −Ms)2 + Qπ(M)

)
,

which was precisely the proclaimed bound.
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Lemma C.1.5. Consider the space of processes on [0, t] endowed with the norm given
by ‖| · ‖| = ‖‖ · ‖∞‖2. We denote convergence in ‖| · ‖| as uniform L2 convergence.
This space is complete.

Proof. Assume that Xn is a cauchy sequence under ‖| · ‖|. Since a cauchy sequence
with a convergent subsequence is convergent, it will suffice to show that Xnk

has a
convergent subsequence.

We know that for any ε > 0, there exists N such that for n,m ≥ N , it holds that
‖‖Xn −Xm‖∞‖2 ≤ ε. In particular, using 1

8k as our ε, there exists nk such that for
any n,m ≥ nk,

P

(
‖Xn −Xm‖∞ >

1
2k

)
≤ 4k‖‖Xn −Xm‖∞‖2 ≤ 1

2k
.

We can assume without loss of generality that nk is increasing. We then obtain that
P (‖Xnk

− Xnk+1‖∞ > 1
2k ) ≤ 1

2k , so ‖Xnk
− Xnk+1‖∞ ≤ 1

2k from a point onwards
almost surely, by the Borel-Cantelli Lemma. Then we also find for i > j

‖Xni −Xnj‖∞ ≤
j∑

k=i+1

‖Xnk−1 −Xnk
‖∞ ≤ 1

2k
,

so Xnk
is almost surely uniformly cauchy. Therefore, it is almost surely uniformly

convergent. Let X be the limit. We wish to prove that X is the limit of Xnk
in ‖| · ‖|.

Fixing k, we have

‖|Xnk
−X‖| = ‖‖Xnk

−X‖∞‖2
= ‖ lim

m
‖Xnk

−Xnm‖∞‖2

=
(

E
(
lim inf

m
‖Xnk

−Xnm‖∞
)2

) 1
2

=
(
E lim inf

m
(‖Xnk

−Xnm‖∞)2
) 1

2

= lim inf
m

‖‖Xnk
−Xnm‖∞‖2.

Now note that Xnk
also is a cauchy sequence. Let ε > 0 be given and select N in

accordance with the cauchy property of Xnk
. Let k ≥ N , we then obtain

lim inf
m

‖‖Xnk
−Xnm‖∞‖2 = sup

i≥N
inf
m≥i

‖‖Xnk
−Xnm‖∞‖2 ≤ ε.

We have now shown that for k ≥ N , ‖|Xnk
− X‖| ≤ ε. Thus, Xnk

converges to X,
and therefore Xn converges to X as well.
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We are now ready to prove the convergence result needed to argue the existence of
the quadratic variation. Letting π be a partition of [s, t], we earlier defined πu by
πu = {u} ∪ π ∩ [s, u] for s ≤ u ≤ t. We now extend this definition by defining πu be
empty for u < s and letting πu = π for u > t. We use the convention that Q∅(M) = 0.

Theorem C.1.6. Let t ≥ 0, and let π denote a generic partition of [0, t]. The mapping
s 7→ Qπs(M) is uniformly convergent on [0, t] in L2.

Proof. Since uniform L2 convergence is a complete mode of convergence by Lemma
C.1.5, it will suffice to show that s 7→ Qπs(M) is a cauchy net with respect to uniform
L2 convergence. We therefore consider the distance between elements u 7→ Qπu(M)
and u 7→ Q$u(M), where $ ⊇ π. As usual, π = (t0, . . . , tn). We put $ = (s0, . . . , sm)
and let jk denote the unique element of $ such that sjk

= tk. We define the partition
$k of [tk−1, tk] by $k = (sjk−1 , . . . , sjk−1) and obtain

Q$u(M)−Qπu(M) =
m∑

k=1

(Mu
sk
−Mu

sk−1
)2 −

n∑

k=1

(Mu
tk
−Mu

tk−1
)2

=
n∑

k=1

jk∑

i=jk−1+1

(Mu
si
−Mu

si−1
)2 −

n∑

k=1

(Mu
tk
−Mu

tk−1
)2

=
n∑

k=1

Q$k
u(M)−

n∑

k=1

(Mu
tk
−Mu

tk−1
)2.

This implies that

‖ sup
u≤t

|Q$u(M)−Qπu(M)|‖2

=

∥∥∥∥∥sup
u≤t

∣∣∣∣∣
n∑

k=1

Q$k
u(M)−

n∑

k=1

(Mu
tk
−Mu

tk−1
)2

∣∣∣∣∣

∥∥∥∥∥
2

≤
∥∥∥∥∥

n∑

k=1

sup
u≤t

∣∣∣Q$k
u(M)− (Mu

tk
−Mu

tk−1
)2

∣∣∣
∥∥∥∥∥

2

≤
n∑

k=1

∥∥∥∥sup
u≤t

∣∣∣Q$k
u(M)− (Mu

tk
−Mu

tk−1
)2

∣∣∣
∥∥∥∥

2

≤
n∑

k=1

∥∥∥∥∥ sup
tk−1≤u≤tk

∣∣∣Q$k
u(M)− (Mu

tk
−Mu

tk−1
)2

∣∣∣
∥∥∥∥∥

2

.

We have been able to reduce the supremum to [tk−1, tk] since the expression in the
supremum is constant for u ≤ tk−1 and for u ≥ tk, respectively. Now, using Lemma
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C.1.4, we conclude

n∑

k=1

∥∥∥∥∥ sup
tk−1≤u≤tk

∣∣∣Q$k
u(M)− (Mu

tk
−Mu

tk−1
)2

∣∣∣
∥∥∥∥∥

2

≤
n∑

k=1

17Eω2
M [tk−1, tk]

(
(Mtk

−Mtk−1)
2 + Q$k(M)

)

≤
n∑

k=1

17Eδ2
M [s, t]

(
(Mtk

−Mtk−1)
2 + Q$k(M)

)
.

Since the union of the $k is $, we obtain, applying the Cauchy-Schwartz inequality
and Lemma C.1.3,

n∑

k=1

17Eδ2
M [s, t]

(
(Mtk

−Mtk−1)
2 + Q$k(M)

)

= 17Eδ2
M [s, t](Qπ(M) + Q$(M))

≤ 17‖δ2
M [s, t]‖2‖Qπ(M) + Q$(M)‖2

≤ 17‖δ2
M [s, t]‖2(‖Qπ(M)‖2 + ‖Q$(M)‖2)

≤ 34‖δ2
M [s, t]‖2

(
12‖M∗‖2∞E(Mt −Ms)2

) 1
2

=
(
34
√

12‖M∗‖∞‖Mt −Ms‖2
)
‖δ2

M [s, t]‖2.

As the mesh tends to zero, the continuity of M yields that δπ(M) tends to zero.
By boundedness of M , Eδπ(M)4 tends to zero as well. Therefore, if π is chosen
sufficiently fine, the above can be made as small as desired. Therefore, we conclude
that s 7→ Qπs(M) is uniformly L2 cauchy, and so it is convergent.

Theorem C.1.7. There exists a unique continuous, increasing and adapted process
[M ] such that for any t ≥ 0, [M ]t is the uniform L2 limit in π of the processes
s 7→ Qπs(M) on [0, t].

Proof. Letting n ≥ 1 and letting π be a generic partition of [0, n], by Lemma C.1.6,
u 7→ Qπu(M) is uniformly L2 convergent. Let Xn be the limit. Xn is then a process
on [0, n]. By Lemma C.1.2, there is a sequence of partitions πn such that u 7→ Qπn

u (M)
converges uniformly in L2 to Xn. Therefore, there is a subsequence converging almost
surely uniformly. Since u 7→ Qπn

u (M) is continuous and adapted, Xn is continuous
and adapted as well.

Now, Xn is also the uniform L2 limit of u 7→ Qπu(M), u ≤ t, where π is a generic
partition of [0, n + 1]. By uniqueness of limits, Xn and Xn+1 are indistinguishable
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on [0, n]. By the Pasting Lemma, there exists a process [M ] such that [M ]n = Xn.
Since Xn is continuous and adapted, [M ] is continuous and adapted as well. Since
[M ]t is the limit of larger partitions than [M ]s whenver s ≤ t, [M ]t ≥ [M ]s and [M ]
is increasing. And [M ] has the property stated in the lemma of being the uniform L2

limit on compacts of quadratic variations over partitions.

Lemma C.1.8. The process M2
t − [M ]t is a uniformly integrable martingale.

Proof. We proceed in two steps. We first show that M2
t − [M ]t is a martingale, and

then proceed to show that it is uniformly integrable.

Step 1: The martingale property. Let 0 ≤ s ≤ t. Let π be a partition of [0, t].
Define $ = {s} ∪ π ∩ [s, t]. We then obtain

E(Qπ(M)|Fs) = E(Qπs(M) + Q$(M)|Fs)

= Qπs(M) + E((Mt −Ms)2|Fs)

= Qπs(M) + E(M2
t |Fs)−M2

s .

This shows that

E(M2
t −Qπt(M)|Fs) = E(M2

t −Qπ(M)|Fs) = M2
s −Qπs(M),

so the process M2
s −Qπs(M) is a martingale on [s, t]. Since Qπs(M) converges in L2 to

[M ]s as π becomes finer, and conditional expectations are L2 continuous, we conclude

E(M2
t − [M ]t|Fs) = lim

π
E(M2

t −Qπt(M)|Fs)

= lim
π

M2
s −Qπs(M)

= M2
s − [M ]s,

almost surely, showing the martingale property.

Step 2: Uniform integrability. By the continuity of the L2 norm, we can use
Lemma C.1.3 to obtain

E[M ]2t = lim
π

E(Qπ(M)2) ≤ 12‖M∗‖2∞EM2
t ≤ 12‖M∗‖4∞,

so [M ] is bounded in L2, therefore uniformly integrable. Since M2 is bounded, it is
clearly uniformly integrable. We can therefore conclude that M2

t − [M ]t is a uniformly
integrable martingale.
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Our final task is localise our results from continuous bounded martingales to continuous
local martingales and investigate how to characterize the quadratic variation in the
local cases.

Lemma C.1.9. Let π be a partition of [s, t]. Let τ be a stopping time with values in
[s,∞). Then

Qπτ (M) = Qπ(Mτ ).

Proof. This follows immediately from

Qπτ (M) =
n∑

k=1

(M2
tk∧τ −M2

tk−1∧τ )

=
n∑

k=1

((Mτ
tk

)2 − (Mτ
tk−1

)2)

= Qπ(Mτ ).

Lemma C.1.10. Let M be a continuous bounded martingale, and let τ be a stopping
time. Then [M ]τ = [Mτ ].

Proof. Let t ≥ 0. As usual, letting π be a generic partition of [0, t], we know that [M ]
is the uniform L2 limit on [0, t] of Qπs(M).

E ([M ]τt −Qπ(Mτ ))2 = E ([M ]τt −Qπ(M)τ )2

= E ([M ]τt −Qπτ (M))2

≤ E

(
sup
s≤t

|[M ]s −Qπs(M)|
)2

,

which tends to zero. Thus, [M ]τt is the limit of Qπ(Mτ ). Since [Mτ ]t is also the
limit of Qπ(Mτ ), we must have [M ]τt = [Mτ ]t. Since the processes are continuous, we
conclude that [M ]τ = [Mτ ] up to indistinguishability.

Corollary C.1.11. Let M be a continous local martingale. There exists a unique
continuous, increasing and adapted process [M ] such that if τn is any localising sequence
such that Mτn is a continuous bounded martingale, then [M ]τn = [Mτn ].

Proof. This follows from Theorem 2.5.11.
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Lemma C.1.12. Let A be any increasing process with A0 = 0. Then A is uniformly
integrable if and only if A∞ ∈ L1.

Proof. First note that the criterion in the lemma is well-defined, since A is convergent
and therefore has a well-defined limit in [0,∞]. We show each implication separately.
Assume A∞ ∈ L1. We then obtain, since A is increasing,

lim
x→∞

sup
t≥0

E|At|1(|At|>x) ≤ lim
x→∞

sup
t≥0

E|A∞|1(|A∞|>x) = 0,

by dominated convergence. Therefore, A is uniformly integrable. On the other hand,
if A is uniformly integrable, we find by monotone convergence

E|A∞| = lim
t

E|At| ≤ sup
t≥0

E|At|,

which is finite, since A is uniformly integrable and therefore bounded in L1.

Theorem C.1.13. Let M ∈ cM2
0. The quadratic variation is the unique process [M ]

such that M2 − [M ] is a uniformly integrable martingale.

Proof. Let τn be a localising sequence for M such that Mτn is a continuous bounded
martingale. We will use Lemma 2.4.13 to prove the claim. Therefore, we first prove
that M2− [M ] has an almost surely finite limit. We already know that M2 has a limit,
it will therefore suffice to show that this is the case for [M ]. This follows since

E[M ]∞ = E lim
n

[M ]τn

= lim
n

E[M ]τn

= lim
n

E[Mτn ]∞

= lim
n

E(Mτn)2∞

≤ lim EM2
∞,

which is finite. Now let a stopping time τ be given. Using that M ∈ cM2
0 and applying

monotone convergence, we obtain

E(M2
τ − [M ]τ ) = EM2

τ − E[M ]τ

= E lim
n

M2
τn∧τ − E lim

n
[M ]τn∧τ

= lim
n

EM2
τn∧τ − lim

n
E[M ]τn∧τ

= − lim
n

E(Mτn)2τ − [Mτn ]τ

= 0.
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By Lemma 2.4.13, M2 − [M ] is a uniformly integrable martingale.

Corollary C.1.14. Let M ∈ cML
0 . The quadratic variation is the unique increasing

process [M ] such that M2 − [M ] is a continuous local martingale.

C.2 A Lipschitz version of Urysohn’s Lemma

In this section, we prove an version of Urysohn’s Lemma giving a Lipschitz condition
on the mapping supplied. This result could be used in the proof of Lemma 4.3.3, but
the proof presented there seems simpler. However, since the extension of Urysohn’s
Lemma has independent interest, we present it here.

Lemma C.2.1. Let ‖ · ‖ be any norm on Rn and let d be the induced metric. Let A

be a closed set and let x ∈ Ac. Then d(x, A) = d(x, y) for some y ∈ ∂A.

Proof. First consider the case where A is bounded. Then A is compact. The mapping
y 7→ d(x, y) is continuous, and therefore attains its infimum over A. Thus, there exists
y ∈ A such that d(x, A) = d(x, y). Assume that y ∈ A◦, we will seek a contradiction.
Let ε > 0 be such that Bε(y) ⊆ A. There exists 0 < λ ≤ 1 with λx+(1−λ)y ∈ Bε(y).
We then find

‖λx + (1− λ)y − x‖ ≤ (1− λ)‖x− y‖ < ‖x− y‖ = d(x, y),

and therefore d(x, λx + (1− λy)) < d(x, y), which is the desired contradiction. Thus,
y /∈ A◦, and since A is closed, we obtain y ∈ ∂A.

Next, consider the case where A is unbounded. Then, there exists a sequence zn in A

with norms converging to infinity. We define

Kn = {y ∈ A|‖y − x‖ ≤ ‖zn − x‖}.

Since the norm is continuous, Kn is closed. And any y ∈ Kn satisfies the relation
‖y‖ ≤ ‖y− x‖+ ‖x‖ ≤ ‖z− x‖+ ‖x‖, so Kn is bounded. For any y ∈ A \Kn, we have
d(y, x) > d(x, zn) ≥ d(x,A) and therefore d(x,A) = d(x,Kn).

From what we already have shown, there is yn ∈ ∂Kn such that d(x,A) = d(x, yn).
We need to prove that yn ∈ ∂A for some n. Note that with αn = ‖zn − x‖, we have

∂Kn = ∂(A ∩Bαn(x)) ⊆ ∂A ∪ ∂Bαn(x) = ∂A ∪ {y ∈ Rn|‖y − x‖ = αn}.
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Since ‖yn − x‖ = d(yn, x) = d(x,A), the sequence ‖yn − x‖ is constant, in particular
bounded. But αn tends to infinity, since ‖zn‖ tends to infinity. Thus, there is n such
that ‖yn − x‖ 6= αn, and therefore yn ∈ ∂A, as desired.

Theorem C.2.2 (Urysohn’s Lemma with Lipschitz constant). Let K and V

be compact, respectively open subsets of Rn, with K ⊆ V . Let ‖ · ‖ be any norm on
Rn, and let d be the induced metric. Assume that V has compact closure. There exists
f ∈ Cc(Rn) such that K ≺ f ≺ V and such that f is d-Lipschitz continuous and
d-Lipschitz constant

4 supx∈∂V,y∈∂K d(x, y)
(infx∈V \K◦ d(x,K) + d(x, V c))2

.

Proof. Clearly, we can assume K 6= ∅. We define

f(x) =
d(x, V c)

d(x,K) + d(x, V c)
,

and claim that f satisfies the properties given in the lemma. We first argue that f is
well-defined. We need to show that the denominator in the expression for f is finite
and nonzero. Since K 6= ∅, d(x, K) is always finite. Since V has compact closure,
V 6= Rn, so d(x, V c) is also always finite. Thus, the denominator is finite. It is also
nonnegative, and if d(x,K) + d(x, V c) = 0, we would have by the closedness of K and
V c that x ∈ K ∩ V c, an impossibility. This shows that f is well-defined.

It remains to prove that f ∈ Cc(Rn), that K ≺ f ≺ V and that f has the desired
Lipschitz properties. We will prove these claims in four steps.

Step 1: f ∈ Cc(Rn) with K ≺ f ≺ V . It is clear that f is continuous. If x ∈ K,
d(x,K) = 0 and therefore f(x) = 1. If x ∈ V c, d(x, V c) = 0 and f(x) = 0. Thus,
K ≺ f ≺ V . Also, since f is zero outside of V , the support of f is included in V .
Since V has compact closure, f has compact support.

Step 2: Lipschitz continuity of f on V \ K◦. We begin by showing that f is
Lipschitz continuous on the compact set V \K◦. Letting x, y ∈ V \K◦, we find

f(x)− f(y) =
d(x, V c)

d(x,K) + d(x, V c)
− d(y, V c)

d(y, K) + d(y, V c)

=
d(x, V c)(d(y,K) + d(y, V c))− d(y, V c)(d(x,K) + d(x, V c))

(d(x,K) + d(x, V c))(d(y,K) + d(y, V c))

=
d(x, V c)d(y,K)− d(y, V c)d(x,K)

(d(x,K) + d(x, V c))(d(y,K) + d(y, V c))
.
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Since the mapping x 7→ d(x,K) + d(x, V c) is positive and continuous in x and y and
V \ K◦ is compact, we conclude that the infimum of d(x,K) + d(x, V c) over x in
V \K◦ is positive. Let C denote this infimum. Furthermore, note that the mappings
x 7→ d(x, V c) and x 7→ d(x, K) is continuous, and therefore their suprema over x in
V \K◦ are finite. Let c1 and c2 denote these suprema. Note that for any x, y, a, b ∈ R,

xa− yb = x

(
a + b

2
+

a− b

2

)
− y

(
a + b

2
− a− b

2

)

= (x− y)
a + b

2
+ (a− b)

x + y

2
,

so by symmetry, |xa− yb| ≤ |x− y| |a+b|
2 + |a− b| |x+y|

2 . This shows that

|f(x)− f(y)| =
|d(x, V c)d(y,K)− d(y, V c)d(x,K)|

(d(x,K) + d(x, V c))(d(y,K) + d(y, V c))

≤ 1
C2
|d(x, V c)d(y, K)− d(y, V c)d(x,K)|

≤ 1
C2

(c2|d(x, V c)− d(y, V c)|+ c1|d(x,K)− d(y,K)|)

≤ 1
C2

(c2d(x, y) + c1d(x, y))

≤ c1 + c2

C2
d(x, y).

Now, since , We have now shown the Lipschitz property of f for x, y ∈ V , obtaining
the Lipschitz constant c = c1+c2

C2 . We will now extend the Lipschitz property to all of
Rn.

Step 3: Lipschitz property of f on Rn. We first extend the Lipschitz property
to Rn \ K◦. Let x, y ∈ Rn \ K◦ be arbitrary. Since we already have the Lipschitz
property when x, y ∈ V \K◦, we only need to consider the case where one of x and
y are in V

c
. If x and y both are in V

c
, they are also both in V c, so f(x) − f(y) = 0

and the Lipschitz property trivially holds here. It remains to consider the case where,
say, x ∈ V

c
and y ∈ V \K◦. Now, since V is compact, by Lemma C.2.1 there exists

z ∈ ∂V such that d(x, V ) = d(x, z). Now, since V is open, ∂V = ∂V = ∂V c ⊆ V c.
Since f is zero on V c, we conclude f(z) = 0. Since also f(x) = 0, we obtain

|f(x)− f(y)| ≤ |f(x)− f(z)|+ |f(z)− f(y)| = |f(y)− f(z)| ≤ cd(y, z).

Now, z is the element of V which minimizes the distance to x. Since y ∈ V , it follows
that d(x, z) ≤ d(x, y) and therefore d(y, z) ≤ d(y, x) + d(x, z) ≤ 2d(x, y). We conclude

|f(x)− f(y)| ≤ 2cd(y, z).
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We have now proven that f is Lipschitz on Rn \K◦ with Lipschitz constant 2c.

Finally, we extend the Lipschitz property to all of Rn. Let x, y ∈ Rn. As before, it
will suffice to consider the case where either x ∈ K◦ or y ∈ K◦. In the case x, y ∈ K◦,
f(x)− f(y) = 0 and the Lipschitz property is trivial.

We therefore consider the case where x ∈ K◦ and y ∈ Rn\K◦. By Lemma C.2.1, there
is z on the boundary of Rn \K◦ such that d(x, V \K◦) = d(x, z). Now, the boundary
of Rn \ K◦ is the same as ∂K, so z ∈ ∂K. K is closed and therefore ∂K ⊆ K, so
f(z) = 1. Since also x ∈ K◦ ⊆ K, f(x) = 1 and we find

|f(x)− f(y)| ≤ |f(x)− f(z)|+ |f(z)− f(y)| = |f(y)− f(z)|.

We know that f is Lipschitz on Rn \K◦ and that y ∈ Rn \K◦. Since z ∈ ∂(Rn \K◦),
there is a sequence zn ∈ Rn \K◦ such that zn converges to z. This yields

|f(y)− f(z)| = lim
n
|f(y)− f(zn)| ≤ lim

n
cd(y, zn) = cd(y, z),

and we thus recover |f(x)− f(y)| ≤ cd(y, z). As in the previous step, d(x, z) ≤ d(x, y)
and so d(y, z) ≤ d(y, x) + d(x, z) ≤ 2d(x, y), yielding |f(x) − f(y)| ≤ 2cd(y, z). This
shows the Lipschitz property.

Step 4: Estimating the Lipschitz constant. We now know that f is Lipschitz
continuous with Lipschitz constant

2c =
2c1 + 2c2

C2
=

2 supx∈V \K◦ d(x,K) + 2 supx∈V \K◦ d(x, V c)

(infx∈V \K◦ d(x, K) + d(x, V c))2
.

This expression is somewhat cumbersome. By estimaing it upwards, we obtain a
weaker result, but more manageable. We will leave the denominator untouched and
only consider the numerator. Our goal is to show

sup
x∈V \K◦

d(x,K) ≤ sup
x∈∂V,y∈∂K

d(x, y)

sup
x∈V \K◦

d(x, V c) ≤ sup
x∈∂V,y∈∂K

d(x, y).

Consider the first equation. Obviously, to prove the inequality, we can assume that
supx∈V \K◦ d(x,K) is nonzero. First note that since the mapping x 7→ d(x, V c) is
continuous and V \K◦ is compact, there is z ∈ V \K◦ such that

sup
x∈V \K◦

d(x, V c) = d(z, V c).
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And by Lemma C.2.1, there is w ∈ ∂V c = ∂V such that d(z, V c) = d(z, w). We
want to prove z ∈ ∂K. First assume that z is in the interior of V \ K◦, we seek a
contradiction. Let ε > 0 be such that Bε(z) ⊆ V \K◦. There is 0 < λ ≤ 1 such that
λw + (1− λ)z ∈ Bε(z), and we then find

d(λw + (1− λ)z, w) = ‖(1− λ)(z − w)‖ = (1− λ)‖z − w‖ < d(z, w).

But z was the infimum of d(y, w) over y ∈ V \K◦. Thus, we have obtained a contra-
diction and conclude that z is not in the interior of V \K◦. Since V \K◦ is closed, we
conclude z ∈ ∂(V \K◦) ⊆ ∂V ∪ ∂K. If z ∈ ∂V , we obtain d(z, V c) = 0, inconsistent
with our assumption that supx∈V \K◦ d(x, K) is nonzero. Therefore, z ∈ ∂K. We may
now conclude

sup
x∈V \K◦

d(x,K) = d(z, w) ≤ sup
x∈∂V,y∈∂K

d(x, y).

We can use exacly the same arguments to prove the other inequality. We can therefore
all in all conclude that f is Lipschitz with Lipschitz constant

4 supx∈∂V,y∈∂K d(x, y)
(infx∈V \K◦ d(x,K) + d(x, V c))2

,

as desired.

Comment C.2.3 The Lipschitz constant could possibly be improved by instead con-
sidering the mapping

f(x) = min
{

d(x, V c)
d(K,V c)

, 1
}

.

◦
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Appendix D

List of Symbols

General probability

• (Ω,F ,FT , P ) - the background probability space.

• F∞ - The σ-algebra induced by ∪t≥0Ft.

• W - Generic Brownian motion.

• τ, σ - Generic stopping times.

• ΣA - The σ-algebra of measurability and adaptedness.

• Σπ - The progressive σ-algebra.

• M - Generic martingale.

• M∗
t - The maximum of M over [0, t].

• M∗ - The maximum of M over [0,∞).

• SP - The space of real stochastic processes.

• M - The space of martingales.

• M0 - The space of martingales starting at zero.

• cM2
0 - The space of continuous square-integrable martingales starting at zero.
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• cML
0 - The space of continuous local martingales starting at zero.

• P−→ - Convergence in probability.

• Lp

−→ - Convergence in Lp.

• a.s.−→ - Almost sure convergence.

• φ - The standard normal density.

• φn - The n-dimensional standard normal density.

Stochastic integration

• bE - The space of elementary processes.

• L2(W ) - The space of progressive processes X with E
∫∞
0

X2
t dt finite.

• L2(W ) - The space of processes L0-locally in L2(W ).

• cML
W - The processes

∑n
k=1

∫ t

0
Yk dW k

t , Y ∈ L2(W )n.

• µM - The measure induced by M ∈ cML
W .

• L2(M) - The L2 space induced by µM .

• L2(M) - The space of processes L0-locally in L2(M).

• cFV - The space of continuous finite variation processes.

• cFV0 - The space of continuous finite variation processes starting at zero.

• S - The space of standard processes.

• L(X) - The space of integrands for X ∈ S.

• [X] - The quadratic variation of a process X ∈ S.

• Qπ(M) - The quadratic variation of M over the partition π.

• E(X) - The Doléans-Dade exponential of X ∈ S.

• X,Y - Generic elements of S.

• H, K - Generic elements of bE .
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The Malliavin calculus

• D - The Malliavin derivative.

• S - The space of smooth variables, C∞p (Rn) transformations of W coordinates.

• Lp(Π) - The space Lp([0, T ]× Ω,B[0, T ]⊗FT , λ⊗ P ).

• D1,p - The domain of the extended Malliavin derivative.

• F - Generic element of D1,p.

• X - Generic element of L2(Π).

• θ - The Brownian stochastic integral operator on [0, T ].

• (en) - Generic countable orthonormal basis of L2[0, T ].

• 〈·, ·〉[0,T ] - The inner product on L2[0, T ].

• 〈·, ·〉Π - The inner product on L2(Π).

• Hn - The subspace of L2(FT ) based on the n’th Hermite polynomial.

• H′n,H′′n - Dense subspaces of Hn.

• Hn - Orthonormal basis of Hn.

• Hn(Π) - The subspace of L2(Π) based on Hn.

• H′n(Π), H′′n(Π) - Dense subspaces of Hn(Π).

• Hn(Π) - Orthonormal basis for Hn(Π).

• Pn - Orthogonal projection onto Hn.

• PΠ
n - Orthogonal projection onto Hn(Π).

• Φa - Generic element of Hn.

• Pn - Polynomials of degree n in any number of variables.

• Pn - Subspace of L2(FT ) based on Pn.

• P ′n - Dense subspace of Pn.

• Pn - Total subset of Pn.
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• δ - The Skorohod integral.

Mathematical finance

• Q - A generic T -EMM.

• S - Generic asset price process.

• r - Generic short rate process.

• B - Generic risk-free asset price process.

• S′ - Generic normalized asset price process.

• B′ - Generic normalized risk-free asset price process.

• M - Generic financial market model.

• (h0, hS) - Generic portfolio strategy.

• V h - Value process of the portfolio strategy h.

• µ - Generic drift vector process.

• σ - Generic volatility matrix process.

• ρ - Generic correlation.

Measure theory

• B - The Borel σ-algebra on R.

• Bk - The Borel σ-algebra on Rk.

• B(M) - The Borel σ-algebra on a pseudoemetric space (M, d).

• λ - The Lebesgue measure.

• [f ] - The equivalence class corresponding to f .

• C([0,∞),Rn) - The space of continuous mappings from [0,∞) to Rn.

• X◦
t - The t’th projection on C([0,∞),Rn).
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• C([0,∞),Rn) - The σ-algebra on C([0,∞),Rn) induced by the projections.

Analysis

• C1(Rn) - The space of continuous differentiably mappings from Rn to R.

• C∞(Rn) - The infinitely differentiable elements of C1(Rn).

• C∞p (Rn) - The elements of C∞(Rn) with polynomial growth for the mapping
and its partial derivatives.

• C∞c (Rn) - The elements of C∞(Rn) with compact support.

• C2(U) - The space of twice continuously differentiable mappings from U to Rn.

• ‖ · ‖∞ - The uniform norm.

• Hn - The n’th Hermite polynomial.

• M ⊕N - orthonormal sum of two closed subspaces.

• VF - Variation of F .

• µF - Signed measure induced by a finite variation mapping F .

• f ∗ g - Convolution of f and g.

• (ψε) - Dirac family.

• K - Generic compact set.

• U, V - Generic open sets.
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