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Preface

This monograph concerns itself with the theory of continuous-time martingales with continu-

ous paths and the theory of stochastic integration with respect to continuous semimartingales.

To set the scene for the theory to be developed, we consider an example. Assume given a

probability space (Ω,F , P ) endowed with a Brownian motion W , and consider a continuous

mapping f : [0,∞) → R. We would like to understand whether it is possible to define an

integral
∫ t

0
f(s) dWs in a fashion analogous to ordinary Lebesgue integrals. In general, there is

a correspondence between bounded signed measures on [0, t] and mappings of finite variation

on [0, t]. Therefore, if we seek to define the integral with respect to Brownian motion in

a pathwise sense, that is, by defining
∫ t

0
f(s) dW (ω)s for each ω manually, by reference to

ordinary Lebesgue integration theory, it is necessary that the sample paths W (ω) have finite

variation. However, Brownian motion has the property that its sample paths are almost

surely of infinite variation. Our conclusion is that the integral of f with respect to W cannot

in general be defined pathwisely by immediate reference to Lebesgue integration theory.

We are thus left to seek an alternate manner of defining the integral. A natural starting point

is to consider Riemann sums of the form
∑2n

k=1 f(tnk−1)(Wtnk
−Wtnk−1

), where tnk = kt2−n, and

attempt to prove their convergence in some sense, say, in L2. By the completeness of L2, it

suffices to prove that the sequence of Riemann sums constitute a Cauchy sequence in L2. In

order to show this, put η(β) = sup{|f(s) − f(u)| | s, u ∈ [0, t], |s − u| ≤ β}. η(β) is called

the modulus of continuity for f over [0, t]. As f is continuous, f is uniformly continuous on

[0, t], and therefore η(β) tends to zero as β tends to zero. Now note that for m ≥ n, with

ξmnk = f(tmk−1)−f(tnk′−1) where k′ is such that tnk′−1 ≤ tmk−1 < tnk′ , we find by the independent
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and normally distributed increments of Brownian motion that

E

(
2m∑
k=1

f(tmk−1)(Wtmk
−Wtmk−1

)−
2n∑
k=1

f(tnk−1)(Wtnk
−Wtnk−1

)

)2

= E

(
2m∑
k=1

ξmnk (Wtmk
−Wtmk−1

)

)2

=

2m∑
k=1

E
(
ξmnk (Wtmk

−Wtmk−1
)
)2

≤ η(t2−n)2
2m∑
k=1

E(Wtmk
−Wtmk−1

)2 = tη(t2−n)2,

which tends to zero as n tends to infinity. We conclude that as m and n tend to infinity,

the L2 distance between the corresponding Riemann sums tend to zero, and so the sequence

of Riemann sums
∑2n

k=1 f(tnk−1)(Wtnk
−Wtnk−1

) is a Cauchy sequence in L2. Therefore, by

completeness, the sequence converges in L2 to some limit. Thus, while we cannot in general

obtain pathwise convergence of the Riemann sums, we can in fact obtain convergence in L2,

and may then define the stochastic integral
∫ t

0
f(s) dWs as the limit.

Our conclusion from the above deliberations is that we cannot in general define the stochastic

integral with respect to a Brownian motion using ordinary Lebesgue integration theory, but in

certain circumstances, we may define the integral using an alternate limiting procedure. This

provides evidence that a theory of stochastic integration may be feasible. In the following

chapters, we will develop such a theory. The structure of what is to come is as follows. In

Chapter 1, we will develop the basic tools of continuous-time martingale theory, as well as

develop the general concepts used in the theory of continuous-time stochastic processes. Using

these results, we will in Chapter 2 define the stochastic integral
∫ t

0
Hs dXs for all processes

such that X belongs to the class of processes known as continuous semimartingales, which

in particular includes martingales and processes with paths of finite variation, and H is a

process satisfying certain measurability and integrability conditions. In this chapter, we also

prove some basic properties of the stochastic integral, such as the dominated convergence

theorem and Itô’s formula, which is the stochastic version of the fundamental theorem of

analysis.

As regards the prerequisites for this text, the reader is assumed to have a reasonable grasp

of basic analysis, measure theory and discrete-time martingale theory, as can be obtained

through the books Carothers (2000), Ash (2000) and Rogers & Williams (2000a).

Finally, many warm thanks go to Niels Richard Hansen and Benjamin Falkeborg for their

editorial comments on the original manuscript.



Chapter 1

Continuous-time stochastic

processes

In this chapter, we develop the fundamental results of stochastic processes in continuous

time, covering mostly some basic measurability results and the theory of continuous-time

continuous martingales.

Section 1.1 is concerned with stopping times and various measurability properties for pro-

cesses in continuous time. In Section 1.2, we introduce continuous martingales in continuous

time. We define the spaces cM, cMu and cMb consisting of continuous martingales, uni-

formly integrable martingales and bounded martingales, respectively, all with initial value

zero. Mainly by discretization and reference to the classical results from discrete-time mar-

tingale theory, we show that the main theorems of discrete-time martingale theory carry over

almost verbatim to the continuous-time case.

In Section 1.3, we introduce the space cM2 of continuous martingales bounded in L2 with

initial value zero. Analogously to the special properties of L2 among the spaces Lp for p ≥ 1,

the space cM2 has some particularly pleasant properties. We prove results on convergence

properties of martingales in cM2, we show a completeness property of cM2 and a type of

Riesz representation theorem for cM2, and we use these results to demonstrate the existence

of a process, the quadratic variation process, for elements of cMb, which will be essential to

our development of the stochastic integral.
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Finally, in Section 1.4, we introduce the space cM` of continuous local martingales with

initial value zero. We prove the basic stability properties of the space of local martingales

and extend the notion of quadratic variation and quadratic covariation to continuous local

martingales.

1.1 Measurability and stopping times

We begin by reviewing basic results on continuous-time stochastic processes. We will work

in the context of a filtered probability space (Ω,F , (Ft), P ). Here, Ω denotes some set, F is

a σ-algebra on Ω, P is a probability measure on (Ω,F) and (Ft)t≥0 is a family of σ-algebras

such that Fs ⊆ Ft whenever 0 ≤ s ≤ t and such that Ft ⊆ F for all t ≥ 0. We refer to

(Ft)t≥0 as the filtration of the probability space. We define F∞ = σ(∪t≥0Ft). We will require

that the filtered probability space satisfies certain regularity properties given in the following

definition. Recall that a P null set of F is a set F ⊆ Ω with the property that there exists

G ∈ F with P (G) = 0 such that F ⊆ G.

Definition 1.1.1. A filtered probability space (Ω,F , (Ft)t≥0, P ) is said to satisfy the usual

conditions if it holds that the filtration is right-continuous in the sense that Ft = ∩s>tFs for

all t ≥ 0, and for all t ≥ 0, Ft contains all P null sets of F . In particular, all P null sets of

F are F measurable.

We will always assume that the usual conditions hold. Note that because of this permanent

assumption, our results a priori only hold for such filtered probability spaces. Therefore, we

also need to ensure that the usual conditions may be assumed in practical cases, for example

when dealing with Brownian motion. These issues are considered in Section A.4.

A stochastic process is a family (Xt)t≥0 of R-valued random variables. The sample paths of

the stochastic process X are the functions t 7→ Xt(ω) for ω ∈ Ω. We refer to X0 as the initial

value of X. In particular, we say that X has initial value zero if X0 is zero.

In the following, B denotes the Borel-σ-algebra on R. We put R+ = [0,∞) and let B+ denote

the Borel-σ-algebra on R+, and we let Bt denote the Borel-σ-algebra on [0, t]. We say that

two processes X and Y are versions if P (Xt = Yt) = 1 for all t ≥ 0. In this case, we say that

Y is a version of X and vice versa. We say that two processes X and Y are indistinguishable

if their sample paths are almost surely equal, in the sense that the set where X and Y are

not equal is a null set, meaning that the set {ω ∈ Ω | ∃ t ≥ 0 : Xt(ω) 6= Yt(ω)} is a null set.
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We then say that X is a modification of Y and vice versa. We call a process evanescent if it is

indistinguishable from the zero process, and we call a set A ∈ B+⊗F evanescent if the process

1A is evanescent. We say that a result holds up to evanescence, or up to indistinguishability,

if it holds except perhaps on an evanescent set.

We have the following three measurability concepts for stochastic processes.

Definition 1.1.2. Let X be a stochastic process. We say that X is adapted if Xt is Ft
measurable for all t ≥ 0. We say that X is measurable if (t, ω) 7→ Xt(ω) is B+⊗F measurable.

We say that X is progressive if X|[0,t]×Ω, the restriction of X to [0, t]×Ω, is Bt⊗Ft measurable

for t ≥ 0.

If a process X has sample paths which are all continuous, we say that X is continuous.

Note that we require that all paths of X are continuous, not only that X has continuous

paths almost surely. Next, we introduce the progressive σ-algebra Σπ and consider its basic

properties.

Lemma 1.1.3. Let Σπ be the family of sets A ∈ B+ ⊗ F such that A ∩ [0, t]× Ω ∈ Bt ⊗ Ft
for all t ≥ 0. Then Σπ is a σ-algebra, and a process X is progressive if and only if it is Σπ

measurable.

Proof. We first show that Σπ is a σ-algebra. It holds that Σπ contains R+ × Ω. If A ∈ Σπ,

we have A∩ [0, t]×Ω ∈ Bt⊗Ft for all t ≥ 0. As Ac ∩ [0, t]×Ω = ([0, t]×Ω) \ (A∩ [0, t]×Ω),

Ac∩ [0, t]×Ω is the complement of A∩ [0, t]×Ω relative to [0, t]×Ω. Therefore, as Bt⊗Ft is

stable under complements, we find that Ac∩ [0, t]×Ω is in Bt⊗Ft as well for all t ≥ 0. Thus,

Σπ is stable under taking complements. Analogously, we find that Σπ is stable under taking

countable unions, and so Σπ is a σ-algebra. As regards the statement on measurability, we

first note for any A ∈ B the equality

{(s, ω) ∈ R+ × Ω | X(s, ω) ∈ A} ∩ [0, t]× Ω = {(s, ω) ∈ [0, t]× Ω | X|[0,t]×Ω(s, ω) ∈ A}.

Now assume that X is progressive. Fix a set A ∈ B. From the above, we then obtain

{(t, ω) ∈ R+ × Ω | X(t, ω) ∈ A} ∩ [0, t]× Ω ∈ Bt ⊗Ft, so that X is Σπ measurable. In order

to obtain the converse implication, assume that X is Σπ measurable. The above then shows

{(t, ω) ∈ [0, t] × Ω | X|[0,t]×Ω(t, ω) ∈ A} ∈ Bt ⊗ Ft. Thus, being progressive is equivalent to

being Σπ measurable.

Lemma 1.1.3 in particular shows that being progressive is the same as being measurable with

respect to the progressive σ-algebra, which we also refer to as being progressively measurable.
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Lemma 1.1.4. Let X be adapted. If X has left-continuous paths, then X is progressive.

If X has right-continuous paths, then X is progressive. In particular, if X is a continuous,

adapted process, then X is progressive.

Proof. First consider the case where X is adapted and has left-continuous paths. In this case,

Xt = limnX
n
t pointwise, where Xn is the process Xn

t =
∑∞
k=0Xk2−n1[k2−n,(k+1)2−n)(t).

Therefore, using the result from Lemma 1.1.3 that being progressive means measurability

with respect to the σ-algebra Σπ, we find that in order to show the result, it suffices to show

that the process t 7→ Xk2−n1[k2−n,(k+1)2−n)(t) is progressive for any n ≥ 1 and k ≥ 0, since

in this case, X inherits measurability with respect to Σπ as a limit of Σπ measurable maps.

In order to show that t 7→ Xk2−n1[k2−n,(k+1)2−n)(t) is progressive, let A ∈ B with 0 /∈ A. For

any t ≥ 0, we then have

{(s, ω) ∈ [0, t]× Ω | Xk2−n1[k2−n,(k+1)2−n)(s) ∈ A}

= [k2−n, (k + 1)2−n) ∩ [0, t]× (Xk2−n ∈ A).

If k2−n > t, this is empty and so in Bt ⊗Ft, and if k2−n ≤ t, this is in Bt ⊗Ft as a product

of a set in Bt and a set in Ft. Thus, in both cases, we obtain an element of Bt⊗Ft, and from

this we conclude that the restriction of t 7→ Xk2−n1[k2−n,(k+1)2−n)(t) to [0, t] × Ω is Bt ⊗ Ft
measurable, demonstrating that the process is progressive. This shows that X is progressive.

Next, consider the case whereX is adapted and has right-continuous paths. In this case, we fix

t ≥ 0 and define, for 0 ≤ s ≤ t, Xn
s = X01{0}(s) +

∑2n−1
k=0 Xt(k+1)2−n1(tk2−n,t(k+1)2−n](t). By

right-continuity, Xs = limnX
n
s pointwise for 0 ≤ s ≤ t. Also, each term in the sum defining

Xn is Bt ⊗ Ft measurable, and therefore, Xn is Bt ⊗ Ft measurable. As a consequence, the

restriction of X to [0, t]×Ω is Bt⊗Ft, and so X is progressive. This concludes the proof.

Lemma 1.1.5. Let X be continuous. If Xt is almost surely zero for all t ≥ 0, X is evanes-

cent.

Proof. We claim that {ω ∈ Ω | ∀ t ≥ 0 : Xt(ω) = 0} = ∩q∈Q+
{ω ∈ Ω | Xq(ω) = 0}.

The inclusion towards the right is obvious. In order to show the inclusion towards the left,

assume that ω is such that Xq(ω) is zero for all q ∈ Q+. Let t ∈ R+. Since Q+ is dense

in R+, there is a sequence (qn) in Q+ converging to t. As X has continuous paths, X(ω)

is continuous, and so Xt(ω) = limnXqn(ω) = 0. This proves the inclusion towards the left.

Now, as a countable intersection of almost sure sets again is an almost sure set, we find that

∩q∈Q+
{ω ∈ Ω | Xq(ω) = 0} is an almost sure set, Therefore, {ω ∈ Ω | ∀ t ≥ 0 : Xt(ω) = 0}

is an almost sure set, showing that X is evanescent.
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Lemma 1.1.6. Let X be progressive. Then X is measurable and adapted.

Proof. By definition Σπ ⊆ B+ ⊗ F . Therefore, as X is progressive, we have for any A ∈ B
that {(t, ω) ∈ R+ × Ω | Xt(ω) ∈ A} ∈ Σπ ⊆ B+ ⊗ F . This proves that X is measurable. To

show that X is adapted, note that when X is progressive, X|[0,t]×Ω is Bt ⊗ Ft measurable,

and therefore ω 7→ Xt(ω) is Ft measurable.

Next, we define stopping times in continuous time and consider their interplay with measur-

ability concepts on R+ × Ω. A stopping time is a random variable T : Ω→ [0,∞] such that

(T ≤ t) ∈ Ft for any t ≥ 0. We say that T is finite if T maps into R+. We say that T

is bounded if T maps into a bounded subset of R+. If X is a stochastic process and T is a

stopping time, we denote by XT the process XT
t = XT∧t and call XT the process stopped

at T . Furthermore, we define the stopping time σ-algebra FT of events determined at T by

putting FT = {A ∈ F | A ∩ (T ≤ t) ∈ Ft for all t ≥ 0}. Clearly, FT is a σ-algebra, and if T

is constant, the stopping time σ-algebra is the same as the filtration σ-algebra, in the sense

that {A ∈ F | A ∩ (s ≤ t) ∈ Ft for all t ≥ 0} = Fs.

Our first goal is to develop some basic results on stopping times and their interplay with

stopping time σ-algebras.

Lemma 1.1.7. The following statements hold about stopping times:

1. Any constant in [0,∞] is a stopping time.

2. A nonnegative variable T is a stopping time if and only if (T < t) ∈ Ft for t ≥ 0.

3. If S and T are stopping times, so are S ∧ T , S ∨ T and S + T .

4. If T is a stopping time and F ∈ FT , then TF = T1F +∞1F c is a stopping time as well.

5. If S ≤ T , then FS ⊆ FT .

Proof. Proof of (1). Let c be a constant in R+. Then (c ≤ t) is either ∅ or Ω, both of which

are in Ft for any t ≥ 0. Therefore, any constant c in R+ is a stopping time.

Proof of (2). Assume first that T is a stopping time. Then (T < t) = ∪∞n=1(T ≤ t− 1
n ) ∈ Ft,

since (T ≤ t − 1
n ) ∈ Ft− 1

n
. Conversely, assume (T < t) ∈ Ft for all t ≥ 0. We then obtain

(T ≤ t) = ∩∞k=n(T < t+ 1
k ) for all n. This shows (T ≤ t) ∈ Ft+ 1

n
for all n ≥ 1. Since (Ft) is
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decreasing and n is arbitrary, we find (T ≤ t) ∈ ∩∞n=1Ft+ 1
n

= ∩∞n=1 ∩s≥t+ 1
n
Fs = ∩s>tFs. By

right-continuity of the filtration, Ft = ∩s>tFs, so we conclude (T ≤ t) ∈ Ft, proving that T

is a stopping time.

Proof of (3). Assume that S and T are stopping times and let t ≥ 0. We then have

(S ∧ T ≤ t) = (S ≤ t) ∪ (T ≤ t) ∈ Ft, so S ∧ T is a stopping time. Likewise, we obtain

(S ∨ T ≤ t) = (S ≤ t) ∩ (T ≤ t) ∈ Ft, so S ∨ T is a stopping time as well. Finally, consider

the sum S + T . Let n ≥ 1 and fix ω. If S(ω) and T (ω) are finite, there are q, q′ ∈ Q+ such

that q ≤ S(ω) ≤ q + 1
n and q′ ≤ T (ω) ≤ q′ + 1

n . In particular, q + q′ ≤ S(ω) + T (ω) and

S(ω) + T (ω) ≤ q + q′ + 2
n . Next, if S(ω) + T (ω) ≤ t, it holds in particular that both S(ω)

and T (ω) are finite. Therefore, with Θt = {q, q′ ∈ Q+ | q + q′ ≤ t}, we find

(S + T ≤ t) = ∩∞n=1 ∪(q,q′)∈Θt
(S ≤ q + 1

n ) ∩ (T ≤ q′ + 1
n ).

Now, the sequence of sets ∪(q,q′)∈Θt
(S ≤ q+ 1

n )∩(T ≤ q′+ 1
n ) is decreasing in n, and therefore

we have for any k ≥ 1 that (S+T ≤ t) = ∩∞n=k ∪(q,q′)∈Θt
(S ≤ q+ 1

n )∩ (T ≤ q′+ 1
n ) ∈ Ft+ 1

k
.

In particular, (S + T ≤ t) ∈ Fs for any s > t, and so, by right-continuity of the filtration,

(S + T ≤ t) ∈ ∩s>tFs = Ft, proving that S + T is a stopping time.

Proof of (4). Let T be a stopping time and let F ∈ FT . Then (TF ≤ t) = (T ≤ t)∩F ∈ Ft,
as was to be proven.

Proof of (5). Let A ∈ FS , so that A ∩ (S ≤ t) ∈ Ft for all t ≥ 0. Since S ≤ T , we have

(T ≤ t) ⊆ (S ≤ t) and so A ∩ (T ≤ t) = A ∩ (S ≤ t) ∩ (T ≤ t) ∈ Ft, yielding A ∈ FT .

For the next results, we recall that for any A ⊆ R, it holds that inf A < t if and only if there

is s ∈ A such that s < t.

Lemma 1.1.8. Let (Tn) be a sequence of stopping times, then supn Tn and infn Tn are

stopping times as well.

Proof. Assume that Tn is a stopping time for each n. Fix t ≥ 0, we then then have that

(supn Tn ≤ t) = ∩∞n=1(Tn ≤ t) ∈ Ft, so supn Tn is a stopping time as well. Likewise, using

the second statement of Lemma 1.1.7, we find (infn Tn < t) = ∪∞n=1(Tn < t) ∈ Ft, so infn Tn

is a stopping time as well.

Lemma 1.1.9. Let X be a continuous adapted process, and let U be an open set in R. Define

T = inf{t ≥ 0 | Xt ∈ U}. Then T is a stopping time.
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Proof. Note that if s ≥ 0 and (sn) is a sequence converging to s, we have by continuity that

Xsn converges to Xs and so, since U is open, (Xs ∈ U) ⊆ ∪∞n=1(Xsn ∈ U). Using that Q+ is

dense in R+, we find

(T < t) = ( ∃ s ∈ R+ : s < t and Xs ∈ U)

= ( ∃ s ∈ Q+ : s < t and Xs ∈ U) = ∪s∈Q+,s<t(Xs ∈ U),

and since X is adapted, we have (Xs ∈ U) ∈ Fs ⊆ Ft whenever s < t, proving that

(T < t) ∈ Ft. By Lemma 1.1.7, this implies that T is a stopping time.

Lemma 1.1.10. Let X be a continuous adapted process, and let F be a closed set in R.

Define T = inf{t ≥ 0 | Xt ∈ F}. Then T is a stopping time.

Proof. Define Un = {x ∈ R | ∃y ∈ F : |x − y| < 1
n}. We claim that Un is open, that Un

decreases to F and that Un+1 ⊆ Un, where Un+1 denotes the closure of Un+1. As we have

that Un = ∪y∈F {x ∈ R | |x− y| < 1
n}, Un is open as a union of open sets. We have F ⊆ Un

for all n, and conversely, if x ∈ ∩∞n=1Un, we have that there is a sequence (yn) in F such that

|yn − x| ≤ 1
n for all n. In particular, yn tends to x, and as F is closed, we conclude x ∈ F .

Thus, F = ∩∞n=1Un. Furthermore, if x is in the closure Un+1, there is a sequence (xk) in

Un+1 such that |xk − x| ≤ 1
k , and there is a sequence (yk) in F such that |xk − yk| < 1

n+1 ,

showing that |x−yk| < 1
k + 1

n+1 . Taking k so large that 1
k + 1

n+1 ≤
1
n , we see that Un+1 ⊆ Un.

Now note that whenever t > 0, we have

(T < t) = ( ∃ s ∈ R+ : s < t and Xs ∈ F ) = ∪∞n=1( ∃ s ∈ R+ : s ≤ t− 1
n and Xs ∈ F ),

so by Lemma 1.1.7, it suffices to prove that ( ∃ s ∈ R+ : s ≤ t and Xs ∈ F ) is Ft measurable

for all t > 0. We claim that

( ∃ s ∈ R+ : s ≤ t and Xs ∈ F ) = ∩∞k=1( ∃ q ∈ Q+ : q ≤ t and Xq ∈ Uk).

To see this, first consider the inclusion towards the right. If there is s ∈ R+ with s ≤ t and

Xs ∈ F , then we also have Xs ∈ Uk for all k. As Uk is open, there is ε > 0 such that the ball

of size ε around Xs is in Uk. In particular, there is q ∈ Q+ with q ≤ t such that Xq ∈ Uk.

This proves the inclusion towards the right. In order to obtain the inclusion towards the left,

assume that for all k, there is qk ∈ Q+ with qk ≤ t such that Xqk ∈ Uk. As [0, t] is compact,

there exists s ∈ R+ with s ≤ t such that for some subsequence, limm qkm = s. By continuity,

Xs = limmXqkm
. As Xqkm

∈ Ukm , we have for any i that Xqkm
∈ Ui for m large enough.

Therefore, we conclude Xs ∈ ∩∞i=1U i ⊆ ∩∞i=1Ui = F , proving the other inclusion. This shows

the desired result.
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Lemma 1.1.11. Let X be any continuous adapted process with initial value zero. Defining

Tn = inf{t ≥ 0 | |Xt| > n}, (Tn) is a sequence of stopping times increasing pointwise to

infinity, and the process XTn is bounded by n.

Proof. By Lemma 1.1.9, (Tn) is a sequence of stopping times. We prove that XTn is bounded

by n. If Tn is infinite, Xt ≤ n for all t ≥ 0, so on (Tn = ∞), XTn is bounded by n. If Tn

is finite, note that for all ε > 0, there is t ≥ 0 with Tn ≤ t < Tn + ε such that |Xt| > n.

Therefore, by continuity, |XTn
| ≥ n. In particular, as X has initial value zero, Tn cannot take

the value zero. Therefore, there is t ≥ 0 with t < Tn. For all such t, |Xt| ≤ n. Therefore,

again by continuity, |XTn | ≤ n, and we conclude that in this case as well, XTn is bounded

by n. Note that we have also shown that |XTn
| = n whenever Tn is finite.

It remains to show that Tn converges almost surely to infinity. To obtain this, note that as

X is continuous, X is bounded on compacts. If for some samle path we have that Tn ≤ a

for all n, we would have |XTn | = n for all n and so X would be unbounded on [0, a]. This is

a contradiction, since X has continuous sample paths and therefore is bounded on compact

sets. Therefore, (Tn) is unbounded for every sample path. As Tn is increasing, this shows

that Tn converges to infinity pointwise.

Lemma 1.1.12. Let X be progressively measurable, and let T be a stopping time. Then

XT 1(T<∞) is FT measurable and XT is progressively measurable.

Proof. We first prove that the stopped process XT is progressively measurable. Fix t ≥ 0,

we need to show that XT
|[0,t]×Ω is Bt ⊗ Ft measurable, which means that we need to show

that the mapping from [0, t]×Ω to R given by (s, ω) 7→ XT (ω)∧s(ω) is Bt⊗Ft-B measurable.

To this end, note that whenever 0 ≤ s ≤ t,

{(u, ω) ∈ [0, t]× Ω | T (ω) ∧ u ≤ s} = ([0, t]× (T ≤ s)) ∪ ([0, s]× Ω) ∈ Bt ⊗Ft,

so the mapping from [0, t]× Ω to [0, t] given by (s, ω) 7→ T (ω) ∧ s is Bt ⊗ Ft-Bt measurable.

And as the mapping from [0, t] × Ω to Ω given by (s, ω) 7→ ω is Bt ⊗ Ft-Ft measurable, we

conclude that the mapping from [0, t] × Ω to [0, t] × Ω given by (s, ω) 7→ (T (ω) ∧ s, ω) is

Bt ⊗ Ft-Bt ⊗ Ft measurable, since it has measurable coordinates. As X is progressive, the

mapping from [0, t]×Ω to R given by (s, ω) 7→ Xs(ω) is Bt⊗Ft-B measurable. Therefore, the

composite mapping from [0, t]×Ω to R given by (s, ω) 7→ XT (ω)∧s(ω) is Bt⊗Ft-B measurable.

This shows that XT is progressively measurable.

In order to prove that XT is FT measurable, we note that for any B ∈ B, we have that

(XT 1(T<∞) ∈ B) ∩ (T ≤ t) = (XT
t ∈ B) ∩ (T ≤ t). Now, XT

t is Ft measurable since XT is
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progressive and therefore adapted by Lemma 1.1.6, and (T ≤ t) ∈ Ft since T is a stopping

time. Thus, (XT 1(T<∞) ∈ B) ∩ (T ≤ t) ∈ Ft, and we conclude (XT 1(T<∞) ∈ B) ∈ FT .

Lemma 1.1.13. Let T and S be stopping times. Assume that Z is FS measurable. It then

holds that both Z1(S<T ) and Z1(S≤T ) are FS∧T measurable.

Proof. We first show (S < T ) ∈ FS∧T . To prove the result, it suffices to show that the

set (S < T ) ∩ (S ∧ T ≤ t) is in Ft for all t ≥ 0. To this end, we begin by noting that

(S < T )∩ (S∧T ≤ t) = (S < T )∩ (S ≤ t). Consider some ω ∈ Ω such that S(ω) < T (ω) and

S(ω) ≤ t. If t < T (ω), S(ω) ≤ t < T (ω). If T (ω) ≤ t, there is some q ∈ Q ∩ [0, t] such that

S(ω) ≤ q < T (ω). We thus obtain (S < T ) ∩ (S ∧ T ≤ t) = ∪q∈Q∩[0,t]∪{t}(S ≤ q) ∩ (q < T ),

which is in Ft, showing (S < T ) ∈ FS∧T . We next show that Z1(S<T ) is FS∧T measurable.

Let B ∈ B with B not containing zero. As this type of sets generate B, it will suffice to show

that (Z1(S<T ) ∈ B) ∩ (S ∧ T ≤ t) ∈ Ft for all t ≥ 0. To obtain this, we rewrite

(Z1(S<T ) ∈ B) ∩ (S ∧ T ≤ t) = (Z ∈ B) ∩ (S < T ) ∩ (S ∧ T ≤ t)

= (Z ∈ B) ∩ (S < T ) ∩ (S ≤ t).

Since Z is FS measurable, (Z ∈ B) ∩ (S ≤ t) ∈ Ft. And by what we have already shown,

(S < T ) ∈ FS , so (S < T ) ∩ (S ≤ t) ∈ Ft. Thus, the above is in Ft, as desired.

Finally, we show that Z1(S≤T ) is FS∧T measurable. Let B ∈ B with B not containing zero.

As above, it suffices to show that for any t ≥ 0, (Z1(S≤T ) ∈ B)∩ (S ∧T ≤ t) ∈ Ft. To obtain

this, we first write

(Z1(S≤T ) ∈ B) ∩ (S ∧ T ≤ t) = (Z ∈ B) ∩ (S ≤ T ) ∩ (S ∧ T ≤ t)

= (Z ∈ B) ∩ (S ≤ t) ∩ (S ≤ T ) ∩ (S ∧ T ≤ t).

Since Z ∈ FS , we find (Z ∈ B) ∩ (S ≤ t) ∈ Ft. And since we know (T < S) ∈ FT∧S ,

(S ≤ T ) = (T < S)c ∈ FS∧T , so (S ≤ T ) ∩ (S ∧ T ≤ t) ∈ Ft. This demonstrates

(Z1(S≤T ) ∈ B) ∩ (S ∧ T ≤ t) ∈ Ft, as desired.

1.2 Continuous-time martingales

In this section, we consider continuous martingales in continuous time. We say that a process

M is a continuous-time martingale if for any 0 ≤ s ≤ t, E(Mt|Fs) = Ms almost surely. In

the same manner, if for any 0 ≤ s ≤ t, E(Mt|Fs) ≤ Ms almost surely, we say that M is a
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supermartingale, and if for any 0 ≤ s ≤ t, E(Mt|Fs) ≥ Ms almost surely, we say that M

is a submartingale. We are interested in transferring the results known from discrete-time

martingales to the continuous-time setting, mainly the criteria for almost sure convergence,

L1 convergence and the optional sampling theorem. The classical results from discrete-time

martingale theory are reviewed in Appendix A.3.

We will for the most part only take interest in martingales M whose initial value is zero,

M0 = 0, in order to simplify the exposition. We denote the space of continuous martingales

in continuous time with initial value zero by cM. By cMu, we denote the elements of

cM which are uniformly integrable, and by cMb, we denote the elements of cMb which are

bounded in the sense that there exists c > 0 such that |Mt| ≤ c for all t ≥ 0. Clearly, cM
and cMb are both vector spaces, and by Lemma A.2.4, cMu is a vector space as well.

We begin by presenting our most basic example of a continuous martingale in continuous

time, the p-dimensional Ft Brownian motion. Recall from Appendix A.4 that a p-dimensional

Brownian motion is a continuous process W with values in Rp such that the increments are

independent over disjoint intervals, and for 0 ≤ s ≤ t, Wt − Ws follows a p-dimensional

normal distribution with mean zero and variance (t − s)Ip, where Ip is the identity matrix

of order p. Furthermore, as in Definition A.4.4, a p-dimensional Ft Brownian motion is a

process W with values in Rp adapted to (Ft) such that for any t ≥ 0, the distribution of

s 7→ Wt+s − Wt is an p-dimensional Brownian motion independent of Ft. The difference

between a plain p-dimensional Brownian motion and a p-dimensional Ft Brownian motion

is that the p-dimensional Ft Brownian motion possesses a certain regular relationship with

the filtration. The following basic result shows that the martingales associated with ordinary

Brownian motions reoccur when considering Ft Brownian motions.

Theorem 1.2.1. Let W be a p-dimensional Ft Brownian motion. For i ≤ p, W i and

(W i
t )

2 − t are martingales, where W i denotes the i’th coordinate of W . For i, j ≤ p with

i 6= j, W i
tW

j
t is a martingale.

Proof. Let i ≤ p and let 0 ≤ s ≤ t. W i is then an Ft Brownian motion, so W i
t −W i

s is

normally distributed with mean zero and variance t − s and independent of Ft. Therefore,

we obtain E(W i
t |Fs) = E(W i

t −W i
s |Fs) +W i

s = E(W i
t −W i

s) +W i
s = W i

s , proving that W i

is a martingale. Furthermore, we find

E((W i
t )

2 − t|Fs) = E((W i
t −W i

s)
2 − (W i

s)
2 + 2W i

sW
i
t |Fs)− t

= E((W i
t −W i

s)
2|Fs)− (W i

s)
2 + 2W i

sE(W i
t |Fs)− t = (W i

s)
2 − s,

so (W i
t )

2− t is a martingale. Next, let i, j ≤ p with i 6= j. We then obtain that for 0 ≤ s ≤ t,
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using independence and the martingale property,

E(W i
tW

j
t |Fs) = E(W i

tW
j
t −W i

sW
j
s |Fs) +W i

sW
j
s

= E(W i
tW

j
t −W i

tW
j
s +W i

tW
j
s −W i

sW
j
s |Fs) +W i

sW
j
s

= E(W i
t (W

j
t −W j

s )−W j
s (W i

t −W i
s)|Fs) +W i

sW
j
s

= E(W i
t (W

j
t −W j

s )|Fs) +W i
sW

j
s

= E((W i
t −W i

s)(W
j
t −W j

s )|Fs) + E(W i
s(W

j
t −W j

s )|Fs) +W i
sW

j
s

= W i
sW

j
s ,

where we have used that the variables E(W j
s (W i

t −W i
s)|Fs), E((W i

t −W i
s)(W

j
t −W j

s )|Fs) and

E(W i
s(W

j
t −W j

s )|Fs) are all equal to zero, because s 7→Wt+s−Wt is independent of Fs and

has the distribution of a p-dimensional Brownian motion. Thus, W iW j is a martingale.

Furthermore, when W is a p-dimensional Ft Brownian motion, W i has the distribution of a

Brownian motion, so all ordinary distributional results for Brownian motion transfer verbatim

to (Ft) Brownian motion, for example that the following results hold almost surely:

lim sup
t→∞

W i
t√

2t log log t
= 1, lim inf

t→∞

W i
t√

2t log log t
= −1, lim

t→∞

W i
t

t
= 0.

After introducing this central example, we will in the remainder of this section work on

transferring the results of discrete-time martingale theory to continuous-time martingale

theory. The main lemma for doing so is the following.

Lemma 1.2.2. Let M be a continous-time martingale, supermartingale or submartingale,

and let (tn) be an increasing sequence in R+. Then (Ftn)n≥1 is a discrete-time filtration,

and the process (Mtn)n≥1 is a discrete-time martingale, supermartingale or submartingale,

respectively, with respect to the filtration (Ftn)n≥1.

Proof. This follows immediately from the definition of continuous-time and discrete-time

martingales, supermartingales and submartingales.

Lemma 1.2.3 (Doob’s upcrossing lemma). Let Z be a continuous supermartingale bounded

in L1. Define U(Z, a, b) = sup{n | ∃ 0 ≤ s1 < t1 < · · · sn < tn : Zsk < a,Ztk > b, k ≤ n} for

any a, b ∈ R with a < b. We refer to U(Z, a, b) as the number of upcrossings from a to b by

M . Then U(Z, a, b) is F measurable and it holds that

EU(Z, a, b) ≤ |a|+ suptE|Zt|
b− a

.
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Proof. We will prove the result by reducing to the case of upcrossings relative to a countable

number of timepoints and applying Lemma 1.2.2 and the discrete-time upcrossing result of

Lemma A.3.1. For any D ⊆ R, we define

U(Z, a, b,D) = sup{m | ∃ 0 ≤ s1 < t1 < · · · sm < tm : si, ti ∈ D,Zsi < a,Zti > b, i ≤ m},

and we refer to U(Z, a, b,D) as the number of upcrossings from a to b at the timepoints in

D. Define D+ = {k2−n | k ≥ 0, n ≥ 1}, we refer to D+ as the dyadic nonnegative rationals.

It holds that D+ is dense in R+. Now as Z is continuous, we find that for any finite sequence

0 ≤ s1 < t1 < · · · sm < tm such that si, ti ∈ R+ with Zsi < a and Zti > b for i ≤ m, there

exists 0 ≤ p1 < q1 < · · · pm < qm such that pi, qi ∈ D+ with Zpi < a and Zqi > b for i ≤ m.

Therefore, U(Z, a, b) = U(Z, a, b,D+). In other words, it suffices to consider upcrossings at

dyadic nonnegative rational timepoints. In order to use this to prove that U(Z, a, b) is F
measurable, note that for any m ≥ 1, we have

( ∃ 0 ≤ s1 < t1 < · · · sm < tm : si, ti ∈ D+, Zsi < a,Zti > b, i ≤ m)

= ∪{(Zsi < a,Zti > b for all i ≤ m) | 0 ≤ s1 < t1 < · · · sm < tm : si, ti ∈ D+},

which is in F , as (Zsi < a,Zti > b for all i ≤ m) is F measurable, and the all subsets of

∪∞n=1Dn+ are countable. Here, Dn+ denotes the n-fold product of D+. From these observations,

we conclude that the set ( ∃ 0 ≤ s1 < t1 < · · · sm < tm : si, ti ∈ D+, Zsi < a,Zti > b, i ≤ m)

is F measurable. Denote this set by Am, we then have U(Z, a, b)(ω) = sup{m ∈ N | ω ∈ Am},
so that in particular (U(Z, a, b) ≤ m) = ∩∞k=m+1A

c
k ∈ F and so U(Z, a, b) is F measurable.

It remains to prove the bound for the mean of U(Z, a, b). Putting tnk = k2−n and defining

Dn = {tnk | k ≥ 0}, we obtain D+ = ∪∞n=1Dn. We then have

sup{m | ∃ 0 ≤ s1 < t1 < · · · sm < tm : si, ti ∈ D+, Zsi < a,Zti > b, i ≤ m}

= sup∪∞n=1{m | ∃ 0 ≤ s1 < t1 < · · · sm < tm : si, ti ∈ Dn, Zsi < a,Zti > b, i ≤ m}

= sup
n

sup{m | ∃ 0 ≤ s1 < t1 < · · · sm < tm : si, ti ∈ Dn, Zsi < a,Zti > b, i ≤ m},

so U(Z, a, b,D+) = supn U(Z, a, b,Dn). Now fix n ∈ N. As (tnk )k≥0 is an increasing sequence,

Lemma 1.2.2 shows that (Ztnk )k≥0 is a discrete-time supermartingale with respect to the

filtration (Ftnk )k≥0. As (Zt)t≥0 is bounded in L1, so is (Ztnk )k≥0. Therefore, Lemma A.3.1

yields

EU(Z, a, b,Dn) ≤
|a|+ supk E|Ztnk |

b− a
≤ |a|+ suptE|Zt|

b− a
.

As (Dn) is increasing, U(Z, a, b,Dn) is increasing, so the monotone convergence theorem and
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our previous results yield

EU(Z, a, b) = EU(Z, a, b,D+) = E sup
n
U(Z, a, b,Dn)

= E lim
n
U(Z, a, b,Dn) = lim

n
EU(Z, a, b,Dn) ≤ |a|+ suptE|Zt|

b− a
.

This concludes the proof of the lemma.

Theorem 1.2.4 (Doob’s supermartingale convergence theorem). Let Z be a continuous

supermartingale. If Z is bounded in L1, then Z is almost surely convergent to an integrable

limit. If Z is uniformly integrable, then Z also converges in L1, and the limit Z∞ satisfies

that for all t ≥ 0, E(Z∞|Ft) ≤ Zt almost surely. If Z is a martingale, the inequality may be

exchanged with an equality.

Proof. Assume that Z is bounded in L1. Fix a, b ∈ Q with a < b. By Lemma 1.2.3, the

number of upcrossings from a to b made by Z has finite expectation, in particular it is almost

surely finite. As Q is countable, we conclude that it almost surely holds that the number of

upcrossings from a to b made by Z is finite for any a, b ∈ Q. Therefore, Lemma A.1.16 shows

that Z is almost surely convergent to a limit in [−∞,∞]. Using Fatou’s lemma, we obtain

E|Z∞| = E lim inft |Zt| ≤ lim inftE|Zt| ≤ supt≥0E|Zt|, which is finite, so we conclude that

the limit Z∞ is integrable.

Assume next that Z is uniformly integrable. In particular, Z is bounded in L1, so Zt converges

almost surely to some variable Z∞. Then Zt also converges in probability, so Lemma A.2.5

shows that Zt converges to Z∞ in L1. We then find that for any t ≥ 0 that, using Jensen’s

inequality, E|E(Z∞|Ft)−E(Zs|Ft)| ≤ E|Z∞−Zs|, so E(Zs|Ft) tends to E(Z∞|Ft) in L1 as

s tends to infinity, and we get E(Z∞|Ft) = lims→∞E(Zs|Ft) ≤ Zt. This proves the results

on supermartingales.

In order to obtain the results for the martingale case, next assume that Z is a continuous

submartingale bounded in L1. Then −Z is a continuous supermartingale bounded in L1.

From what we already have proved, −Z is almost surely convergent to a finite limit, yielding

that Z is almost surely convergent to a finite limit. If Z is uniformly integrable, so is −Z,

and so we obtain convergence in L1 as well for −Z and therefore also for Z. Also, we have

E(−Z∞|Ft) ≤ −Zt, so E(Z∞|Ft) ≥ Zt. Finally, assume that Z is a martingale. Then Z is

both a supermartingale and a submartingale, and the result follows.

Theorem 1.2.5 (Uniformly integrable martingale convergence theorem). Let M ∈ cM. The

following are equivalent:
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1. M is uniformly integrable.

2. M is convergent almost surely and in L1.

3. There is some integrable variable ξ such that Mt = E(ξ|Ft) almost surely for t ≥ 0.

In the affirmative, with M∞ denoting the limit of Mt almost surely and in L1, we have for

all t ≥ 0 that Mt = E(M∞|Ft) almost surely, and M∞ = E(ξ|F∞), where F∞ = σ(∪t≥0Ft).

Proof. We show that (1) implies (2), that (2) implies (3) and that (3) implies (1).

Proof that (1) implies (2). Assume that M is uniformly integrable. By Lemma A.2.3, M

is bounded in L1, and Theorem 1.2.4 shows that M converges almost surely. In particular, M

is convergent in probability, and so Lemma A.2.5 allows us to conclude that M is convergent

in L1.

Proof that (2) implies (3). Assume now that M is convergent almost surely and in L1.

Let M∞ be the limit. Fix F ∈ Fs for some s ≥ 0. As Mt converges to M∞ in L1, 1FMt

converges to 1FM∞ in L1 as well, and we then obtain

E1FM∞ = lim
t→∞

E1FMt = lim
t→∞

E1FE(Mt|Fs) = E1FMs,

proving that E(M∞|Fs) = Ms almost surely for any s ≥ 0.

Proof that (3) implies (1). Finally, assume that there is some integrable variable ξ such

that Mt = E(ξ|Ft). By Lemma A.2.6, M is uniformly integrable.

It remains to prove that in the affirmative, with M∞ denoting the limit, it holds that for all

t ≥ 0, Mt = E(M∞|Ft) almost surely, and M∞ = E(ξ|F∞). By what was already shown,

in the affirmative case, Mt = E(M∞|Ft). We thus have E(M∞|Ft) = E(ξ|Ft) almost surely

for all t ≥ 0. In particular, for any F ∈ ∪t≥0Ft, we have EM∞1F = EE(ξ|F∞)1F . Now let

D = {F ∈ F|EM∞1F = EE(ξ|F∞)1F }. We then have that D is a Dynkin class containing

∪t≥0Ft, and ∪t≥0Ft is a generating class for F∞, stable under intersections. Therefore,

Lemma A.1.19 shows that F∞ ⊆ D, so that EM∞1F = EE(ξ|F∞)1F for all F ∈ F∞. Since

M∞ is F∞ measurable as the almost sure limit of F∞ measurable variables, this implies

M∞ = E(ξ|F∞) almost surely, proving the result.

Lemma 1.2.6. If Z is a continuous martingale, supermartingale or submartingale, and

c ≥ 0, then the stopped process Zc is also a continuous martingale, supermartingale or
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submartingale, respectively. Zc is always convergent almost surely and in L1 to Zc. In the

martingale case, Zc is a uniformly integrable martingale.

Proof. Fix c ≥ 0. Zc is adapted and continuous. Let 0 ≤ s ≤ t and consider the super-

martingale case. If c ≤ s, we also have c ≤ t and the adaptedness of Z allows us to conclude

E(Zct |Fs) = E(Zt∧c|Fs) = E(Zc|Fs) = Zc = Zcs . If instead c ≥ s, the supermartingale prop-

erty yields E(Zct |Fs) = E(Zt∧c|Fs∧c) ≤ Zs∧c = Zcs . This shows that Zc is a supermartingale.

From this, it follows that the submartingale and martingale properties are preserved by stop-

ping at c as well. Also, as Zc is constant from a deterministic point onwards, Zc converges

almost surely and in L1 to Zc. If Z is a martingale, Theorem 1.2.5 shows that Z is uniformly

integrable.

Theorem 1.2.7 (Optional sampling theorem). Let Z be a continuous supermartingale, and

let S and T be two stopping times with S ≤ T . If Z is uniformly integrable, then Z is almost

surely convergent, ZS and ZT are integrable, and E(ZT |FS) ≤ ZS. If Z is nonnegative, then

Z is almost surely convergent as well and E(ZT |FS) ≤ ZS. If instead S and T are bounded,

E(ZT |FS) ≤ ZS holds as well, where ZS and ZT are integrable. Finally, if Z is a martingale

in the uniformly integrable case or the case of bounded stopping times, the inequality may be

exchanged with an equality.

Proof. Assume that Z is a supermartingale which is convergent almost surely and in L1, and

let S ≤ T be two stopping times. We will prove E(ZT |FS) ≤ ZS in this case and obtain the

other cases from this. To prove the result in this case, we will use a discretization procedure

along with Lemma 1.2.2 and Theorem A.3.5 to obtain the result. First, define a mapping Sn

by putting Sn = ∞ whenever S = ∞, and Sn = k2−n when (k − 1)2−n ≤ S < k2−n. We

then find

(Sn ≤ t) = ∪∞k=0(Sn = k2−n) ∩ (k2−n ≤ t)

= ∪∞k=0((k − 1)2−n ≤ S < k2−n) ∩ (k2−n ≤ t),

which is in Ft, as ((k−1)2−n ≤ S < k2−n) is in Ft when k2−n ≤ t. Therefore, Sn is a stopping

time. Furthermore, we have S ≤ Sn with Sn converging downwards to S, in the sense that

Sn is decreasing and converges to S. We define (Tn) analogously, such that (Tn) is a sequence

of stopping times converging downwards to T , and (Tn = k2−n) = ((k−1)2−n ≤ T < k2−n).

We then obtain that (Tn = k2−n) = ((k−1)2−n ≤ T < k2−n) ⊆ (S < k2−n) = (Sn ≤ k2−n),

from which we conclude Sn ≤ Tn.
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We would like to apply the discrete-time optional sampling theorem to the stopping times

Sn and Tn. To this end, first note that with tnk = k2−n, we obtain that by by Lemma 1.2.2,

(Ztnk )k≥0 is a discrete-time supermartingale with respect to the filtration (Ftnk )k≥0. As Z

is convergent almost surely and in L1, so is (Ztnk )k≥0, and then Lemma A.2.5 shows that

(Ztnk )k≥0 is uniformly integrable. Therefore, (Ztnk )k≥0 satisfies the requirements in Theorem

A.3.5. Furthermore, it holds that Ztnk converges to Z∞. Putting Kn = Sn2n, Kn takes its

values in N ∪ {∞} and (Kn ≤ k) = (Sn ≤ k2−n) ∈ Ftnk , so Kn is a discrete-time stopping

time with respect to (Fnk )k≥0. As regards the discrete-time stopping time σ-algebra, we have

FtnKn
= {F ∈ F | F ∩ (Kn ≤ k) ∈ Ftnk for all k ≥ 0}

= {F ∈ F | F ∩ (Sn ≤ tnk ) ∈ Ftnk for all k ≥ 0}

= {F ∈ F | F ∩ (Sn ≤ t) ∈ Ft for all t ≥ 0} = FSn
,

where FtnKn
denotes the stopping time σ-algebra of the discrete filtration (Ftnk )k≥0. Putting

Ln = Tn2n, we find analogous results for the sequence (Ln). Also, since Sn ≤ Tn, we

obtain Kn ≤ Ln. Therefore, we may now apply Theorem A.3.5 with the uniformly integrable

discrete-time supermartingale (Ztnk )k≥0 to conclude that ZSn
and ZTn

are integrable and that

E(ZTn |FSn) = E(ZtnLn
|FtnKn

) ≤ ZtnKn
= ZSn .

Next, we show that ZTn
converges almost surely and in L1 to ZT . This will in particular show

that ZT is integrable. As before, (Ztn+1
k

)k≥0 is a discrete-time supermartingale satisfying the

requirements in Theorem A.3.5. Also, (2Kn ≤ k) = (2Tn2n ≤ k) = (Tn ≤ k2−(n+1)),

which is in Ftn+1
k

, so 2Kn is a discrete-time stopping time with respect to (Ftn+1
k

)k≥0, and

Kn+1 = Tn+12n+1 ≤ Tn2n+1 = 2Kn. Therefore, applying Theorem A.3.5 to the stopping

times 2Kn and Kn+1, we obtain E(ZTn
|FTn+1

) = E(Ztn+1
2Kn

|Ftn+1
Kn+1

) ≤ Ztn+1
Kn+1

= ZTn+1
.

Iterating this relationship, we find that for n ≥ k, ZTn
≥ E(ZTk

|FTn
). Thus, (ZTn

) is

a backwards submartingale with respect to (FTn)n≥0. Therefore, (−ZTn) is a backwards

supermartingale. Furthermore, as ZTn ≥ E(ZTk
|FTn) for n ≥ k, we have EZTn ≥ EZT1 ,

so E(−ZTn
) ≤ E(−ZT1

). This shows that, supn≥1E(−ZTn
) is finite, and so we may apply

Theorem A.3.6 to conclude that (−ZTn
), and therefore (ZTn

), converges almost surely and

in L1. By continuity, we know that ZTn
also converges almost surely to ZT . By uniqueness

of limits, the convergence is in L1 as well, which in particular implies that ZT is integrable.

Analogously, ZSn converges to ZS almost surely and in L1.

Now fix F ∈ FS . As S ≤ Sn, we have FS ⊆ FSn
. Using the convergence of ZTn

to ZT and

ZSn
to ZS in L1, we find that 1FZTn

converges to 1FZT and 1FZSn
converges to 1FZS in

L1, so that E1FZT = limnE1FZTn
= limnE1FE(ZTn

|FSn
) ≤ limnE1FZSn

= E1FZS , and

therefore, we conclude E(ZT |FS) ≤ ZS , as desired.
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This proves that the optional sampling result holds in the case where Z is a supermartingale

which is convergent almost surely and in L1 and S ≤ T are two stopping times. We will now

obtain the remaining cases from this case.

If Z is a uniformly integrable supermartingale, it is in particular convergent almost surely

and in L1, so we find that the result holds in this case as well. Next, consider the case where

we merely assume that Z is a supermartingale and that S ≤ T are bounded stopping times.

Letting c ≥ 0 be a bound for S and T , Lemma 1.2.6 shows that Zc is a supermartingale, and

it is clearly convergent almost surely and in L1. Therefore, as ZT = ZcT , we find that ZT is

integrable and that E(ZT |FS) = E(ZcT |FS) ≤ ZcS = ZS , proving the result in this case as

well.

Finally, consider the case where Z is nonnegative and S ≤ T are any two stopping times.

We then find that E|Zt| = EZt ≤ EZ0, so Z is bounded in L1. Therefore, Theorem 1.2.4

shows that Z is almost surely convergent and so ZT is well-defined. From what we already

have shown, ZT∧n is integrable and E(ZT∧n|FS∧n) ≤ ZS∧n. For any F ∈ FS , we find

F ∩ (S ≤ n) ∈ FS∧n for any n by Lemma 1.1.13. Therefore, we obtain

E1FZT∧n = E1F 1(S≤n)ZT∧n + E1F 1(S>n)ZT∧n

≤ E1F 1(S≤n)ZS∧n + E1F 1(S>n)ZS∧n = E1FZS∧n,

and so, by Lemma A.1.14, E(ZT∧n|FS) ≤ ZS∧n. Applying Fatou’s lemma for conditional

expectations, we obtain

E(ZT |FS) = E(lim inf
n

ZT∧n|FS) ≤ lim inf
n

E(ZT∧n|FS) ≤ lim inf
n

ZS∧n = ZS ,

as was to be shown. We have now proved all of the supermartingale statements in the

theorem. The martingale results follow immediately from the fact that a martingale is both

a supermartingale and a submartingale.

Lemma 1.2.8. Let T be a stopping time. If Z is a supermartingale, then ZT is a super-

martingale as well. In particular, if M ∈ cM, then MT ∈ cM as well, and if M ∈ cMu,

then MT ∈ cMu as well.

Proof. Let a supermartingale Z be given, and let T be some stopping time. Fix two time-

points 0 ≤ s ≤ t, we need to prove E(ZTt |Fs) ≤ ZTs almost surely, and to this end, it suffices

to show that E1FZ
T
t ≤ E1FZ

T
s for any F ∈ Fs. Let F ∈ Fs be given. By Lemma 1.1.13,

F∩(s ≤ T ) is Fs∧T measurable, and so Theorem 1.2.7 applied with the two bounded stopping
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times T ∧ s and T ∧ t yields

E1FZ
T
t = E1F∩(s≤T )ZT∧t + E1F∩(s>T )ZT∧t

≤ E1F∩(s≤T )ZT∧s + E1F∩(s>T )ZT∧t

= E1F∩(s≤T )ZT∧s + E1F∩(s>T )ZT∧s

= E1FZ
T
s .

Thus, E(ZTt |Fs) ≤ ZTs and so ZT is a supermartingale. From this it follows in particular

that if M ∈ cM, it holds that MT ∈ cM as well. And if M ∈ cMu, we find that MT ∈ cM
from what was already shown. Then, by Theorem 1.2.5, MT

t = E(M∞|FT∧t), so by Lemma

A.2.6, MT is uniformly integrable, and so MT ∈ cMu.

We end the section with two extraordinarily useful results, first a criterion for determining

when a process is a martingale or a uniformly integrable martingale, and secondly a result

showing that a particular class of continuous martingales consists of the zero process only.

Lemma 1.2.9 (Komatsu’s lemma). Let M be a continuous adapted process with initial value

zero. It holds that M ∈ cM if and only if MT is integrable with EMT = 0 for any bounded

stopping time T . If the limit limt→∞Mt exists almost surely, it holds that M ∈ cMu if and

only if MT is integrable with EMT = 0 for any stopping time T .

Proof. We first consider the case where we assume that the limit limt→∞Mt exists almost

surely. By Theorem 1.2.7, we have that if M ∈ cMu, MT is integrable and EMT = 0 for

any for any stopping time T . Conversely, assume that MT is integrable and EMT = 0 for

any for any stopping time T . We will prove that Mt = E(M∞|Ft) for any t ≥ 0. To this end,

let F ∈ Ft and note that by Lemma 1.1.7, tF is a stopping time, where tF = t1F +∞1F c ,

taking only the values t and infinity. We obtain EMtF = E1FMt + E1F cM∞, and we also

have EM∞ = E1FM∞ + E1F cM∞. By our assumptions, both of these are zero, and so

E1FMt = E1FM∞. As Mt is Ft measurable by assumption, this proves Mt = E(M∞|Ft).
From this, we see that M is in cM, and by Theorem 1.2.5, M is in cMu.

Consider next the case where we merely assume that M is a continuous process with initial

value zero. If M ∈ cM, Theorem 1.2.7 shows that MT is integrable with EMT = 0 for

any bounded stopping time. Assume instead that MT is integrable and EMT = 0 for any

bounded stopping time T . From what we already have shown, we then find that M t is in

cMu for any t ≥ 0 and therefore, M ∈ cM.

For the statement of the final result, we say that a process X is of finite variation if it has
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sample paths which are functions of finite variation, see Appendix A.1 for a review of the

properties of functions of finite variation. If the process X has finite variation, we denote the

variation over [0, t] by (VX)t, such that (VX)t = sup
∑n
k=1 |Xtk−Xtk−1

|, where the supremum

is taken over partitions 0 = t0 < · · · < tn = t of [0, t].

Lemma 1.2.10. Let X be adapted and continuous with finite variation. Then the variation

process VX is adapted and continuous as well.

Proof. By Lemma A.1.4, VX is continuous. As for proving that VX is adapted, note that

from Lemma A.1.9, we have (VX)t = sup
∑n
k=1 |Xqk −Xqk−1

|, where the supremum is taken

over partitions of [0, t] with elements in in Q+ ∪{t}. As ∪∞n=1(Q+ ∪{t})n is countable, there

are only countably many such partitions, and so we find that (VX)t is Ft measurable, since

Xq is Ft measurable whenever q ≤ t. Therefore, VX is adapted.

Lemma 1.2.11. Let X be adapted and continuous with finite variation. Then (VX)T = VXT .

Proof. Fix ω ∈ Ω. With the supremum being over all partitions of [0, T (ω) ∧ t], we have

(VX)Tt (ω) = (VX)T (ω)∧t(ω) = sup

n∑
k=1

|Xtk(ω)−Xtk−1
(ω)|

= sup

n∑
k=1

|XT
tk

(ω)−XT
tk−1

(ω)| = (VXT )t∧T (ω)(ω) ≤ (VXT )t(ω).

Conversely, with the supremum being over all partitions of [0, t], we also have

(VXT )t(ω) = sup

n∑
k=1

|XT
tk

(ω)−XT
tk−1

(ω)|

= sup

n∑
k=1

|Xtk∧T (ω)(ω)−Xtk−1∧T (ω)(ω)| ≤ (VX)t∧T (ω)(ω).

Combining our conclusions, the result follows.

Lemma 1.2.12. If M ∈ cM with paths of finite variation, then M is evanescent.

Proof. We first consider the case where M ∈ cMb and the variation process VM is bounded,

(VM )t being the variation of M over [0, t]. Fix t ≥ 0 and let tnk = kt2−n. Now note that by

the martingale property, EMtnk−1
(Mtnk

−Mtnk−1
) = EMtnk−1

E(Mtnk
−Mtnk−1

|Ftnk−1
) = 0, and
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by rearrangement, M2
tnk
−M2

tnk−1
= 2Mtnk−1

(Mtnk
−Mtnk−1

) + (Mtnk
−Mtnk−1

)2. Therefore, we

obtain

EM2
t = E

2n∑
k=1

(M2
tnk
−M2

tnk−1
) = 2E

2n∑
k=1

Mtnk−1
(Mtnk

−Mtnk−1
) + E

2n∑
k=1

(Mtnk
−Mtnk−1

)2

= E

2n∑
k=1

(Mtnk
−Mtnk−1

)2 ≤ E(VM )t max
k≤2n

|Mtnk
−Mtnk−1

|.

Now, as M is continuous, (VM )t maxk≤n |Mtnk
−Mtnk−1

| tends pointwisely to zero as n tends to

infinity. The boundedness of M and VM then allows us to apply the dominated convergence

theorem and obtain

EM2
t ≤ lim

n→∞
E(VM )t max

k≤2n
|Mtk −Mtk−1

| ≤ E lim
n→∞

(VM )t max
k≤2n

|Mtk −Mtk−1
| = 0,

so that Mt is almost surely zero by Lemma A.1.15, and so by Lemma 1.1.5, M is evanescent.

In the case of a general M ∈ cM, define Tn = inf{t ≥ 0 | |(VM )t| > n}. By Lemma

1.1.11, (Tn) is a sequence of stopping times increasing almost surely to infinity, and (VM )Tn

is bounded by n. By Lemma A.1.6, |MTn
t | ≤ |(VM )Tn

t | ≤ n for all t ≥ 0. As (VM )Tn = VMTn

by Lemma 1.2.11, MTn is a bounded martingale with bounded variation, so our previous

results show that MTn is evanescent. Letting n tend to infinity, Tn tends to infinity, and so

we almost surely obtain Mt = limtM
Tn
t = 0, allowing us to conclude by Lemma 1.1.5 that

M is evanescent.

1.3 Square-integrable martingales

In this section, we consider the properties of square-integrable martingales, and we ap-

ply these properties to prove the existence of the quadratic variation process for bounded

continuous martingales. We say that a continuous martingale M is square-integrable if

supt≥0EM
2
t is finite. The space of continuous square-integrable martingales with initial

value zero is denoted by cM2. We note that cM2 is a vector space. For any M ∈ cM2,

we put M∗t = sups≤t |Ms| and M∗∞ = supt≥0 |Mt|. We use the notational convention that

M∗2t = (M∗t )2, and likewise M∗2∞ = (M∗∞)2.

Theorem 1.3.1. Let M ∈ cM2. Then, there exists a square-integrable variable M∞ such

that Mt = E(M∞|Ft) for all t ≥ 0. Furthermore, Mt converges to M∞ almost surely and in

L2, and EM∗2∞ ≤ 4EM2
∞.
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Proof. As M is bounded in L2, M is in particular uniformly integrable by Lemma A.2.4,

so by Theorem 1.2.5, Mt converges almost surely and in L1 to some variable M∞, which is

integrable and satisfies that Mt = E(M∞|Ft) almost surely for t ≥ 0. It remains to prove

that M∞ is square-integrable, that we have convergence in L2 and that EM∗2∞ ≤ 4EM2
∞

holds.

Put tnk = k2−n for n, k ≥ 0. Then (Mtnk
)k≥0 is a discrete-time martingale for n ≥ 0 with

supk≥0EM
2
tnk

finite. By Lemma A.3.4, Mtnk
converges almost surely and in L2 to some

square-integrable limit as k tends to infinity. By uniqueness of limits, the limit is M∞, so we

conclude that M∞ is square-integrable. Lemma A.3.4 also yields E supk≥0M
2
tnk
≤ 4EM2

∞.

We then obtain by the monotone convergence theorem and the continuity of M that

EM∗2∞ = E lim
n→∞

sup
k≥0

M2
tnk

= lim
n→∞

E sup
k≥0

M2
tnk
≤ 4EM2

∞.

This proves the inequality EM∗2∞ ≤ 4EM2
∞. It remains to show that Mt converges to M∞ in

L2. To this end, note that as we have (Mt −M∞)2 ≤ (2M∗∞)2 = 4M∗2∞ , which is integrable,

the dominated convergence theorem yields limtE(Mt −M∞)2 = E limt(Mt −M∞)2 = 0, so

Mt also converges in L2 to M∞, as desired.

Lemma 1.3.2. Assume that M ∈ cM2. Then MT ∈ cM2 as well.

Proof. By Lemma 1.2.8, MT is a martingale. Furthermore, we have

sup
t≥0

E(MT )2
t ≤ E sup

t≥0
(MT

t )2 ≤ E sup
t≥0

M2
t = EM∗2∞ ,

and this is finite by Theorem 1.3.1, proving that MT ∈ cM2.

Theorem 1.3.3. Assume that (Mn) is a sequence in cM2 such that (Mn
∞) is convergent in

L2 to a limit M∞. Then there is some M ∈ cM2 such that for all t ≥ 0, Mt = E(M∞|Ft).
Furthermore, E supt≥0(Mn

t −Mt)
2 tends to zero.

Proof. The difficulty in the proof lies in demonstrating that the martingale M obtained by

putting Mt = E(M∞|Ft) has a continuous version. First note that Mn −Mm ∈ cM2 for

all n and m, so for any δ > 0 we may apply Chebychev’s inequality and Theorem 1.3.1 to

obtain, using (x+ y)2 ≤ 4x2 + 4y2,

P ((Mn −Mm)∗∞ ≥ δ) ≤ δ−2E(Mn −Mm)∗2∞

≤ 4δ−2E(Mn
∞ −Mm

∞)2

≤ 16δ−2(E(Mn
∞ −M∞)2 + E(M∞ −Mm

∞)2)

≤ 32δ−2 sup
k≥m∧n

E(Mk
∞ −M∞)2.
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Now let (ni) be a strictly increasing sequence of naturals such that for each i, it holds that

32(2−i)−2 sup
k≥ni

E(Mk
∞ −M∞)2 ≤ 2−i,

this is possible as supk≥nE(Mk
∞ −M∞)2 tends to zero as n tends to infinity. In particular,

P ((Mni+1 −Mni)∗∞ > 2−i) ≤ 2−i for all i ≥ 1. Then
∑∞
i=1 P ((Mni+1 −Mni)∗∞ > 2−i)

is finite, so therefore, by the Borel-Cantelli Lemma, the event that (Mni+1 −Mni)∗∞ > 2−i

infinitely often has probability zero. Therefore, (Mni+1−Mni)∗∞ ≤ 2−i from a point onwards

almost surely. In particular, it almost surely holds that for any two numbers k ≤ m large

enough,

(Mnm −Mnk)∗∞ ≤
m∑

i=k+1

(Mni −Mni−1)∗∞ ≤
∞∑

i=k+1

2−i = 2−k.

Thus, it holds almost surely that Mni is Cauchy in the uniform norm on R+, and therefore

almost surely uniformly convergent to some continuous limit. Define M to be the uniform

limit when it exists and zero otherwise, M is then a process with continuous paths. With

F being the null set where we have uniform convergence, our assumption that the usual

conditions hold allows us to conclude that F ∈ Ft for all t ≥ 0. As uniform convergence

implies pointwise convergence, we have Mt = 1F limi→∞Mni
t , so M is also adapted. We now

claim that M ∈ cM2. To see this, note that by Jensen’s inequality, we have

E(Mn
t − E(M∞|Ft))2 = E(E(Mn

∞|Ft)− E(M∞|Ft))2 = EE(Mn
∞ −M∞|Ft)2

≤ EE((Mn
∞ −M∞)2|Ft) = E(Mn

∞ −M∞)2,

which tends to zero, so for any t ≥ 0, Mn
t tends to E(M∞|Ft) in L2. As Mnk

t tends to

Mt almost surely, we conclude that Mt = E(M∞|Ft) almost surely by uniqueness of limits.

This shows that M is a martingale, and as EM2
t ≤ EE(M2

∞|Ft) = EM2
∞, which is finite,

we conclude that M is bounded in L2. As M clearly has initial value zero, we then obtain

M ∈ cM2. Finally, lim supnE supt≥0(Mn
t −Mt)

2 ≤ 4 limnE(Mn
∞ −M∞)2 = 0 by Theorem

1.3.1, yielding the desired convergence of Mn to M .

We now introduce a seminorm ‖ · ‖2 on the space cM2 by putting ‖M‖2 = (EM2
∞)

1
2 , this

is possible as we have ensured in Theorem 1.3.1 that for any M ∈ cM2, Mt = E(M∞|Ft)
for some almost surely unique square-integrable M∞, so that the limit determines the entire

martingale. Note that ‖ · ‖2 is generally not a norm, only a seminorm, in the sense that

‖M‖2 = 0 does not imply that M is zero, only that M is evanescent.

Theorem 1.3.4. The space cM2 is complete under the seminorm ‖ · ‖, in the sense that

any Cauchy sequence in cM2 has a limit.



1.3 Square-integrable martingales 23

Proof. Assume that (Mn) is a Cauchy sequence in cM2. By our definition of the seminorm

on cM2, we have (E(Mn
∞ −Mm

∞)2)
1
2 = ‖Mn −Mn‖2, and so (Mn

∞) is a Cauchy sequence

in L2. As L2 is complete, there exists M∞ such that Mn
∞ converges in L2 to M∞. By

Theorem 1.3.3, there exists M ∈ cM2 such that for any t ≥ 0, Mt = E(M∞|Ft) almost

surely. Therefore, Mn tends to M in cM2.

Theorem 1.3.5 (Riesz’ representation theorem for cM2). Let M ∈ cM2. Then, the map-

ping ϕ : cM2 → R defined by ϕ(N) = EM∞N∞ is linear and continuous. Conversely, if

ϕ : cM2 → R be linear and continuous, there exists M ∈ cM2, unique up to indistinguisha-

bility, such that ϕ(N) = EM∞N∞ for all N ∈ cM2.

Proof. First consider M ∈ cM2 and define ϕ : cM2 → R by putting ϕ(N) = EM∞N∞.

ϕ is then clearly linear, and |ϕ(N − N ′)| = |EM∞(N∞ − N ′∞)| ≤ ‖M‖2‖N − N ′‖2 for all

N,N ′ ∈ cM2 by the Cauchy-Schwartz inequality, showing that ϕ is Lipschitz with Lipschitz

constant ‖M‖2, therefore continuous.

Conversely, assume given any ϕ : cM2 → R which is linear and continuous, we need to

find M ∈ cM2 such that ϕ(N) = EM∞N∞ for all N ∈ cM2. If ϕ is identically zero,

this is trivially satisfied with M being the zero martingale. Therefore, assume that ϕ is not

identically zero. In this case, there is M ′ ∈ cM2 such that ϕ(M ′) 6= 0. Define the set

C ⊆ cM2 by C = {L ∈ cM2 | ϕ(L) = ‖M ′‖2}. As ϕ is continuous, C is closed. And as ϕ is

linear, C is convex.

We claim that there is M ′′ ∈ C such that such that ‖M ′′‖2 = infL∈C ‖L‖2. To prove this, it

suffices to put α = infL∈C ‖L‖22 and identify M ′′ ∈ C such that ‖M ′′‖22 = α. Take a sequence

(Ln) in C such that ‖Ln‖2 converges to α. Since 1
2 (Lm + Ln) ∈ C by convexity, we have

‖Lm − Ln‖22 = 2‖Lm‖22 + 2‖Ln‖22 − ‖Lm + Ln‖22
= 2‖Lm‖22 + 2‖Ln‖22 − 4‖ 1

2 (Lm + Ln)‖22
≤ 2‖Lm‖22 + 2‖Ln‖22 − 4α.

As m and n tend to infinity, ‖Lm‖22 and ‖Ln‖22 tend to α, so ‖Lm − Ln‖22 tends to zero.

Therefore, (Ln) is Cauchy. By Theorem 1.3.4, (Ln) is convergent towards some M ′′. As C

is closed, M ′′ ∈ C, and we furthermore find ‖M ′′‖22 = limn ‖Ln‖22 = α, as desired.

We next claim that for any N ∈ cM2 with ϕ(N) = 0, EM ′′∞N∞ = 0. This is clearly

true if N is evanescent, assume therefore that N is not evanescent, so that ‖N‖2 6= 0. By

linearity, ϕ(M ′′ − tN) = ϕ(M ′′) for any t ∈ R, so that M ′′ − tN ∈ C. We then find
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‖M ′′‖22 = infL∈C ‖L‖22 ≤ inft∈R ‖M ′′ − tN‖22 ≤ ‖M ′′‖22, so that ‖M ′′‖22 is the minimum

of the mapping t 7→ ‖M ′′ − tN‖22, attained at zero. However, we also have the relation

‖M ′′−tN‖22 = t2‖N‖22−2tEM ′′∞N∞+‖M‖22, so t 7→ ‖M ′′∞−tN∞‖22 is a quadratic polynomial,

and as ‖N‖2 6= 0, it attains its unique minimum at ‖N‖−2
2 EM ′′∞N∞. As we also know that

the minimum is attained at zero, we conclude EM ′′∞N∞ = 0.

We have now proven the existence of a process M ′′ in cM2 which is nonzero and satisfies

EM ′′∞N∞ = 0 whenever ϕ(N) = 0. We then note for any N ∈ cM2 that, using the linearity

of ϕ, ϕ(ϕ(M ′′)N − ϕ(N)M ′′) = ϕ(M ′′)ϕ(N) − ϕ(N)ϕ(M ′′) = 0, yielding the relationship

0 = EM ′′∞(ϕ(M ′′)N∞ − ϕ(N)M ′′∞) = ϕ(M ′′)EM ′′∞N∞ − ϕ(N)‖M ′′‖22, so that we finally

obtain the relation

ϕ(N) = ‖M ′′‖−2
2 ϕ(M ′′)EM ′′∞N∞ = E

(
ϕ(M ′′)M ′′∞
‖M ′′‖22

N∞

)
,

which proves the desired result using the element (ϕ(M ′′)M ′′)‖M ′′‖−2
2 of cM2. It remains

to prove uniqueness. Assume therefore that M,M ′ ∈ cM2 such that EM∞N∞ = EM ′∞N∞

for all N ∈ cM2. Then E(M∞ −M ′∞)N∞ = 0 for all N ∈ cM2, in particular we have

E(M∞−M ′∞)2 = 0 so that M∞ = M ′∞ almost surely and so M and M ′ are indistinguishable.

This completes the proof.

Finally, we apply our results on cM2 to prove the existence of the quadratic variation process

for continuous bounded martingales. In the next section on continuous local martingales, we

will then extend the quadratic variation process to continuous local martingales and introduce

the quadratic covariation process as well.

We say that a process X is increasing if its sample paths are increasing. In this case, the

limit of Xt exists almost surely as a variable with values in [0,∞] and is denoted by X∞. We

say that an increasing process is integrable if its limit X∞ is integrable. In this case, X∞

is in particular almost surely finite. We denote by cAi the set of stochastic processes with

initial value zero which are continuous, adapted, increasing and integrable.

Theorem 1.3.6. Let M ∈ cMb. There exists a process [M ] in cAi, unique up to indis-

tinguishability, such that M2 − [M ] ∈ cM2. We call [M ] the quadratic variation process of

M .

Proof. We first consider uniqueness. Assume that A and B are two processes in cAi such

that M2 − A and M2 − B are in cM2. In particular, A − B is in cM2 and has paths of
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finite variation, so Lemma 1.2.12 shows that A − B is evanescent, such that A and B are

indistinguishable. This proves uniqueness.

Next, we consider the existence of the process. Let tnk = k2−n for n, k ≥ 0, we then find

M2
t =

∞∑
k=1

M2
t∧tnk
−M2

t∧tnk−1
= 2

∞∑
k=1

Mt∧tnk−1
(Mt∧tnk −Mt∧tnk−1

) +

∞∑
k=1

(Mt∧tnk −Mt∧tnk−1
)2,

where the terms in the sum are zero from a point onwards, namely for such k that tnk−1 ≥ t.
Define Nn

t = 2
∑∞
k=1Mt∧tnk−1

(Mt∧tnk −Mt∧tnk−1
). Our plan for the proof is to show that Nn

is in cM2 and that (Nn
∞)n≥1 is bounded in L2. This will allow us to apply Lemma A.2.7 in

order to obtain some N ∈ cM2 which is the limit of appropriate convex combinations of the

(Nn). We then show that by putting [M ] = M2 −N , we obtain a process with the desired

qualities.

We first show that Nn is a martingale by applying Lemma 1.2.9. As Nn is continuous and

adapted with initial value zero, it suffices to prove that Nn
T is integrable and that ENn

T = 0

for all bounded stopping times T . To this end, note that as M is bounded, there is c > 0

such that |Mt| ≤ c for all t ≥ 0. Therefore, for any k, |2Mt∧tnk−1
(Mt∧tnk −Mt∧tnk−1

)| ≤ 4c2.

As T is also bounded, Nn
T is integrable, as it is the sum of finitely many terms bounded by

4c2, and we have

ENn
T = E

∞∑
k=1

MT∧tnk−1
(MT∧tnk −MT∧tnk−1

)

=

∞∑
k=1

EMT
tnk−1

(MT
tnk
−MT

tnk−1
) =

∞∑
k=1

EMT
tnk−1

E(MT
tnk
−MT

tnk−1
|Ftnk−1

),

where the interchange of summation and expectation is allowed, as the only nonzero terms

in the sum are for those k such that tnk−1 ≤ T , and there are only finitely many such terms.

As MT is a martingale by Lemma 1.2.8, E(MT
tnk
−MT

tnk−1
|Ftnk−1

) = 0 by Theorem 1.2.7, so the

above is zero and Nn is a martingale by Lemma 1.2.9. Next, we show that Nn is bounded

in L2. Fix k ≥ 1, we first consider a bound for the second moment of Nn
tnk

. To obtain this,

note that for i < j,

E(Mtni−1
(Mtni

−Mtni−1
))(Mtnj−1

(Mtnj
−Mtnj−1

))

= E(Mtni−1
(Mtni

−Mtni−1
)E(Mtnj−1

(Mtnj
−Mtnj−1

)|Ftni ))

= E(Mtni−1
(Mtni

−Mtni−1
)Mtnj−1

E(Mtnj
−Mtnj−1

|Ftni )),

which is zero, as E((Mtnj
−Mtnj−1

)|Ftni ) = 0, and by the same type of argument, we obtain
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E(Mtni
−Mtni−1

)(Mtnj
−Mtnj−1

) = 0. Therefore, we obtain

E(Nn
tnk

)2 = E

(
k∑
i=1

Mtni−1
(Mtni

−Mtni−1
)

)2

=

k∑
i=1

E
(
Mtni−1

(Mtni
−Mtni−1

)
)2

≤ c2
k∑
i=1

E(Mtni
−Mtni−1

)2 = c2E

(
k∑
i=1

Mtni
−Mtni−1

)2

= c2EM2
tnk
.

Now finally, note that for any 0 ≤ s ≤ t, E(Nn
s )2 = E(E(Nn

t |Fs)2) ≤ E(Nn
t )2 by Jensen’s

inequality, so t 7→ E(Nn
t )2 is increasing, and we may therefore conclude that, by Theorem

1.3.1, supt≥0E(Nn
t )2 = supk≥1E(Nn

tnk
)2 ≤ supk≥1 c

2EM2
tnk
≤ 4c2EM2

∞, which is finite. Thus,

Nn ∈ cM2, and in particular, E(Nn
∞)2 = limtE(Nn

t )2 ≤ 4c2EM2
∞, so (Nn

∞)n≥1 is bounded

in L2.

Now, by Lemma A.2.7, there exists a sequence of naturals (Kn) with Kn ≥ n and for

each n a finite sequence of reals λnn, . . . , λ
n
Kn

in the unit interval summing to one, such that∑Kn

i=n λ
n
i N

i
∞ is convergent in L2 to some variable N∞. By Theorem 1.3.3, it then holds that

there is N ∈ cM2 such that E supt≥0(Nt−
∑Kn

i=n λ
n
i N

i
t )

2 tends to zero. Define A = M2−N ,

we claim that there is a modification of A satisfying the criteria of the theorem.

To prove this, first note that as M2 and N are continuous and adapted, so is A. We will

prove that A is almost surely increasing. To this end, define D+ = {k2−n|k ≥ 0, n ≥ 1}.
Then D+ is dense in R+. Let p, q ∈ D+ with p ≤ q, we will show that Ap ≤ Aq almost surely.

There exists j ≥ 1 and naturals np ≤ nq such that p = np2
−j and q = nq2

−j . We then find,

with the limits being in L2,

Ap = M2
p −Np = lim

n→∞

Kn∑
i=n

λni (M2
p −N i

p) = lim
n→∞

Kn∑
i=n

λni

∞∑
k=1

(Mp∧tik −Mp∧tik−1
)2.

Now note that for i ≥ j, we have p∧ tik = np2
−j ∧k2−i = np2

i−j2−i∧k2−i = (np2
i−j ∧k)2−i

and analogously for q ∧ tik, so we obtain that almost surely, by Lemma A.2.2,

lim
n→∞

Kn∑
i=n

λni

∞∑
k=1

(Mp∧tik −Mp∧tik−1
)2 = lim

n→∞

Kn∑
i=n

λni

np2i−j∑
k=1

(Mtik
−Mtik−1

)2

≤ lim
n→∞

Kn∑
i=n

λni

nq2i−j∑
k=1

(Mtik
−Mtik−1

)2

= lim
n→∞

Kn∑
i=n

λmi

∞∑
k=1

(Mq∧tik −Mq∧tik−1
)2,

allowing us to make the same calculations in reverse and conclude that Ap ≤ Aq almost

surely. As D+ is countable, we conclude that A is inceasing on D+ almost surely, and by
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continuity, we conclude that A is increasing almost surely. Furthermore, as A∞ = M2
∞−N∞

and both M2
∞ and N∞ are integrable, we conclude that A∞ is integrable.

Finally, let F be the null set where A is not increasing and put [M ] = A1F c . As we have

assumed that all null sets are in Ft for t ≥ 0, [M ] is adapted as A is adapted. Furthermore,

[M ] is continuous, increasing and [M ]∞ exists and is integrable. As M2 − [M ] = N + A1F ,

where A1F is evanescent and continuous and therefore in cM2, the theorem is proven.

1.4 Local martingales

In this section, we consider continuous local martingales, which is a convenient extension of

the concept of martingales. When we define the stochastic integral with respect to a local

martingale, we will see that the integral of a progressive process with respect to a martingale

is not necessarily a martingale, but the integral of a progressive process with respect to a

local martingale is always a local martingale. This stability property makes local martingales

a natural type of integrator.

We say that an increasing sequence of stopping times tending almost surely to infinity is a

localising sequence. We then say that a process M is a continous local martingale if M is

continuous and adapted and there is a localising sequence (Tn) such that MTn is a continuous

martingale for all n, and in this case, we say that (Tn) is a localising sequence for M . The

space of continuous local martingales with initial value zero is denoted by cM`.

Lemma 1.4.1. It holds that cMb ⊆ cM2 ⊆ cMu ⊆ cM⊆ cM`.

Proof. That cMb ⊆ cM2 is immediate. By Lemma A.2.4, cM2 ⊆ cMu, and by construction

we have cMu ⊆ cM. If M ∈ cM, MT ∈ cM for any stopping time by Lemma 1.2.8, and

so cM⊆ cM`, using the localising sequence (Tn) with Tn = n.

Lemma 1.4.2. Let (Sn) and (Tn) be localising sequences. Then (Sn ∧ Tn) is a localising

sequence as well. If M,N ∈ cM`, with localising sequences (Sn) and (Tn), then (Sn ∧ Tn) is

a locasing sequence for both M and N .

Proof. As Sn ∧ Tn is a stopping time by Lemma 1.1.7 and Sn ∧ Tn tends almost surely to

infinity, (Sn ∧ Tn) is a localising sequence. Now assume that M,N ∈ cM` with localising

sequences (Tn) and (Sn), respectively. Then MTn∧Sn = (MTn)Sn is a martingale by Lemma
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1.2.8, and so (Tn ∧ Sn) is a localising sequence for M . Analogously, (Tn ∧ Sn) is also a

localising sequence for N .

Lemma 1.4.3. cM` is a vector space. If T is any stopping time and M ∈ cM`, then

MT ∈ cM` as well. If F ∈ F0 and M ∈ cM`, then 1FM is in cM` as well, where 1FM

denotes the process (1FM)t = 1FMt.

Proof. Let M,N ∈ cM` and let α, β ∈ R. Using Lemma 1.4.2, let (Tn) be a localising

sequence for both M and N . Then (αM + βN)Tn = αMTn + βNTn is a martingale, so

αM + βN ∈ cM` and cM` is a vector space. As regards the stopped process, let M ∈ cM`

and let T be any stopping time. Let (Tn) be a localising sequence for M . As MTn ∈ cM, we

obtain that (MT )Tn = (MTn)T ∈ cM, proving that (Tn) is also a localising sequence for MT ,

so that MT ∈ cM`. Finally, let M ∈ cM` and F ∈ F0. Let (Tn) be a localising sequence

such that MTn ∈ cM. For any bounded stopping time T , E1FM
Tn

T = E1F (EMTn

T |F0) = 0

by Theorem 1.2.7, so by Lemma 1.2.9, 1FM
Tn is a martingale. As (1FM)Tn = 1FM

Tn , 1FM

is in cM`.

Lemma 1.4.4. Let M ∈ cM`. There exists a localising sequence (Tn) such that MTn is a

bounded continuous martingale for all n. In particular, MTn ∈ cM2 and MTn ∈ cMu.

Proof. Let Sn be a localising sequence for M and let Un = inf{t ≥ 0 | |Mt| > n}. By Lemma

1.1.11, (Un) is a localising sequence and MUn is bounded. Defining Tn = Sn ∧ Un, (Tn) is a

localising sequence by Lemma 1.4.2. By definition, MSn is in cM. As MTn = (MSn)Un and

MSn is in cM, Lemma 1.2.8 shows that MTn is in cM as well. And as MTn = (MUn)Sn and

MUn is bounded, MTn is bounded as well. Thus, MTn is a bounded continuous martingale.

MTn is then also bounded in L2, so we also obtain MTn ∈ cM2 and MTn ∈ cMu.

Lemma 1.4.5. If M ∈ cM` with paths of finite variation, then M is evanescent.

Proof. Using Lemma 1.4.4, let (Tn) be a localising sequence for M such that MTn ∈ cM.

Then MTn also has paths of finite variation, so by Lemma 1.2.12, MTn is evanescent. As Tn

tends to infinity, we conclude that M is evanescent as well.

Next, in order to extend the notions of the quadratic variation and quadratic covariation

processes from bounded continuous martingales to cM`, we introduce some further spaces

of stochastic processes. By cA, we denote the space of continuous, adapted and increasing

processes, and by cV, we denote the space of continuous, adapted processes with finite
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variation. If A ∈ cV, we have that VA ∈ cA. Clearly, cAi are the elements of cA such that

A∞ is integrable. We also define cVi as the elements of cV such that VA ∈ cAi, implying

that (VA)∞ is integrable.

Lemma 1.4.6. If X ∈ cA, there is a localising sequence (Tn) such that XTn ∈ cAi, and if

X ∈ cV, there is a localising sequence such that XTn ∈ cVi.

Proof. Consider first A ∈ cA, such that A is continuous, adapted and increasing. Define

Tn = inf{t ≥ 0 | At > n}. By Lemma 1.1.11, (Tn) is a localising sequence such that ATn is

bounded, so ATn
∞ is integrable, and so ATn ∈ cAi, as desired. Considering the case X ∈ cV,

we may instead define Tn = inf{t ≥ 0 | (VA)t > n} and obtain the same result.

Theorem 1.4.7. Let M ∈ cM`. There exists a process [M ] ∈ cA, unique up to indistin-

guishability, such that M2− [M ] ∈ cM`. If M,N ∈ cM`, there exists a process [M,N ] ∈ cV,

unique up to indistinguishability, such that MN − [M,N ] ∈ cM`. We call [M ] the quadratic

variation of M , and we call [M,N ] the quadratic covariation of M and N .

Proof. Consider first the case of the quadratic variation. As M ∈ cM`, there exists by

Lemma 1.4.4 a localising sequence (Tn) such that MTn ∈ cMb. By Theorem 1.3.6, there

exists a process [MTn ] in cAi, unique up to indistinguishability, with the property that

(MTn)2 − [MTn ] ∈ cM2. Note that (MTn)2 − [MTn+1 ]Tn = ((MTn+1)2 − [MTn+1 ])Tn , which

is in cM2 by Lemma 1.3.2. Therefore, by uniqueness, [MTn+1 ]Tn = [MTn ] up to indistin-

guishability. In particular, [MTn+1 ]1(t≤Tn) and [MTn ]1(t≤Tn) are indistinguishable. Now,

with T0 = 0, define

[M ]t =

∞∑
k=1

[MTk ]t1(Tk−1<t≤Tk).

It then holds that, up to indistinguishability,

[M ]Tn
t =

n∑
k=1

[MTk ]t1(Tk−1<t≤Tk) =

n∑
k=1

[MTn ]t1(Tk−1<t≤Tk) = [MTn ]t.

As [MTn ] is in cAi, this shows that [M ] is in cA. Also, (M2 − [M ])Tn = (MTn)2 − [MTn ],

which is in cM2, yielding M2 − [M ] ∈ cM`. This proves the existence of [M ]. Uniqueness

follows from Lemma 1.4.5.

As for the quadratic covariation, consider any two processes M,N ∈ cM`. Recalling the

polarization identity 4MN = (M+N)2−(M−N)2, we define [M,N ] = 1
4 ([M+N ]−[M−N ]).

We then obtain MN − [M,N ] = 1
4 ((M +N)2− [M +N ])− 1

4 ((M −N)2− [M −N ]), so that
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MN − [M,N ] is in cM`. Furthermore, as [M + N ] and [M − N ] are in cA, we find that

[M,N ] ∈ cV. This proves the existence of [M,N ]. As in the case of the quadratic variation

process, uniqueness follows from Lemma 1.4.5.

The quadratic covariation process of Theorem 1.4.7 will be indispensable to our construction

of the stochastic integral. As an essential example, we next consider the quadratic covariation

process of the coordinates of a p-dimensional Ft Brownian motion.

Theorem 1.4.8. Let W be a p-dimensional Ft Brownian motion. For i ≤ p, [W i]t = t up

to indistinguishability, and for i, j ≤ p with i 6= j, [W i,W j ] is zero up to indistinguishability.

Proof. By Theorem 1.2.1, it holds for i ≤ p that (W i
t )

2 − t is a martingale, in particular an

element of cM`, and so [W i]t = t up to indistinguishability, by the characterization given

in Theorem 1.4.7. Likewise, Theorem 1.2.1 shows that for i, j ≤ p with i 6= j, W i
tW

j
t is a

martingale, in particular an element of cM`, so [W i,W j ] is zero up to indistinguishability

by Theorem 1.4.7.

Before ending the section, we prove some general properties of the quadratic covariation

process.

Lemma 1.4.9. Let M and N be in cM`, and let T by any stopping time. The quadratic

covariation satisfies the following properties up to indistinguishability.

1. [M,M ] = [M ].

2. [·, ·] is symmetric and linear in both of its arguments.

3. For any α ∈ R, [αM ] = α2[M ].

4. [M +N ] = [M ] + 2[M,N ] + [N ].

5. [M,N ]T = [MT , N ] = [M,NT ] = [MT , NT ].

6. [M,N ] is zero if and only if MN ∈ cM`.

7. M is evanescent if and only if [M ] is evanescent.

8. M is evanescent if and only if [M,N ] is zero for all N ∈ cM`.

9. M is evanescent if and only if [M,N ] is zero for all N ∈ cMb.
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10. If F ∈ F0, 1F [M,N ] = [1FM,N ] = [M, 1FN ] = [1FM, 1FN ].

Proof. Proof of (1). We know that [M ] is in cA and satisfies M2− [M ] ∈ cM`. Therefore,

[M ] is in particular in cV, and therefore satisfies the requirements characterizing [M,M ]. By

uniqueness, we conclude that [M,M ] = [M ] up to indistinguishability.

Proof of (2). As MN − [M,N ] is a uniformly integrable martingale if and only if this

holds for NM − [M,N ], we have that the quadratic covariation is symmetric in the sense

that [M,N ] = [N,M ] up to indistinguishability. In particular, it suffices to prove that the

quadratic covariation is linear in its first coordinate. Fix M,M ′ ∈ cM2 and α, β ∈ R,

then (αM + βM ′)N − (α[M,N ] + β[M ′, N ]) = α(MN − [M,N ]) + β(M ′N − [M ′, N ]), so

(αM +βM ′)N − (α[M,N ]+β[M ′, N ]) is in cM` and so by uniqueness, we have the linearity

relationship [αM + βM ′, N ] = α[M,N ] + β[M ′, N ] up to indistinguishability.

Proof of (3). This is immediate from [αM ] = [αM,αM ] = α2[M,M ] = α2[M ], using the

linearity properties already proven.

Proof of (4). This follows as

[M +N ] = [M +N,M +N ]

= [M,M ] + [M,N ] + [N,M ] + [N,N ]

= [M ] + 2[M,N ] + [N ],

using the symmetry and linearity properties already proven.

Proof of (5). Note that as MT and NT are in cM`, the conclusion is well-defined by Lemma

1.4.3. To prove the result, first note that by symmetry, it suffices to prove [M,N ]T = [MT , N ],

and this will be accomplished if we can show that MTN − [M,N ]T is in cM`. We have

MTN − [M,N ]T = (MN − [M,N ])T + MT (N − NT ), where (MN − [M,N ])T ∈ cM` by

Lemma 1.4.3. Therefore, it suffices to prove that MT (N −NT ) is in cM`.

To this end, first consider the case of N,M ∈ cMb. For any stopping time S, we then find

EMT
S (NS − NT

S ) = EMS∧TE(NS − NS∧T |FS∧T ) = 0 by the optional sampling theorem.

Therefore, by Lemma 1.2.9, MT (N − NT ) ∈ cMu. In the case where M,N ∈ cM`, we

may let (Sn) be a localising sequence such that MSn and NSn are in cMb. As we have the

relation (MT (N −NT ))Sn = (MSn)T (NSn − (NSn)T ), we conclude that (MT (N −NT ))Sn

is in cMu, and so MT (N −NT ) is in cM`, as desired.
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Proof of (6). This is immediate from the definition of the quadratic covariation.

Proof of (7). If M is the zero process, then the zero process satisfies the requirements for

being the quadratic variation of M . Conversely, assume that [M ] is evanescent. Then M2

is in cM`. Letting Tn be a localising sequence for M2 such that (M2)Tn is in cM, we find

that EM2
Tn∧t = E(M2)Tn

t = 0, so that M2
Tn∧t is almost surely zero. Therefore, Mt is almost

surely zero as well. As t ≥ 0 was arbitrary and M is continuous, we conclude that M is

evanescent.

Proof of (8). Assume that M is evanescent. Then the zero process satisfies the requirements

characterizing [M,N ] for all N ∈ cM`, and so [M,N ] is evanescent for all N ∈ cM`.

Conversely, assume that [M,N ] is evanescent for all N ∈ cM`. In particular, [M,M ] is

evanescent, so by what was already shown, M is evanescent.

Proof of (9). If M is evanescent, the results already shown yield that [M,N ] is evanescent

for all N ∈ cM` and in particular for all N ∈ cMb. Conversely, assume that [M,N ] is

evanescent for all N ∈ cMb. Let N ∈ cM`. By Lemma 1.4.4, there exists a localising

sequence (Tn) such that NTn ∈ cMb. We have [M,N ]Tn = [M,NTn ], which is zero, so we

conclude that [M,N ] is evanescent, and so M is evanescent by the results above.

Proof of (10). Note that the conclusion is well-defined, as 1FM is in cM` by Lemma

1.4.3. By the properties already proven for the quadratic covariation, it suffices to prove

that for any F ∈ F0 and M,N ∈ cM`, 1F [M,N ] = [1FM,N ]. However, we know that

MN − [M,N ] is in cM`, and so by Lemma 1.4.3, 1FMN − 1F [M,N ] is in cM`. Therefore,

by the characterisation of the quadratic covariation, 1F [M,N ] is the quadratic covariation

process of 1FM and N , meaning that 1F [M,N ] = [1FM,N ], as desired.

Lemma 1.4.10. Let M ∈ cM`. M ∈ cM2 if and only if [M ]∞ is integrable, and in the

affirmative, M2− [M ] ∈ cMu. If M and N are in cM2, then [M,N ] is in cVi, in particular

[M,N ]∞ exists and is integrable as well, and MN − [M,N ] ∈ cMu.

Proof. First assume M ∈ cM2. We know that M2 − [M ] ∈ cM`. Using Lemma 1.4.4, let

(Tn) be a localising sequence with (M2− [M ])Tn ∈ cMu. By the optional sampling theorem

and Theorem 1.3.1, E[M ]Tn = E[M ]Tn
∞ = E(MTn

∞ )2 = EM2
Tn
≤ 4EM2

∞, and then, as [M ] is

increasing, E[M ]∞ = E limn[M ]Tn
= limnE[M ]Tn

≤ 4EM2
∞ by the monotone convergence

theorem, so that [M ]∞ is integrable. Assume conversely that [M ]∞ is integrable. Let (Tn) be

a localising sequence with MTn ∈ cM2 and (M2− [M ])Tn ∈ cMu. Applying Theorem 1.3.1,

E sup0≤s≤Tn
M2
s = E((MTn)∗2∞) ≤ 4E(MTn

∞ )2 = 4E[M ]Tn
∞ = 4E[M ]Tn

. Using the monotone
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convergence theorem, we then obtain EM∗2∞ ≤ 4E[M ]∞, in particular supt≥0EM
2
t is finite

and so M ∈ cM2, as desired.

It remains to prove that in the case where [M ]∞ is integrable and M ∈ cM2, we have

M2 − [M ] ∈ cMu. We use Lemma 1.2.9. Note that clearly, M2 − [M ] is continuous with

initial value zero and convergent to an almost sure limit. Let T by any stopping time. As

[M ]∞ is integrable and M ∈ cM2, we know that M2
T − [M ]T is integrable as well, we need

to show that E(M2
T − [M ]T ) is zero. To this end, let (Tn) be a localising sequence such that

(M2 − [M ])Tn ∈ cMu. We then obtain

E[M ]T = E lim
n

[M ]T∧Tn
= lim

n
E[M ]Tn

T = lim
n
E(M2

T )Tn = lim
n
EM2

T∧Tn
.

Now, as (MT−MT∧Tn
)2 ≤ 4M∗2∞ , which is integrable by Theorem 1.3.1, and MT∧Tn

converges

almost surely to MT , we find that M2
T∧Tn

converges in L2 to M2
T , so that EM2

T∧Tn
tends to

EM2
T , finally allowing us to conclude that E[M ]T = EM2

T and so Lemma 1.2.9 shows that

M2 − [M ] ∈ cMu.

Finally, consider two elements M and N of cM2. As [M,N ] = 1
2 ([M +N ]− [M ]− [N ]), we

find by our previous results that [M,N ] is in cVi and that the limit [M,N ]∞ exists and is

integrable. Noting that MN−[M,N ] = 1
2 ((M+N)2−[M+N ])− 1

2 (M2−[M ])− 1
2 (N2−[N ]),

we find that that MN − [M,N ] is in cMu as a linear combination of elements in cMu.

Lemma 1.4.11. Let (Mn) be a sequence in cM` and let T be some stopping time. Then

(Mn)∗T
P−→ 0 if and only if [Mn]T

P−→ 0.

Proof. First note that (Mn)∗T = ((Mn)T )∗∞ and [Mn]T = [(Mn)T ]∞, so it suffices to prove

that (Mn)∗∞
P−→ 0 if and only if [Mn]∞

P−→ 0. First assume (Mn)∗∞
P−→ 0. Fix ε > 0, we

need to show limn P ([Mn]∞ > ε) = 0. To do so, we take δ > 0, and define the stopping

time Tn by putting Tn = inf{t ≥ 0 | |Mn
t | > δ}. We then have (Tn < ∞) = ((Mn)∗∞ > δ).

Markov’s inequality shows

P ([Mn]∞ > ε) = P ([Mn]∞ > ε, Tn <∞) + P ([Mn]∞ > ε, Tn =∞)

≤ P (Tn <∞) + P ([Mn]Tn
> ε)

≤ P ((Mn)∗∞ > δ) + 1
εE([Mn]Tn).

Now note that (Mn)Tn is bounded by δ, in particular it is in cM2, so by Lemma 1.4.10,

((Mn)Tn)2 − [(Mn)Tn ] is in cMu and so E[(Mn)Tn
] = E(Mn)2

Tn
≤ δ2. We now conclude

that for any δ > 0, P ([Mn]∞ > ε) ≤ P ((Mn)∗∞ > δ)+ 1
εδ

2, so lim supn P ([Mn]∞ > ε) ≤ 1
εδ

2,

and as δ > 0 was arbitrary, we conclude that [Mn]∞
P−→ 0, as desired. Consider the converse
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statement. We assume that [Mn]∞
P−→ 0 and we wish to prove (Mn)∗∞

P−→ 0. Let ε > 0.

As before, we fix δ > 0 and define Tn = inf{t ≥ 0 | [Mn]t > δ}, so that Tn is a stopping time

and (Tn <∞) = ([Mn]∞ > δ). We then use Chebychev’s inequality to see that

P ((Mn)∗∞ > ε) = P ((Mn)∗∞ > ε, Tn <∞) + P ((Mn)∗∞ > ε, Tn =∞)

≤ P (Tn <∞) + P ((Mn)∗Tn
> ε)

≤ P ([Mn]∞ > δ) + 1
ε2E(Mn)∗2Tn

.

Now, as [(Mn)Tn ]∞ ≤ δ, [(Mn)Tn ]∞ is in particular integrable, and so Lemma 1.4.10 shows

that (Mn)Tn is in cM2 and ((Mn)Tn)2−[(Mn)Tn ] is in cMu. Therefore, Theorem 1.3.1 yields

E(Mn)∗2Tn
= E((Mn)Tn)∗2∞ ≤ 4E((Mn)Tn)2 = 4E[(Mn)Tn ]∞ = 4E[Mn]Tn

, which is less than

4δ, so all in all, we find P ((Mn)∗∞ > ε) ≤ P ([Mn]∞ > δ) + 4
ε2 δ. Thus, we may now conclude

lim supn P ((Mn)∗∞ > ε) ≤ 4
ε2 δ, and as δ > 0 was arbitrary, we obtain (Mn)∗∞

P−→ 0.

We end the section with a proof of the Kunita-Watanabe inequality. Recall that integrals of

the form
∫ t

0
h(s)|dfs| denote integration with respect to the variation of f , see Appendix A.1

for the definition of the Lebesgue integral with respect to the variation of a mapping with

finite variation.

Theorem 1.4.12 (Kunita-Watanabe). Let M,N ∈ cM`, and let X and Y be measurable

processes. Then it almost surely holds that for all t ≥ 0,∫ ∞
0

|XtYt||d[M,N ]t| ≤
(∫ ∞

0

X2
t d[M ]t

) 1
2
(∫ ∞

0

Y 2
t d[N ]t

) 1
2

.

Proof. First note that the result is well-defined for each ω, as [M,N ], [M ] and [N ] have paths

of finite variation for each ω, and the mappings |XtYt|, X2
t and Y 2

t from R+ to R are Borel

measurable for each ω.

Applying Lemma A.1.11, it suffices to prove that we almost surely have the inequality

|[M,N ]t − [M,N ]s| ≤
√

[M ]t − [M ]s
√

[N ]t − [N ]s for all 0 ≤ s ≤ t. As the processes

are continuous, it suffices to prove the result almost surely for any pair of rational s and

t. Fix any such pair, by Lemma A.1.10 it suffices to prove that for all λ ∈ Q, we have the

inequality λ2([M ]t − [M ]s) + 2λ([M,N ]t − [M,N ]s) + [N ]t − [N ]s ≥ 0. Thus, we need to

prove that this inequality holds almost surely for rational s, t and λ with 0 ≤ s ≤ t. To

this end, note that λ2[M ]s + 2λ[M,N ]s + [N ]s = [λM ]s + 2[λM,N ]s + [N ]s = [λM + N ]s,

and [λM + N ]s ≤ [λM + N ]t, so by performing the same calculations in reverse, we obtain

λ2[M ]s+2λ[M,N ]s+[N ]s ≤ λ2[M ]t+2λ[M,N ]t+[N ]t, yielding the desired conclusion. The

theorem now follows from Lemma A.1.11.
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1.5 Exercises

Exercise 1.1. Let S and T be two stopping times. Show that FS∨T = σ(FS ,FT ).

Exercise 1.2. Let X be a continuous and adapted stochastic process, and let a ∈ R. Put

T = inf{t ≥ 0 | Xt = a}. Prove that T is a stopping time and that XT = a whenever

T <∞.

Exercise 1.3. Let T be exponentially distributed and let Xt = 1(t≥T ). Argue that X does

not have continuous sample paths, but for any t ≥ 0, it holds that whenever (tn) tends to t,

Xtn
P−→ Xt for p ≥ 1.

Exercise 1.4. Let f : R+ → R be some mapping. A point t is said to be a local maximum

for f if there exists ε > 0 such that f(t) = sup{f(s) | s ∈ R+, |t − s| ≤ ε}. Let X be

a continuous process, let t ≥ 0 and define F = (t is a local maximum for X). Show that

F ∈ Ft.

Exercise 1.5. Let (Tn) be a decreasing sequence of stopping times with limit T . Show that

T is a stopping time and that FT = ∩∞n=1FTn
.

Exercise 1.6. Assume that M is a continuous martingale with respect to the filtration (Ft).
Consider a filtration (Gt) such that Gt ⊆ Ft and such that M is also adapted to (Gt). Show

that M is a continuous martingale with respect to (Gt).

Exercise 1.7. Let Z be a uniformly integrable continuous supermartingale. Show that Z is

continuous in L1, in the sense that the mapping t 7→ Zt from R+ to L1 is continuous.

Exercise 1.8. Let M ∈ cMb and let M∞ be the limit of Mt almost surely and in L1. With

c ≥ 0 denoting a bound for M , show that E|Mt −M∞| ≤ 4c supF∈F∞ infG∈Ft
P (G∆F ),

where the symmetric difference G∆F is defined by putting G∆F = (G ∩ F c) ∪ (F ∩Gc).

Exercise 1.9. Let M ∈ cM`. Show that M ∈ cMu if and only if (MT )T∈C is uniformly

integrable, where C = {T |T is a bounded stopping time}.

Exercise 1.10. Let M ∈ cM` and let S ≤ T be two stopping times. Show that if the

equality [M ]S = [M ]T holds almost surely, then MT = MS almost surely.
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Exercise 1.11. Assume that X is a continuous adapted process with initial value zero and

that S and T are stopping times. Show that if XT and XS are in cMu, then XS∧T and

XS∨T are in cMu as well.

Exercise 1.12. Let W be a one-dimensional Ft Brownian motion. Put Mt = W 2
t − t. Show

that M is not uniformly integrable.

Exercise 1.13. Let W be a one-dimensional Ft Brownian motion. Let t ≥ 0 and define

tnk = kt2−n for k ≤ 2n. Show that
∑2n

k=1(Wtnk
−Wtnk−1

)2 converges in L2 to t. Conclude that∑2n

k=1Wtnk−1
(Wtnk

−Wtnk−1
)

P−→ 1
2W

2
t − 1

2 t and
∑2n

k=1Wtnk
(Wtnk

−Wtnk−1
)

P−→ 1
2W

2
t + 1

2 t as n

tends to infinity.

Exercise 1.14. Let W be a one-dimensional Ft Brownian motion. Let a, b > 0 and define

T = inf{t ≥ 0 |Wt = −a or Wt = b}. Show that T is a stopping time. Find the distribution

of WT . Show that if a 6= b, it holds that WT and −WT have different distributions, while

they have the same quadratic variation processes.

Exercise 1.15. Let W be a one-dimensional Ft Brownian motion and let α ∈ R. Show that

the process Mα defined by Mα
t = exp(αWt − 1

2α
2t) is a martingale. Let a ∈ R and define

T = inf{t ≥ 0 |Wt = a}. Show that for any β ≥ 0, E exp(−βT ) = exp(−|a|
√

2β).

Exercise 1.16. LetW be a one-dimensional Ft Brownian motion. Show by direct calculation

that the processes W 3
t − 3tWt and W 4

t − 6tW 2
t + 3t2 are in cM.

Exercise 1.17. Let W be a one-dimensional Ft Brownian motion and define T by putting

T = inf{t ≥ 0 | Wt ≥ a+ bt}. Show that T is a stopping time and that for a > 0 and b > 0,

it holds that P (T <∞) = exp(−2ab).

Exercise 1.18. Let W be a one-dimensional Ft Brownian motion. Let a > 0 and define

T = inf{t ≥ 0 |W 2
t ≥ a(1− t)}. Show that T is a stopping time. Find ET and ET 2.

Exercise 1.19. Let W be a one-dimensional Ft Brownian motion, and let p > 1
2 . Show that

1
np sup0≤s≤n |Ws|

P−→ 0.



Chapter 2

Stochastic integration

In this chapter, we define the stochastic integral and prove its basic properties. We define the

stochastic integral with respect to continuous semimartingales, which are sums of continuous

local martingales and continuous processes with paths of finite variation.

Section 2.1 concerns itself with the introduction of continuous semimartingales and their ba-

sic properties. In Section 2.2, we perform the construction of the stochastic integral. This

is done by a separate construction for continuous local martingales and continuous finite

variation processes. For the integral with respect to continuous finite variation processes, the

construction is pathwise and the main difficulty is ensuring the proper measurability prop-

erties of the resulting process. For the integral with respect to continuous local martingales,

the integral cannot be defined pathwise as in ordinary measure theory, since in general, con-

tinuous local martingales do not have paths of finite variation. The construction is instead

made in a rather abstract fashion. In Section 2.3, however, we show that the integral may

also be obtained as a limit in probability, demonstrating that the integral is the limit of a

sequence of Riemann sums in a particular sense. In this section, we also develop a few of

the general properties of the stochastic integral, ending with the proof of Itô’s formula, the

stochastic version of the fundamental theorem of analysis.

In Section 2.4, we discuss extensions of the theory and literature for further reading.
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2.1 Continuous semimartingales

In this section, we introduce continuous semimartingales and consider their basic properties.

Definition 2.1.1. A stochastic process X is said to be a continuous semimartingale if it

can be decomposed as X = X0 +M +A, where X0 is an F0 measurable variable, M ∈ cM`

and A ∈ cV, that is, M is a continuous local martingale with initial value zero, and A is

continuous and adapted with finite variation and initial value zero. The space of continuous

semimartingales is denoted by cS.

Note that contrarily to most of our previous definitions, we allow semimartingales to have a

nonzero initial value. In general, most issues regarding local martingales with nonzero initial

value can easily be reduced to the case with initial zero value by simple subtraction. In

contrast, there are many semimartingales whose properties are quite essentially related to

their initial values, for example exponential martingales, or stationary solutions to stochastic

differential equations. We could have chosen to include the constant as a nonzero initial value

for the martingale or the finite variation parts, but this would introduce cumbersome issues

regarding compatibility with previous results.

The following result shows that the decomposition in the definition of a continuous semi-

martingale is unique up to indistinguishability.

Lemma 2.1.2. Let X ∈ cS. If X = Z0 +M+A and X = Y0 +N+B are two decompositions

of X, where Z0 and Y0 are F0 measurable, M and N are in cM` and A and B are in

cV, it holds that X0 and Y0 are equal, M and N are indistinguishable and A and B are

indistinguishable.

Proof. We have Z0 = X0 = Y0, proving the first part of the uniqueness. We then find that

M +A = N +B, so that M −N = B−A. Therefore, M −N and B−A are both continuous

local martingales with initial value zero and with paths of finite variation. Lemma 1.4.5 then

shows that M and N are indistinguishable and that A and B are indistinguishable.

In the sequel, for any X ∈ cS, we will refer to the decomposition X = X0 + M + A where

X0 is F0 measurable, M ∈ cM` and A ∈ cV, as the decomposition of X. By Lemma 2.1.2,

the variable X0 and the processes M and A in the decomposition are almosts surely unique.

Lemma 2.1.3. Let T be a stopping time. If A is in cA, cAi, cV, or cVi, then the same

holds for AT .
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Proof. If A ∈ cA, then AT remains continuous, adapted and increasing, so AT ∈ cA as well.

If A ∈ cV, AT remains continuous, adapted and with paths of finite variation, so A ∈ cV.

If A ∈ cAi, we have EAT∞ = EAT ≤ EA∞, so that AT is continuous, adapted, increasing

and integrable, thus AT ∈ cAi. If A ∈ cVi, we have VAT = (VA)T by Lemma 1.2.11, so

that we obtain E(VAT )∞ = E(VA)T∞ = E(VA)T ≤ E(VA)∞. Thus, (VAT )∞ is integrable and

A ∈ cVi.

Lemma 2.1.4. Let X be a continuous semimartingale and let T be a stopping time. Then

XT is a continuous semimartingale as well.

Proof. This follows immediately from Lemma 2.1.3 and Lemma 1.2.8.

Lemma 2.1.5. Let X be a continuous semimartingale and let F ∈ F0. Then 1FX is a

continuous semimartingale as well.

Proof. Let X = X0 +M +A be the decomposition of X. We claim that 1FX is a continuous

semimartingale with decomposition X = 1FX0 + 1FM + 1FA. We have that 1FX0 is F0

measurable. By Lemma 1.4.3, 1FM is in cM`. 1FA is continuous with paths of finite

variation, and as it is also adapted, we obtain 1FA ∈ cV. Thus, 1FX ∈ cS.

Lemma 2.1.6. Let X be a continuous semimartingale. There exists a localising sequence

(Tn) such that XTn = X0 + MTn + ATn , where MTn ∈ cMb and ATn is an element of cV
with VATn bounded.

Proof. Let X = X0 +M+A be the decomposition of X into its initial, continuous martingale

and continuous finite variation parts. By Lemma 1.4.4, we know that there is a localising

sequence (Sn) such that MSn is in cMb. Also, putting Un = inf{t ≥ 0 | (VA)t > n}, we know

by by Lemma 1.1.11 that (Un) is a localising sequence, and V Un

A is bounded. By Lemma

1.4.2, we may put Tn = Sn ∧Un and obtain that (Tn) is a localising sequence. Furthermore,

as MTn = (MSn)Un , we find that MTn is in cMb. Also, ATn is in cV by Lemma 2.1.3, and

as VATn = V Tn

A = (V Un

A )Sn , we have that VATn is bounded. As XTn∧Sn = X0 +MTn +ATn ,

the result follows.

Next, we introduce the quadratic variation and quadratic covariation processes for semi-

martingales.
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Definition 2.1.7. Let X ∈ cS with decomposition X = X0+M+A. We define the quadratic

variation process of X as [X] = [M ]. If Y is another semimartingale with decomposition

Y = Y0 +N +B, we define the quadratic covariation process of X and Y as [X,Y ] = [M,N ].

Note that from the uniqueness of the decomposition of continuous semimartingales given in

Lemma 2.1.2, Definition 2.1.7 is well-formed. The following lemma is the semimartingale

analogoue of Lemma 1.4.9.

Lemma 2.1.8. Let X and Y be continuous semimartingales, and let T be any stopping time.

The quadratic covariation satisfies the following properties.

1. [X,X] = [X].

2. [·, ·] is symmetric and linear in both of its arguments.

3. For any α ∈ R, [αX] = α2[X].

4. [X + Y ] = [X] + 2[X,Y ] + [Y ].

5. [X,Y ]T = [XT , Y ] = [X,Y T ] = [XT , Y T ].

6. If F ∈ F0, 1F [X,Y ] = [1FX,Y ] = [X, 1FY ] = [1FX, 1FY ].

7. With A,B ∈ cV, [X +A, Y +B] = [X,Y ].

Proof. These results follow immediately from Lemma 1.4.9, with the exception of the last

property, which follows as X and X + A have the same continuous martingale part, and so

does Y and Y +B.

2.2 Construction of the stochastic integral

In this section, we define the stochastic integral and consider its basic properties. In general,

we will define the stochastic integral with respect to all processes X ∈ cS. For any X ∈ cS,

there exists an almost surely unique decomposition X = X0 + M + A, where M ∈ cM`

and A ∈ cV. Given a stochastic process H satisfying suitable measurability and integrability

conditions, we will define the integrals
∫ t

0
Hs dMs and

∫ t
0
Hs dAs separately.
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We first consider the finite variation case. With A ∈ cV, we may use the results from

Appendix A.1, in particular the correspondence between functions of finite variation and

pairs of positive singular measures, to define the integral with respect to A. However, in order

to obtain a useful integral, we need to ensure that the integral satisfies certain measurability

properties. With A ∈ cV and, say, H a bounded measurable process, we may always define

a process H ·A by putting (H ·A)t(ω) =
∫ t

0
Hs(ω) dA(ω)s, where the integral is defined as in

Appendix A.1. While H ·A thus defined will always have continuous paths of finite variation

and initial value zero, we have no guarantee that it will be adapted, and adaptedness will be

necessary for the integral to be useful in practice.

Thus, the difficulty in defining the stochastic integral with respect to processes A ∈ cV is to

identify what requirements on H are necessary to ensure that the resulting integral becomes

adapted. Theorem 2.2.1 shows how to solve this problem. Recall from Appendix A.1 that for

a mapping f of finite variation on R+ and a measurable function h : R+ → R, we say that

h is integrable with respect to f if
∫ t

0
|h(s)||dfs| is finite for all t ≥ 0, where

∫ t
0
|h(s)|| dfs|

denotes the integral of |h| over [0, t] with respect to the total variation measure of f .

Theorem 2.2.1. Let A ∈ cV and assume that H is progressive and that almost surely, H is

integrable with respect to A. There is a process H ·A ∈ cV, unique up to indistinguishability,

such that almost surely, (H ·A)t is the Lebesgue integral of H with respect to A over [0, t] for

all t ≥ 0. If H is nonnegative and A ∈ cA, then H ·A ∈ cA.

Proof. First note that as the requirements on H · A define the process pathwisely almost

surely, H ·A is clearly unique up to indistinguishability. As for existence, we prove the result

in three steps, first considering bounded A in cA, then general A in cA and finally the case

where we merely assume A ∈ cV.

Step 1. The case A ∈ cA, A bounded. First assume that A ∈ cA and that A is bounded.

Let F be the null set such that when ω ∈ F , H(ω) is not integrable with respect to A(ω).

By our assumptions on the filtration, F ∈ Ft for all t ≥ 0, in particular we obtain that

{(s, ω) ∈ [0, t] × Ω | 1F (ω) = 1} = [0, t] × F ∈ Bt ⊗ Ft, and so the process (t, ω) 7→ 1F (ω)

is progressive. Therefore, the process (t, ω) 7→ 1F c(ω) is progressive as well. Thus, defining

K = H1F c , K is progressive, and K(ω) is integrable with respect to A(ω) for all ω. We may

then define a process Y by putting Yt(ω) =
∫ t

0
Ks(ω) dA(ω)s. We claim that Y satisfies the

properties required of the process H ·A in the statement of the lemma. Clearly, Yt is almost

surely the Lebesgue integral of H with respect to A over [0, t] for all t ≥ 0, it remains to

prove Y ∈ cV. As Y is a pathwise Lebesgue integral with respect to a nonnegative measure,

Y is has finite variation. We would like to prove that Y is continuous. As Y is zero on F , it
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suffices to show that Y is continuous on F c. Let ω ∈ F c and let t ≥ 0. For h ≥ 0, we obtain

by Lemma A.1.7 that

|Yt+h(ω)− Yt(ω)| =

∣∣∣∣∣
∫ t+h

t

Hs(ω) dA(ω)s

∣∣∣∣∣ ≤
∫ t+h

t

|Hs(ω)||dA(ω)|s.

Since A(ω) accords zero measure to one-point sets, we may then apply the dominated con-

vergence theorem with dominating function s 7→ |Hs(ω)|1[t,t+ε](s) for some ε > 0 to obtain

lim
h→0
|Yt+h(ω)− Yt(ω)| ≤ lim

h→0

∫ t+h

t

|Hs(ω)||dA(ω)|s =

∫
|Ht(ω)1{t}||dA(ω)|s = 0,

showing that Y (ω) is right-continuous at t. Analogously, we find that Y (ω) is left-continuous

at t for any t > 0, and so Y (ω) is continuous. This proves that Y has continuous paths.

Furthermore, by construction, Y has initial value zero. Therefore, it only remains to prove

that Y is adapted, meaning that Yt is Ft measurable for all t ≥ 0.

This is clearly the case for t equal to zero, therefore, assume that t > 0. Let µtA(ω) be the

restriction to Bt of the nonnegative measure induced by A(ω) according to Theorem A.1.5.

We will show that (µtA(ω))ω∈Ω is an (Ω,Ft) Markov kernel on ([0, t],Bt) in the sense that for

any B ∈ Bt, ω 7→ µtA(ω)(B) is Ft measurable. The family of B ∈ Bt for which this holds is a

Dynkin class, and by Lemma A.1.19, it will therefore suffice to show the claim for intervals

in [0, t]. Let 0 ≤ a ≤ b ≤ t. Then µtA(ω)[a, b] = Ab(ω)−Aa(ω), and by the adaptedness of A,

this is Ft measurable. Therefore, (µtA(ω))ω∈Ω is an (Ω,Ft) Markov kernel on ([0, t],B[0, t]).

Now, as K is progressive, the restriction of K to [0, t] × Ω is Bt ⊗ Ft measurable. Theorem

A.1.13 then yields that the integral
∫ t

0
Ks(ω) dA(ω)s is Ft measurable, proving that Yt is

adapted. Finally, we conclude that Y ∈ cA.

Step 2. The case A ∈ cA. We now consider the case where A ∈ cA. By Lemma 1.1.11,

there exists a localising sequence (Tn) such that ATn is in cA and is bounded, and so, by what

was already shown, there exists a process H ·ATn in cV such that almost surely, (H ·ATn)t

is the integral of H with respect to ATn over [0, t] for all t ≥ 0. Let F be the null set such

that on F c, Tn converges to infinity, H is integrable with respect to A and (H · ATn)t is

the integral of H with respect to ATn over [0, t] for all t ≥ 0 and all n. As before, we put

K = H1F c and conclude that K is progressive, and defining Yt =
∫ t

0
Ks dAs, we find that

Yt is almost surely the Lebesgue integral of H with respect to A over [0, t] for all t ≥ 0.

Furthermore, whenever ω ∈ F c, we have

Yt =

∫ t

0

Hs dAs = lim
n→∞

∫ t∧Tn

0

Hs dAs = lim
n→∞

∫ t

0

Hs dATn
s = lim

n→∞
(H ·ATn)t,

where the second equality follows from the dominated convergence theorem, as H is assumed

to be integrable with respect to A on F c. In particular, Yt is the almost sure limit of a
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sequence of Ft measurable variables. Therefore, Yt is itself Ft measurable. As Y is also

continuous, increasing and has initial value zero, we conclude that Y ∈ cV and so Y satisfies

the requirements of the process H ·A in the theorem.

Step 3. The case A ∈ cV. Finally, assume that A ∈ cV. Using Theorem A.1.5, we

know that by putting A+
t = 1

2 ((VA)t + At) and A−t = 1
2 ((VA)t + At), H is almost surely

integrable with respect to A+ and A−. Also by Theorem A.1.5, A+ and A− are increasing

with paths in cFV0. By Lemma A.1.9, we find that VA is adapted and so A+ and A− are

both adapted. Thus, A+ and A− are in cA. Therefore, by what was already shown, there

are processes H ·A+ and H ·A− in cV such that almost surely, these processes at time t are

the Lebesgue integrals of H with respect to A+ and A− over [0, t] for all t ≥ 0. The process

H ·A = H ·A+ −H ·A− then satisfies the requirements of the theorem.

Theorem 2.2.1 shows that given a progressively measurable process H and A ∈ cV such that

H is almost surely integrable with respect to A, we may define the integral pathwisely in

such a manner as to obtain a process H ·A ∈ cV, where it holds for almost all ω that for any

t ≥ 0, (H · A)t(ω) =
∫ t

0
Hs(ω) dA(ω)s. The stochastic integral of H with respect to A thus

becomes another stochastic process.

Next, we consider defining the stochastic integral with respect to a continuous local martin-

gale. The following lemma motivates our definition. To formulate the lemma, and for our

later convenience, we first introduce the notion of stochastic intervals. Let S and T be two

stopping times. We then define the subset ]]S, T ]] of R+ × Ω by putting

]]S, T ]] = {(t, ω) ∈ R+ × Ω | S(ω) < t ≤ T (ω}.

We define [[S, T ]], ]]S, T [[ and [[S, T [[ in analogous manner as subsets of R+ × Ω. Note in

particular that even if T is infinite, the sets ]]S, T ]] and [[S, T ]] do not contain infinity. Also

note that by the properties of ordinary Lebesgue integration, if H = ξ1]]S,T ]] for ξ bounded

and FS measurable and S ≤ T two stopping times, we have H · A = ξ(AT − AS). The

following lemma shows that if we consider an analogous construction with A exchanged by

an element of cM`, we obtain another element of cM`.

Lemma 2.2.2. Let M ∈ cM`, let S ≤ T be stopping times, let ξ be bounded and FS
measurable, and let H = ξ1]]S,T ]]. Then H is progressive. Defining L = ξ(MT −MS), it holds

that L ∈ cM`, and for all N ∈ cM`, [L,N ] = H · [M,N ].

Proof. We first show that H is progressive. Note that for any A ∈ B with 0 /∈ A, it holds

that (Ht ∈ A) = (ξ ∈ A) ∩ (S < t) ∩ (t ≤ T ). By Lemma 1.1.13, (ξ ∈ A) ∩ (S < t) ∈ Ft, and
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as T is a stopping time, (t ≤ T ) = (T < t)c ∈ Ft by Lemma 1.1.7. Thus, H is adapted. As

it has left-continuous paths, Lemma 1.1.4 shows that it is progressive.

Next, we show that L ∈ cM`. First consider the case where M ∈ cM2. Fix any stopping

time U , we then find ELU = Eξ(MT
U −MS

U ) = EξE(MU
T −MU

S |FS) = 0 by Theorem 1.2.7, so

Lemma 1.2.9 shows that L ∈ cMu. In the case where M ∈ cM`, there is a localising sequence

(Tn) such that MTn ∈ cM2. Since we have the identity LTn = ξ((MTn)T − (MTn)S), we

conclude that LTn ∈ cM2 and so L ∈ cM`.

Next, we consider the quadratic covariation. Fix N ∈ cM`. Note that as H is bounded

and progressive, H · [M,N ] is a well-defined process in cV by Theorem 2.2.1. In order for

H · [M,N ] to be the quadratic covariation of [L,N ], we need to show that LN −H · [M,N ]

is in cM`. Consider the case where M,N ∈ cM2. We will use Lemma 1.2.9 to prove that

LN−H · [M,N ] ∈ cMu. Fix any stopping time U , we first prove that LUNU − (H · [M,N ])U

is well-defined and integrable. By what we already proved, L ∈ cM2, and so, by the Cauchy-

Schwartz inequality,

E|LUNU | ≤ (EL2
U )

1
2 (EN2

U )
1
2 ≤ (EL∗2∞)

1
2 (EN∗2∞ )

1
2 ,

which is finite by Theorem1.3.1. Thus, LUNU is integrable. As M and N are in cM2, Lemma

1.4.10 shows that [M,N ] is in cVi, and so in particular as H is bounded,
∫∞

0
|Hs||d[M,N ]s| is

integrable. Therefore, the integral of H with respect to [M,N ] over R+ is almost surely well-

defined, and
∫ U

0
|Hs||d[M,N ]s| is integrable. Lemma A.1.7 then shows that (H · [M,N ])U

is integrable. Thus, LUNU − (H · [M,N ])U is well-defined and integrable. Now, by Lemma

1.1.13, ξ1(S≤U) is FS∧U measurable, and so

ELUNU − (H · [M,N ])U

= Eξ(MT
U −MS

U )NU − Eξ([M,N ]TU − [M,N ]SU )

= Eξ1(S≤U)(M
T
U −MS

U )NU − Eξ1(S≤U)([M,N ]TU − [M,N ]SU )

= Eξ1(S≤U)(M
T
UNU − [M,N ]TU )− Eξ1(S≤U)(M

S
UNU − [M,N ]SU )

= Eξ1(S≤U)E(MT
UNU − [MT , N ]U |FS∧U )− Eξ1(S≤U)E(MS

UNU − [MS , N ]U |FS∧U )

= Eξ1(S≤U)(M
T
S∧UNS∧U − [MT , N ]S∧U )− Eξ1(S≤U)E(MS

S∧UNS∧U − [MS , N ]S∧U ),

which is zero. Therefore, by Lemma 1.2.9, LN −H · [M,N ] is a uniformly integrable martin-

gale. For the case of M,N ∈ cM`, we know from Lemma 1.4.4 that there exists a localising

sequence (Tn) such that MTn , NTn ∈ cM2. We have

(LN −H · [M,N ])Tn = ξ((MTn)T − (MTn)S)NTn −H · [MTn , NTn ],

where the latter is a uniformly integrable martingale by what we already have shown, so

LN −H · [M,N ] is in cM`. This proves the lemma.
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Lemma 2.2.2 shows that by defining the integral of a simple process of the form ξ1]]S,T ]] with

respect to M ∈ cM` in a manner corresponding to ordinary integrals, namely by putting

L = ξ(MT −MS) and interpreting Lt as the integral of ξ1]]S,T ]] over [0, t] with respect to

M , we obtain an element of cM` characterised by a simple quadratic covariation structure

in relation to other elements of cM`. We take this characterisation as our defining feature

of the stochastic integral with respect to integrators in cM`. We will later show that this

yields an integral which in certain cases may also be interpreted as a particular limit of

ordinary Riemann sums. The next theorem shows that under certain circumstances, it is

possible to construct an element of cM` with the desired covariation structure. This yields

the construction of the stochastic integral with respect to a continuous local martingale.

Theorem 2.2.3. Let M ∈ cM` and let H be progressive. There is L ∈ cM`, unique up to

evanescence, such that for all N ∈ cM`, H is almost surely integrable with respect to [M,N ]

and [L,N ] = H · [M,N ], if and only if H2 is almost surely integrable with respect to [M ].

In the affirmative case, we define L as the stochastic integral of H with respect to M , and

denote it by H ·M .

Proof. First assume that H2 is almost surely integrable with respect to [M ]. We need to

prove that H is integrable with respect to [M,N ] for all N ∈ cM`, and we need to prove

that there exists a process L ∈ cM`, unique up to evanescence, such that [L,N ] = H · [M,N ]

for all N ∈ cM`.

Fix N ∈ cM`. By the Kunita-Watanabe inequality of Theorem 1.4.12, it holds that∫ t

0

|Hs||d[M,N ]s| ≤
(∫ t

0

H2
s d[M ]s

) 1
2
(∫ t

0

d[N ]s

) 1
2

=

(∫ t

0

H2
s d[M ]s

) 1
2

[N ]
1
2
t

almost surely for all t ≥ 0. As the latter is finite almost surely, we find that H is almost

surely integrable with respect to [M,N ]. Next, we consider uniqueness of L. Assume that we

have two processes L,L′ ∈ cM` such that for all N ∈ cM`, it holds that [L,N ] = H · [M,N ]

and [L′, N ] = H · [M,N ]. Then [L − L′, N ] = 0 up to indistinguishability for all N ∈ cM`.

As L − L′ ∈ cM`, we in particular obtain that [L − L′] is evanescent, so by Lemma 1.4.9,

L− L′ is evanescent and thus L and L′ are indistinguishable. This proves uniqueness.

It remains to prove that there exists L ∈ cM` such that [L,N ] = H · [M,N ] for all N ∈ cM`.

Assume first that E(H2 · [M ])∞ is finite. In this case, the Kunita-Watanabe inequality of

Theorem 1.4.12 and the Cauchy-Schwartz inequality yields that for all N ∈ cM2,

E

∫ ∞
0

|Hs||d[M,N ]s| ≤ E
(∫ ∞

0

H2
s d[M ]s

) 1
2

([N ]∞)
1
2 ≤

(
E

∫ ∞
0

H2
s d[M ]s

) 1
2

(E[N ]∞)
1
2
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which is finite. Therefore, we can define ϕ : cM2 → R by putting ϕ(N) = E
∫∞

0
Hs d[M,N ]s.

Then ϕ is clearly linear, and by Lemma A.1.7, it holds that |ϕ(N)| ≤ (E
∫∞

0
H2
s d[M ]s)

2‖N‖2,

where the seminorm denotes the previously defined seminorm on cM2. Thus, ϕ is Lipschitz,

and therefore continuous. Theorem 1.3.5 then yields the existence of a process L ∈ cM2,

unique up to indistinguishability, such that ϕ(N) = EL∞N∞ for all N ∈ cM2. By Lemma

1.4.10, it holds for N ∈ cM2 that [L,N ] is integrable and LN − [L,N ] ∈ cMu, so we

obtain E[L,N ]∞ = EL∞N∞ = E
∫∞

0
Hs d[M,N ]s. Fixing N ∈ cM2 and letting T be some

stopping time, we have NT ∈ cM2 as well, and so

E[L,N ]T = E[L,NT ] = E

∫ ∞
0

Hs d[M,NT ]s = E

∫ ∞
0

Hs d[M,N ]Ts = E

∫ T

0

Hs d[M,N ]s,

so E([L,N ]T −
∫ T

0
Hs d[M,N ]s) = 0 for any stopping time T , therefore Lemma 1.2.9 shows

that [L,N ] − H · [M,N ] is in cMu. As [L,N ] − H · [M,N ] has paths of finite variation,

Lemma 1.4.5 yields [L,N ] = H · [M,N ] up to indistinguishability. We have now shown that

there is L ∈ cM2 such that [L,N ] = H · [M,N ] for any N ∈ cM2. In order to extend this

to N ∈ cM`, let N ∈ cM`. Using Lemma 1.4.4, let (Tn) be a localising sequence such that

NTn ∈ cM2. Then, [L,N ]Tn = [L,NTn ] = H · [M,NTn ] = H · [M,N ]Tn = (H · [M,N ])Tn

up to indistinguishability by Lemma 1.4.9, and as a consequence, [L,N ] = H · [M,N ] up

to indistinguishability, since Tn tends to infinity almost surely. We have now shown that

when H is progressive such that (H2 · [M ])∞ is integrable, there exists L ∈ cM` such that

[L,N ] = H · [M,N ] for any N ∈ cM`, and so existence is proven in this case.

Next, consider the case where we merely assume that H2 is integrable with respect to [M ].

As H2 · [M ] is in cA, there is then by Lemma 1.1.11 a localising sequence (Tn) such that

H2 · [MTn ] = (H2 · [M ])Tn ∈ cAi. By our previous results, there is a unique Ln ∈ cM`

such that for all N ∈ cM`, [Ln, N ] = H · [MTn , N ] = H · [M,N ]Tn = (H · [M,N ])Tn . We

then have [(Ln+1)Tn , N ] = [Ln+1, N ]Tn = ((H · [M,N ])Tn)Tn+1 = (H · [M,N ])Tn = [Ln, N ].

By uniqueness, (Ln+1)Tn = Ln. Therefore, the processes (Ln) may be pasted together to a

process L by defining Lt = Lnt whenever t ≤ Tn. In particular, LTn = (Ln)Tn , so L ∈ cM`

and we have the relation [L,N ]Tn = [LTn , N ] = [Ln, N ] = (H · [M,N ])Tn , showing that

[L,N ] = H · [M,N ] up to indistinguishability, as desired. This proves the existence in the

case where H2 is integrable with respect to [M ].

We have now shown that when H2 is integrable with respect to M , H is integrable with

respect to [M,N ] for all N ∈ cM`, and there is a process L ∈ cM`, unique up to evanescence,

such that [L,N ] = H ·[M,N ] for all N ∈ cM`. We also need to show the converse. Therefore,

assume that for all N ∈ cM`, H is almost surely integrable with respect to [M,N ] and there

is a process L ∈ cM` such that [L,N ] = H · [M,N ]. In this case, we in particular obtain that

[M,L] = [L,M ] = H · [M,M ] = H · [M ]. Therefore, our assumptions show that
∫ t

0
|Hs|d[M ]s
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and
∫ t

0
|Hs|d(H · [M ])s are finite. However, by the transformation theorem for integration

with respect to measures with densities, we have
∫ t

0
Hs d(H · [M ])s =

∫ t
0
H2
s d[M ]s, so H2 is

almost surely integrable with respect to [M ], as desired.

Theorem 2.2.3 yields the existence of a process H ·M for any M ∈ cM` and any progressive

H such that H2 is almost surely integrable with respect to [M ]. We call this process H ·M the

stochastic integral with respect to M . Combined with Theorem 2.2.1, we now have proved

the existence of integral processes with respect to both elements of cV and cM`. However,

the processes which may be integrated depend on the integrator. We would like to identify

a common set of integrands which may be integrated against any process in cV or cM`,

this will yield a set of integrands which may be integrated against any element of cS. The

following lemma shows how to obtain this.

Lemma 2.2.4. Assume that H is progressive and that there is a localising sequence (Tn)

such that HTn1(Tn>0) is bounded for all n. For any A ∈ cV, H is almost surely integrable

with respect to A, and for any M ∈ cM`, H
2 is almost surely integrable with respect to [M ].

Proof. First consider some A ∈ cV, we need to show that H is almost surely integrable with

respect to A. Fix t ≥ 0, and let ω be such that Tn(ω) > t from a point onwards, this is

almost surely the case as Tn almost surely tends to infinity. Fix n so large that Tn(ω) > t.

In particular, Tn(ω) > 0, and we find that for s ≤ t, Hs(ω) = (HTn1(Tn>0))s, so Hs(ω) is

bounded on [0, t], therefore integrable over [0, t] with respect to A(ω). Thus, H is almost

surely integrable with respect to A, as desired. By the same reasoning, we find that H2 is

almost surely integrable with respect to [M ].

We let I denote the set of all H such that H is progressive and there is a localising sequence

(Tn) with HTn1(Tn>0) bounded for all n. For H ∈ I, we know by Theorem 2.2.1 that for

any A ∈ cV, there exists a process H ·A ∈ cV which almost surely agrees with the pathwise

Lebesgue integral of H with respect to A, and by Theorem 2.2.3, we know that for any

M ∈ cM`, there exists a process L ∈ cM` such that for any N ∈ cM`, H is almost surely

integrable with respect to [M,N ] and [L,N ] = H · [M,N ]. These properties will allow us

to define the stochastic integral of any process H ∈ I with respect to any X ∈ cS. The

following lemma shows that the set I contains many useful processes.

Lemma 2.2.5. Let H be adapted and continuous. Then H ∈ I.

Proof. Put Tn = inf{t ≥ 0 | |Ht| > n}. As H is adapted and has continuous paths, (Tn)
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is a localising sequence. Pathwisely, if Tn = 0, HTn1(Tn>0) is zero, and if Tn > 0, HTn is

bounded by n. Thus, HTn1(Tn>0) is bounded by n, we conclude H ∈ I.

We are now ready to introduce the stochastic integral with respect to continuous semimartin-

gales and prove its basic properties.

Theorem 2.2.6 (Existence of the stochastic integral, continuous semimartingales). Consider

X ∈ cS and let H ∈ I. It holds that for any decomposition X = X0 + M + A of X, H2

is integrable with respect to [M ] and H is integrable with respect to A. Furthermore, there

is a process H ·X in cS, unique up to indistinguishability, such that for any decomposition

X = X0 +M +A, H ·X is indistinguishable from the process H ·M +H ·A. We call H ·X
the stochastic integral of H with respect to X.

Proof. Fix any decomposition X = X0 +M+A. From Lemma 2.2.4, H is almost surely inte-

grable with respect to A and H2 is almost surely integrable with respect to [M ]. Therefore,

by Theorem 2.2.1, H · A is well-defined as a pathwise Lebesgue integral, and by Theorem

2.2.3, H ·M is well-defined as well. Put Y = H ·M + H · A, we claim that Y satisfies the

criteria of the theorem. To see this, let X = Z0 + N + B be some another decomposition,

we need to prove that Y is indistinguishable from H ·N +H ·B. From what we just proved,

H ·N and H ·B are both well-defined. From Theorem 2.1.2, M and N are indistinguishable

and A and B are indistinguishable. In particular, [M,N ′] and [N,N ′] are indistinguishable

for all N ′ ∈ cM`, leading to that H ·M and H ·N are indistinguishable. And as A and B

are indistinguishable, H ·A and H ·B are indistinguishable. Therefore, Y is indistinguishable

from H ·N +H ·B. This proves existence. Uniqueness follows immediately.

Lemma 2.2.7. Let X,Y ∈ cS, let H,K ∈ I and let T be a stopping time. The following

properties for the stochastic integral hold up to indistinguishability.

1. I is a linear space, and H ·X is a linear mapping in both H and X.

2. H ·X is a continuous semimartingale with decomposition H ·X = H ·M +H ·A.

3. H1[[0,T ]] is in I and (H ·X)T = H1[[0,T ]] ·X = H ·XT .

4. It holds that HK ∈ I and K · (H ·X) = KH ·X.

5. We have [H ·X,Y ] = H · [X,Y ] and [H ·X] = H2 · [X].

6. If F ∈ F0, it holds that 1FH ∈ I, 1FX ∈ cS and (1FH) ·X = 1F (H ·X) = H · (1FX).
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7. If HT = KT , then (H ·X)T = (K ·X)T .

Proof. Proof of (1). Let α, β ∈ R. As H,K ∈ I, there are localising sequences (Tn) and

(Sn) such that HTn1(Tn>0) and KTn1(Sn>0) are bounded. Using Lemma 1.4.2, (Sn ∧ Tn) is

also a localising sequence, and we find that

(αH + βK)Sn∧Tn1(Sn∧Tn>0) = (αHSn∧Tn + βKSn∧Tn)1(Sn>0)1(Tn>0)

= α(HTn1(Tn>0))
Sn1(Sn>0) + β(KSn1(Sn>0))

Tn1(Tn>0),

and since HTn1(Tn>0) and KSn1(Sn>0) are bounded, this shows that αH + βK is in I. It

remains to prove that H ·X is linear in both the integrand H and the integrator X. We first

fix X with decomposition X = X0 +M +A and consider the integral as a mapping in H. We

commence by showing that (αH + βK) ·M = α(H ·M) + β(K ·M). By the characterisation

in Theorem 2.2.3, we need to show that [α(H ·M) + β(K ·M), N ] = (αH + βK) · [M,N ]

for any N ∈ cM`. Let N ∈ cM` be given, we then have, again using the characterisation in

Theorem 2.2.3,

[α(H ·M) + β(K ·M), N ] = α[H ·M,N ] + β[K ·M,N ]

= α(H · [M,N ]) + β(K · [M,N ])

= (αH + βK) · [M,N ],

as desired. As we have (αH + βK) · A = α(H · A) + β(H · A) when A ∈ cV by the

ordinary properties of Lebesgue integrals, this proves that the stochastic integral is linear in

the integrand. Next, we prove that it is linear in the integrator. Fix H ∈ I, we consider

X and Y in cS and wish to prove that H · (αX + βY ) = α(H · X) + β(H · Y ). Assume

that we have decompositions X = X0 + M + A and Y = Y0 + N + B. We first prove that

H · (αM + βN) = α(H ·M) + β(H ·N). Fixing any N ′ ∈ cM`, we have

[α(H ·M) + β(H ·N), N ′] = α[H ·M,N ′] + β[H ·N,N ′]

= α(H · [M,N ′]) + β(H · [N,N ′])

= H · [αM + βN,N ′],

so that α(H ·M)+β(H ·N) is the stochastic integral of H with respect to αM+βN . Therefore,

as αX + βY has continuous martingale part αM + βN and continuous finite variation part

αA+βB, we obtain using what was just proven as well as the linearity properties of ordinary

Lebesgue integrals,

H · (αX + βY ) = H · (αM + βN) +H · (αA+ βB)

= α(H ·M) + β(H ·N) + α(H ·A) + β(H ·B)

= α(H ·X) + β(H · Y ),



50 Stochastic integration

as desired.

Proof of (2). This follows immediately from the construction of the integral.

Proof of (3). Assume that H ∈ I, we first show that H1[[0,T ]] is in I as well. Note that

as (t ≤ T ) = (T < t)c ∈ Ft, the process t 7→ 1[[0,T ]](t) is adapted and left-continuous, so by

1.1.4, this process is progressive, and therefore, H1[[0,T ]] is progressive. Let (Tn) be a localising

sequence such that HTn1(Tn>0) is bounded. Then (H1[[0,T ]])
Tn1(Tn>0) = HTn1(Tn>0)1[[0,T ]] is

bounded as well. We conclude that H1[[0,T ]] ∈ I, as desired. In order to prove the identities

for the stochastic integral, let X ∈ cS with decomposition X = X0 +M +A. We then have

(H ·A)Tt =

∫ T∧t

0

Hs dAs =

∫ t

0

(H1[[0,T ]])s dAs =

∫ t

0

Hs dATs ,

so that (H ·A)T = (H1[[0,T ]]) ·A = H ·AT . As regards the martingale part, let N ∈ cM`, then

[(H ·M)T , N ] = [H ·M,N ]T = (H · [M,N ])T . Therefore, [(H ·M)T , N ] = H1[[0,T ]] · [M,N ],

proving (H · M)T = H1[[0,T ]] · M , and [(H · M)T , N ] = H · [MT , N ], which shows that

(H ·M)T = H ·MT . Collecting our results for the continuous martingale and continuous

finite variation parts, the result follows.

Proof of (4). As H,K ∈ I, we know that there exists a localising sequence (Tn) such that

HTn1(Tn>0) and KTn1(Tn>0) are bounded. As (HK)Tn1(Tn>0) = HTn1(Tn>0)K
Tn1(Tn>0),

and HK is progressive, we conclude HK ∈ I. As regards the integral identity, assume that

X has decomposition X = X0 + M + A. By the properties of ordinary Lebesgue integrals,

K · (H ·A) = KH ·A. As regards the martingale parts, let N ∈ cM`, we then have

[K · (H ·M), N ] = K · [H ·M,N ]

= K · (H · [M,N ])

= KH · [M,N ],

which shows that K · (H ·M) satisfies the criterion for being the stochastic integral of KH

with respect to M , so K · (H ·M) = KH ·M . Collecting our results and using linearity of

the integral in the integrator, we find

K · (H ·X) = K · (H ·M +H ·A)

= K · (H ·M) +K · (H ·A)

= KH ·M +KH ·A

= KH ·X,

as desired.
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Proof of (5). Let X = X0 +M +A and Y = Y0 +M +A, as the martingale part of H ·X
is H ·M , we then find [H ·X,Y ] = [H ·M,N ] = H · [M,N ] = H · [X,Y ]. In particular, this

yields [H ·X] = [H ·X,H ·X] = H · [X,H ·X] = H · [H ·X,X] = H2 · [X].

Proof of (6). First note that 1FH ∈ I as 1F is progressive, and by Lemma 2.1.5, 1FX ∈ cS.

Let X = X0 + M + A. By the properties of ordinary Lebesgue integrals, we know that

(1FH) · A = 1F (H · A) = H · (1FA) up to indistinguishability. Therefore, it suffices to

prove (1FH) ·M = 1F (H ·M) = H · (1FM). By Lemma 1.4.3, all three processes are in

cM`. Therefore, it suffices to prove that their quadratic covariation with any N ∈ cM` are

equal. Let N ∈ cM`. By Theorem 2.2.3, [(1FH) ·M,N ] = 1FH · [M,N ] = 1F (H · [M,N ]),

while Lemma 1.4.9 shows that we have [1F (H ·M), N ] = 1F [H ·M,N ] = 1F (H · [M,N ])

and [H · 1FM,N ] = H · [1FM,N ] = H · 1F [M,N ] = 1F (H · [M,N ]). Thus, the quadratic

covariation with N is equal to 1F (H · [M,N ]) for all three processes, and so Lemma 1.4.9

shows that (1FH) ·M = 1F (H ·M) = H · (1FM), as desired.

Proof of (7). From what we already have shown, we find

(H ·X)T = H1[[0,T ]] ·X = HT 1[[0,T ]] ·X

= KT 1[[0,T ]] ·X = K1[[0,T ]] ·X = (K ·X)T ,

as desired.

Lemma 2.2.8. Let X ∈ cS, let S ≤ T be stopping times and let ξ be bounded and FS
measurable. If H = ξ1]]S,T ]], then H ∈ I and H ·X = ξ(XT −XS). If H = ξ1[[S]], then H ∈ I

and H ·X is evanescent. In particular, the integrals of ξ1]]S,T ]], ξ1[[S,T ]], ξ1]]S,T [[ and ξ1[[S,T [[

are indistinguishable.

Proof. With H = ξ1]]S,T ]], we find by Lemma 2.2.2 that H is progressive. As it is also

bounded, we obtain H ∈ I, and Lemma 2.2.2 also yields H ·M = ξ(MT −MS). Using the

properties of ordinary Lebesgue integrals, we furthermore have H · A = ξ(AT − AS), and

therefore H ·X = ξ(XT −XS). This proves the first claim.

Next, consider H = ξ1[[S]]. As H = ξ1[[S,∞[[−ξ1]]S,∞[[, and both of these processes are adapted

and either left-continuous or right-continuous, Lemma 1.1.4 shows that H is progressive. As

H is also bounded, H ∈ I. For any N ∈ cM`, H ·[M,N ] is evanescent as [M,N ] is continuous

and therefore accords zero measure to one-point sets. Therefore, H ·M is evanescent. As A

is continuous, the measures induced by the paths of A also accord zero measure to one-point

sets, and so H · A is evanescent, leading us to conclude that H · X is evanescent. By the

linearity properties of the integral shown in Lemma 2.2.7, the final claims follow.
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This concludes the construction of the stochatic integral and the proofs of its basic properties.

In the following section, we will consider some more advanced properties.

2.3 Itô’s formula

In this section, we prove some results for stochastic integrals which are of fundamental

importance: the dominated convergence theorem for stochastic integrals, the characterisation

of stochastic integrals and the quadratic covariation as particular limits, and Itô’s formula,

which is the stochastic version of the fundamental theorem of analysis.

Theorem 2.3.1 (Dominated convergence theorem). Let X be a continuous semimartingale

and let t ≥ 0 be some constant. Assume that (Hn) is a sequence of progressive processes and

that H is another progressive process. If it almost surely holds that Hn converges pointwise

to H on [[0, t]] and |Hn| and |H| are bounded by K ∈ I on [[0, t]], then Hn and H are in I as

well, and

sup
s≤t
|(Hn ·X)s − (H ·X)s|

P−→ 0.

Proof. First note that Hn and H are in I as well, as the same localising sequence of stopping

times (Tn) which ensures that KTn1(Tn>0) is bounded also works for Hn and H.

As regards the convergence result, we first prove the result in the case where K ≤ c for some

constant c > 0, in which case Hn and H are bounded by c as well. Let X = X0 +M +A be

the decomposition of X. Using Lemma A.1.7, we then have

sup
s≤t
|(Hn ·X)s − (H ·X)s| ≤ sup

s≤t
|(Hn ·M)s − (H ·M)s|+ sup

s≤t
|(Hn ·A)s − (H ·A)s|

≤ ((Hn −H) ·M)∗t + sup
s≤t

∫ t

0

|Hn
s −Hs||dAs|

= ((Hn −H) ·M)∗t + ((Hn −H) · VA)t,

and so it will suffice to show that each of the two latter terms converge in probability to zero.

Considering the last of the two terms, we note that as it almost surely holds that Hn
s tends

pointwise to Hs for s ≤ t and is bounded by a constant, the dominated convergence theorem

applied pathwise yields that ((Hn −H) · VA)t tends almost surely to zero, in particular the

convergence holds in probability. As for the martingale part, another application of the

dominated convergence theorem yields limn[(Hn −H) ·M ]t = limn

∫ t
0
(Hn

s −Hs)
2 d[M ]s = 0

almost surely, so that in particular, we have convergence in probability. Lemma 1.4.11 then
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allows us to conclude that ((Hn − H) · M)∗t
P−→ 0 as well, finally allowing us to obtain

sups≤t |(Hn ·X)s − (H ·X)s|
P−→ 0, as desired.

Now consider the general case. Let (Tn) be a sequence such that KTn1(Tn>0) is bounded.

We may then use Lemma 2.2.7 to obtain

1(Tk>t) sup
s≤t
|(Hn ·X)s − (H ·X)s|

= sup
s≤t
|(Hn ·X)s − (H ·X)s|1(Tk>t) ≤ sup

s≤t
|(Hn ·X)Tk

s − (H ·X)Tk
s |1(Tk>0)

= sup
s≤t
|(Hn1(Tk>0)1[[0,Tk]] ·X)s − (H1(Tk>0)1[[0,Tk]] ·X)s|.

As Hn1(Tk>0)1[[0,Tk]] and H1(Tk>0)1[[0,Tk]] are in I and are bounded by the same constant as

KTk1(Tk>0), we find from our previous results that 1(Tk>t) sups≤t |(Hn · X)s − (H · X)s|
converges in probability to zero. As (Tk) tends almost surely to infinity, it holds that

limk P (Tk ≤ t) = 0 and so Lemma A.2.1 shows that sups≤t |(Hn · X)s − (H · X)s| tends

to zero in probability, as was to be proven.

Next, we prove limit characterisations of the stochastic integral and the quadratic covariation

which provide the integral interpretation of H ·X and the quadratic covariation interpretation

of [X,Y ]. We first introduce some notation. Fix t ≥ 0. We say that a finite increasing

sequence (t0, . . . , tK) with 0 = t0 ≤ · · · ≤ tK = t is a partition of [0, t]. We refer to

maxk≤K |tk − tk−1| as the mesh of the partition.

Theorem 2.3.2. Let X ∈ cS and let H be adapted and continuous. Let t ≥ 0 and assume

that (tnk )k≤Kn , n ≥ 1, is a sequence of partitions of [0, t] with mesh tending to zero. Then

Kn∑
k=1

Htnk−1
(Xtnk

−Xtnk−1
)

P−→ (H ·X)t.

Proof. First note that as H is adapted and continuous, H ∈ I by Lemma 2.2.5, and so the

stochastic integral is well-defined.

We define the sequence of processes Hn = Ht1[[t]] +
∑Kn

k=1Htnk−1
1[[tnk−1,t

n
k [[. Since H is contin-

uous and the mesh of the partitions converges to zero, we find that Hn converges pointwise

to H1[[0,t]]. Also note that as H is continuous and adapted, H∗ is also continuous and

adapted and so in I, and both Hn and H are bounded by H∗. By Lemma 2.2.8, we obtain∑Kn

k=1Htnk−1
(Xtnk

− Xtnk−1
) = (Hn · X)t, and by the dominated convergence theorem 2.3.1,

this converges to (H1[[0,t]] ·X)t = (H ·X)t in probability, as was to be proven.
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Theorem 2.3.3 (Integration-by-parts formula). Let X and Y be continuous semimartin-

gales. Let t ≥ 0 and assume that (tnk )k≤Kn
, n ≥ 1, is a sequence of partitions of [0, t] with

mesh tending to zero. Then

2n∑
k=1

(Xtnk
−Xtnk−1

)(Ytnk − Ytnk−1
)

P−→ [X,Y ]t,

and the identity XtYt = X0Y0 + (Y ·X)t + (X · Y )t + [X,Y ]t holds.

Proof. Our first step is to prove the two relations

Kn∑
k=1

(Xtnk
−Xtnk−1

)2 P−→ [X,X]t

X2
t = X2

0 + 2(X ·X)t + [X]t,

afterwards we will extend the result to the general case by a polarization argument. We first

consider the case of M ∈ cM`. Note that

M2
t =

Kn∑
k=1

(M2
tnk
−M2

tnk−1
) = 2

Kn∑
k=1

Mtnk−1
(Mtnk

−Mtnk−1
) +

Kn∑
k=1

(Mtnk
−Mtnk−1

)2,

and since M is continuous and adapted,
∑Kn

k=1Mtnk−1
(Mtnk

−Mtnk−1
)

P−→ (M ·M)t by Theorem

2.3.2, and therefore
∑Kn

k=1(Mtnk
−Mtnk−1

)2 P−→ M2
t − 2(M ·M)t. We wish to argue that the

process M2 − 2(M ·M) is almost surely increasing. To this end, let 0 ≤ p ≤ q be two dyadic

rationals. There exists j ≥ 1 and naturals np ≤ nq such that p = np2
−j and q = nq2

−j .

Consider the particular partitions of [0, p] and [0, q] given by putting pnk = k2−(n+j) for

k ≤ np2
n and qnk = k2−(n+j) for k ≤ nq2

n, respectively. Using Lemma A.2.2 and the

convergence result just proven, we then obtain

M2
p − 2(M ·M)p = lim

n

np2n∑
k=1

(Mpnk
−Mpnk−1

)2 ≤ lim
n

nq2n∑
k=1

(Mqnk
−Mqnk−1

)2 = M2
q − 2(M ·M)q,

almost surely, where the limits are in probability. As D+ is countable and dense in R+, we

conclude that M2−2(M ·M) is almost surely increasing. By picking a particular modification

of M ·M , we may assume that M2−2(M ·M) has sample paths which are all increasing. By

definition, M2− [M ] is in cM`. As M ·M is also in cM`, we find that M2−2(M ·M)− [M ]

is a process in cM` which has paths of finite variation. By Lemma 1.2.12, the process

is then evanescent, and we conclude that M2 = 2(M · M) + [M ] up to evanescence. As

a consequence,
∑Kn

k=1(Mtnk
− Mtnk−1

)2 P−→ [M ]t. This shows the results in the case of a
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continuous local martingale. Next, we consider the case X = X0 +M +A, where M ∈ cM`

and A ∈ cV. We first note that∣∣∣∣∣
Kn∑
k=1

(Mtnk
−Mtnk−1

)(Atnk −Atnk−1
)

∣∣∣∣∣ ≤ max
1≤k≤Kn

|Mtnk
−Mtnk−1

|
Kn∑
k=1

|Atnk −Atnk−1
|

≤ (VA)t max
1≤k≤Kn

|Mtnk
−Mtnk−1

|,

and as M has sample paths which are uniformly continuous on [0, t], the latter tends almost

surely to zero, allowing us to conclude
∑Kn

k=1(Mtnk
−Mtnk−1

)(Atnk −Atnk−1
)

P−→ 0. Analogously,

we may argue that
∑Kn

k=1(Atnk−Atnk−1
)2 P−→ 0. Combining our results and recalling [X] = [M ],

we obtain
∑Kn

k=1(Xtnk
−Xtnk−1

)2 =
∑Kn

k=1(Mtnk
−Mtnk−1

+Atnk −Atnk−1
)2 P−→ [X]t. In order to

obtain the integration-by-parts formula from this, we note that

X2
t = X2

0 +

2n∑
k=1

(X2
tnk
−X2

tnk−1
) = X2

0 + 2

2n∑
k=1

Xtnk−1
(Xtnk

−Xtnk−1
) +

2n∑
k=1

(Xtnk
−Xtnk−1

)2,

and we now know that the former term converges in probability to 2(X ·X)t and the latter

term converges in probability to [X]t, so we concludeX2
t = X2

0 +2(X ·X)t+[X]t. We have now

proven both the convergence result for the quadratic variation as well as the integration-by-

parts formula. It remains to prove the same results for a pair of continuous semimartingales

X and Y . Consider first the convergence to the quadratic covariation. Define two processes

Z = X + Y and W = X − Y , we then have Z +W = 2X and Z −W = 2Y , yielding

(Ztnk − Ztnk−1
)2 − (Wtnk

−Wtnk−1
)2 = (2Xtnk

− 2Xtnk−1
)(2Ytnk − 2Ytnk−1

)

= 4(Xtnk
−Xtnk−1

)(Ytnk − Ytnk−1
),

and we know from our previous results that
∑Kn

k=1(Ztnk −Ztnk−1
)2 converges in probability to

[Z]t and that
∑Kn

k=1(Wtnk
−Wtnk−1

)2 converges in probability to [W ]t. By Lemma 1.4.9, we

have [Z]t − [W ]t = [X + Y ]t − [X − Y ]t = 4[X,Y ]t almost surely, so collecting our results,

we finally conclude
∑Kn

k=1(Xtnk
− Xtnk−1

)(Ytnk − Ytnk−1
)

P−→ [X,Y ]t, as desired. Analogously,

we find

4XtYt = Z2
t −W 2

t

= Z2
0 −W 2

0 + 2(Z · Z)t − 2(W ·W ) + [Z]t − [W ]t

= 4X0Y0 + 2((X + Y ) · (X + Y ))t − 2((X − Y ) · (X − Y ))t + 4[X,Y ]t

= 4X0Y0 + 4(X · Y )t + 4(Y ·X)t + 4[X,Y ]t,

yielding the integration-by-parts formula in the general case. This concludes the proof.
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Lemma 2.3.4. Let X and Y be continuous semimartingales and let H be adapted and

continuous. Let t ≥ 0 and assume that (tnk )k≤Kn
, n ≥ 1, is a sequence of partitions of [0, t]

with mesh tending to zero. Then

2n∑
k=1

Htnk−1
(Xtnk

−Xtnk−1
)(Ytnk − Ytnk−1

)
P−→ (H · [X,Y ])t.

Proof. As in the proof of Theorem 2.3.3, by polarization, it will suffice to consider a single

semimartingale X and prove
∑Kn

k=1Htnk−1
(Xtnk

−Xtnk−1
)2 P−→ (H · [X])t. Also note that we

may assume without loss of generality that X has initial value zero. To prove the result

in this case, note that from Theorem 2.3.3, [X]t = X2
t − 2(X− ·X)t, so that using Lemma

2.2.7, we find H · [X] = H ·X2 − 2H · (X ·X) = H ·X2 − 2HX ·X, where X2 ∈ cS since

X2 = X0 + 2(X ·X) + [X]. On the other hand,

Kn∑
k=1

Htnk−1
(Xtnk

−Xtnk−1
)2 =

Kn∑
k=1

Htnk−1
(X2

tnk
−X2

tnk−1
)− 2

Kn∑
k=1

Htnk−1
Xtnk−1

(Xtnk
−Xtnk−1

),

so that two applications of Theorem 2.3.2 immediately yield the result.

We are now ready to prove Itô’s formula. We denote by C2(Rp) the set of mappings

f : Rp → R such that all second-order partial derivatives of f exist and are continuous.

Furthermore, for any open set U in Rp, we denote by C2(U) the set of mappings f : U → R
with the same property. We say that a process X with values in Rp is a p-dimensional con-

tinuous semimartingale if each of its coordinate processes Xi, where Xt = (X1
t , . . . , X

p
t ), is

a continuous semimartingale.

Theorem 2.3.5 (Itô’s formula). Let X be a p-dimensional continuous semimartingale and

let f : Rp → R be C2. Then

f(Xt) = f(X0) +

p∑
i=1

∫ t

0

∂f

∂xi
(Xs) dXi

s +
1

2

p∑
i=1

p∑
j=1

∫ t

0

∂2f

∂xi∂xj
(Xs) d[Xi, Xj ]s,

up to indistinguishability.

Proof. Let tnk = kt2−n. We may use the relation f(Xt)− f(X0) =
∑2n

k=1 f(Xtnk
)− f(Xtnk−1

)
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and Theorem A.1.17 to obtain f(Xt) = f(X0) + Snt + Tnt +Rnt where

Snt =

p∑
i=1

2n∑
k=1

∂f

∂xi
(Xtnk−1

)(Xi
tnk
−Xi

tnk−1
)

Tnt =
1

2

p∑
i=1

p∑
j=1

2n∑
k=1

∂2f

∂xi∂xj
(Xtnk−1

)(Xi
tnk
−Xi

tnk−1
)(Xj

tnk
−Xj

tnk−1
)

Rnt =

p∑
i=1

p∑
j=1

2n∑
k=1

rij2 (Xtnk−1
, Xtnk

)(Xi
tnk
−Xi

tnk−1
)(Xj

tnk
−Xj

tnk−1
),

and rij2 (x, y) is the remainder from Theorem A.1.17. By Theorem 2.3.2, Snt converges in

probability to
∑p
i=1

∫ t
0
∂f
∂xi

(Xs) dXi
s, and by Lemma 2.3.4, Tnt converges in probability to

1
2

∑p
i=1

∑p
j=1

∫ t
0

∂f
∂xi∂xj

(Xs) d[Xi, Xj ]s. Therefore, it will suffice to show that the remainder

term Rnt converges in probability to zero. Note that while we have no guarantee that rij2 is

measurable, we know that Rnt is always measurable, since Rnt = f(Xt) − f(X0) − Snt − Tnt ,

and so the proposition that Rnt converges in probability to zero is well-defined. To prove this

proposition, first fix i, j ≤ p. Recalling |2xy| ≤ x2 + y2, we find∣∣∣∣∣
2n∑
k=1

rij2 (Xtnk−1
, Xtnk

)(Xi
tnk
−Xi

tnk−1
)(Xj

tnk
−Xj

tnk−1
)

∣∣∣∣∣
≤ 1

2

(
max
k≤2n

|rij2 (Xtnk−1
, Xtnk

)|
)( 2n∑

k=1

(Xi
tnk
−Xi

tnk−1
)2 +

2n∑
k=1

(Xj
tnk
−Xj

tnk−1
)2

)
,

where the latter factor converges to [Xi]t + [Xj ]t by Theorem 2.3.3. Now note that by

Theorem A.1.17, there is a mapping ξ : Rp×Rp → Rp such that ξ(x, y) is always on the line

segment between x and y and rij2 (Xtnk−1
, Xtnk

) = ∂2f
∂xi∂Xj

(ξ(Xtnk−1
, Xtnk

))− ∂2f
∂xi∂Xj

(Xtnk−1
). In

particular, we have

max
k≤2n

|rij2 (Xtnk−1
, Xtnk

)| ≤ max
k≤2n

sup
t∈[0,1]

∣∣∣∣ ∂2f

∂xi∂xj
(Xtnk−1

+ t(Xtnk
−Xtnk−1

))− ∂2f

∂xi∂xj
(Xtnk−1

)

∣∣∣∣ ,
and the latter is measurable, since by continuity, the supremum may be reduced to a countable

one. Combining our conclusions, we see that in order to show that Rnt
P−→ 0, it suffices to

show that for any i, j ≤ p, it holds that

max
k≤2n

sup
t∈[0,1]

∣∣∣∣ ∂2f

∂xi∂xj
(Xtnk−1

+ t(Xtnk
−Xtnk−1

))− ∂2f

∂xi∂xj
(Xtnk−1

)

∣∣∣∣ P−→ 0.

To do so, fix i, j ≤ p. Define T im = inf{t ≥ 0||Xi
t | > m} and Tm = min{T 1

m, . . . , T
p
m}. As

(T im) tends to infinity as m tends to infinity, we conclude that (Tm) tends to infinity as well.

By Lemma A.2.1, since limm P (Tm > t) = 1, it suffices to prove that

1(Tm>t) max
k≤2n

sup
t∈[0,1]

∣∣∣∣ ∂2f

∂xi∂xj
(Xtnk−1

+ t(Xtnk
−Xtnk−1

))− ∂2f

∂xi∂xj
(Xtnk−1

)

∣∣∣∣ P−→ 0.
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Now, on (Tm > 0), each coordinate of the process XTm is bounded by m. Therefore, defining

Y mt = XTm
t 1(Tm>0), Y

m is bounded by m, and the above is equal to

1(Tm>t) max
k≤2n

sup
t∈[0,1]

∣∣∣∣ ∂2f

∂xi∂xj
(Y mtnk−1

+ t(Y mtnk − Y
m
tnk−1

))− ∂2f

∂xi∂xj
(Y mtnk−1

)

∣∣∣∣ ,
so we need to show that this convergence in probability to zero. Fix ε > 0. As the map-

ping ∂2f
∂xi∂xj

is continuous by our assumptions, it is uniformly continous on the compact

set [−m,m]p. Pick δ > 0 parrying ε for this uniform continuity. For each ω, Y m(ω) is

continuous, and therefore uniformly continous on [0, t]. Pick η parrying δ for this uniform

continuity. Now pick n so large that t2−n ≤ η. Note that n depends on ω. We then

find 1(Tm>t) maxk≤2n supt∈[0,1] |
∂2f

∂xi∂xj
(Y mtnk−1

+ t(Y mtnk − Y
m
tnk−1

)) − ∂2f
∂xi∂xj

(Y mtnk−1
)| ≤ ε, proving

convergence almost surely, in particular convergence in probability. Combining our con-

clusions, we obtain Rnt
P−→ 0. As limits in probability are almost surely determined, we

conclude f(Xt) = f(X0) +
∑p
i=1

∫ t
0
∂f
∂xi

(Xs) dXi
s + 1

2

∑p
i=1

∑p
j=1

∫ t
0

∂2f
∂xi∂xj

(Xs) d[Xi, Xj ]s al-

most surely. As the processes on both sides of this equality are continuous and t ≥ 0 was

arbitrary, Lemma 1.1.5 shows that we have equality up to indistinguishability. This proves

the theorem.

Note that in the case where X has paths of finite variation, it holds that the martingale part

of X has paths of finite variation as well, so [X] is evanescent and Theorem 2.3.5 reduces to

f(Xt) = f(X0) +
∫ t

0
f ′(Xs) dXs, which is the classical version of the fundamental theorem of

analysis. This highlights the manner in which Itô’s formula is an extension of the classical

theorem to the case where the integrands do not have paths of finite variation. Another

interpretation of Itô’s formula is that the space of p-dimensional continuous semimartingales

is stable under C2 transformations, and given a p-dimensional continuous semimartingale X

and a mapping f ∈ C2(R), Itô’s formula shows how to obtain the decomposition of f(Xt)

into its continuous local martingale and continuous finite variation parts.

In practical applications, we will occasionally be considering cases where we wish to apply

Itô’s formula, but the function f is only defined on some open set. The following corollary

shows that Itô’s formula also holds in this case.

Corollary 2.3.6. Let U be an open set in Rp, let X be a p-dimensional continuous semi-

martingale taking its values in U and let f : U → R be C2. Then

f(Xt) = f(X0) +

p∑
i=1

∫ t

0

∂f

∂xi
(Xs) dXi

s +
1

2

p∑
i=1

p∑
j=1

∫ t

0

∂2f

∂xi∂xj
(Xs) d[Xi, Xj ]s,

up to indistinguishability.
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Proof. Let ‖ · ‖ be some norm on Rp and let d(x, y) = ‖x− y‖. Define the set Um by putting

Um = {x ∈ Rp | d(x, U c) < 1
m}. Put Fm = U cm, then Fm = {x ∈ Rp | d(x, U c) ≥ 1

m}. Our

plan is to in some sense localise to Fm and prove the result there using Lemma A.1.18 and

Theorem 2.3.5. As x 7→ d(x, U c) is continuous, Um is open and Fm is closed. Define Tm by

putting Tm = inf{t ≥ 0 | Xt ∈ Um}. Note that Tm = inf{t ≥ 0 | d(Xt, U
c) < 1

m}, so as

the process d(Xt, U
c) is continuous and adapted, Lemma 1.1.9 shows that Tm is a stopping

time. As (Um) is decreasing, (Tm) is increasing. We wish to argue that (Tm) tends to infinity

almost surely and that on (Tm > 0), XTm takes its values in Fm.

To prove that (Tm) tends to infinity almost surely, first note that by continuity, we always have

d(XTm , U
c) ≤ 1

m . Assume that there is ω such that Tm(ω) has a finite limit T (ω). We then

obtain (XT (ω), U c) = limm d(XTm(ω), U c) = 0. As U c is closed, this implies XT (ω) ∈ U c, a

contradiction. Thus, we conclude that (Tm) tends almost surely to infinity. To show that on

(Tm > 0), XTm takes its values in Fm, we merely note that on this set, Xt /∈ Um for t < Tm,

so Xt ∈ Fm for t < Tm, and by continuity of X and closedness of Fm, XTm
∈ Fm as well.

Thus, XTm takes its values in Fm on (Tm > 0).

Now let m be so large that Fm is nonempty, this is possible as U = ∪∞n=1Fm and U is

nonempty because X takes its values in U . Let ym be some point in Fm. Define the process

Y m by putting (Y m)it = 1(Tm>0)(X
i)Tm
t +yim1(Tm=0). Y

m is then a p-dimensional continuous

semimartingale taking its values in Fm. Now, by Lemma A.1.18, there is a C2 mapping

gm : Rp → R such that gm and f agree on Fm. By Theorem 2.3.5, Itô’s formula holds using

Y m and gm, and as gm and f agree on Fm, we obtain

f(Y mt ) = f(Y m0 ) +

p∑
i=1

∫ t

0

∂f

∂xi
(Y ms ) d(Y m)is +

1

2

p∑
i=1

p∑
j=1

∫ t

0

∂2f

∂xi∂xj
(Y ms ) d[(Y m)i, (Y m)j ]s,

up to indistinguishability. We wish to argue that as m tends to infinity, all terms in the

above converge to the corresponding terms with Y m exchanged by X. Consider the first-

order terms. For any i ≤ p, we may use Lemma 2.2.7 to obtain

1(Tm>t)

∫ t

0

∂f

∂xi
(Y ms ) d(Y m)is = 1(Tm>t)

∫ t

0

∂f

∂xi
(Y ms ) d(Xi)Tm

s

= 1(Tm>t)

∫ t

0

1(Tm>0)
∂f

∂xi
(XTm

s ) d(Xi)Tm
s

= 1(Tm>t)

∫ t

0

∂f

∂xi
(XTm

s ) d(Xi)Tm
s

= 1(Tm>t)

∫ t

0

∂f

∂xi
(XTm

s )1[[0,Tm]] dXi
s

= 1(Tm>t)

∫ t

0

∂f

∂xi
(Xs) dXi

s,
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and with an application of Lemma 1.4.9, the analogous statement is obtained for the second-

order terms. Also, 1(Tm>t)f(Y mt ) = 1(Tm>t)f(Xt) and 1(Tm>t)f(Y m0 ) = 1(Tm>t)f(X0). All

in all, we conclude that Itô’s formula holds almost surely at time t ≥ 0 on (Tm > t), and

letting m tend to infinity, we obtain that the formula holds at any time t ≥ 0. By Lemma

1.1.5, the result holds up to indistinguishability and the proof is concluded.

2.4 Conclusion

We have now come to the end of our treatment of stochastic integration for continuous

semimartingales. We end the chapter with some comments on the literature treating the

subject as well as some remarks on extensions of the theory.

The presentation of the theory in this monograph is for the most part inspired by the books

Karatzas & Shreve (1991), He et al. (1992), Rogers & Williams (2000a), Rogers & Williams

(2000b), Kallenberg (2002) and Protter (2005). The proof of the existence of the quadratic

variation process using Mazur’s Lemma is inspired by Beiglböck et al. (2010).

The results on stochastic calculus with respect to continuous semimartingales given here is

a small part of the bulk. Immediate further results include local time processes, martingale

inequalities such as the Burkholder-Davis-Gundy inequalities, Girsanov’s change of measure

results, et cetera. Such topics are covered for example in the books Karatzas & Shreve (1991)

and Rogers & Williams (2000b). A major application of stochastic calculus is to stochastic

differential equations, in particular analysis of the solutions of stochastic differential equations

of the form

dXt = a(Xt) dt+ b(Xt) dWt,

where W is an Ft Brownian motion and a process X ∈ cS is sought which solves the above

equation. Important results of the theory consider criteria for existence and uniqueness

and relations to martingale problems, as well as criteria for stationarity and ergodicity, and

problems of estimation. Main parts of the theory are given in Rogers & Williams (2000b)

and Karatzas & Shreve (1991).

Another extension of the theory is to integration with respect to semimartingales with jumps,

defined as processes X with decompositions X = X0 +M +A, where M is a right-continous

local martingale with left limits, and A is a right-continuous process of finite variation with

left limits. The theory of martingales with jumps is more convoluted than the theory of

continuous martingales, and the extension of the main results of stochastic calculus from the
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continuous case to the discontinuous case often involves substantial difficulties. The general

theory is treated in the books Dellacherie & Meyer (1978), He et al. (1992), Rogers &

Williams (2000b) and Protter (2005).
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2.5 Exercises

Exercise 2.1. Let W be a one-dimensional Ft Brownian motion. Show that W ∈ cS.

Exercise 2.2. Let X be continuous, adapted process. Define Fc(X) as the set of ω such

that Xt(ω) is convergent as t→∞ to a finite limit. Show that Fc(X) ∈ F .

Exercise 2.3. Let M ∈ cM`. Show that Fc(M) = Fc([M ]) almost surely in the sense that

P (Fc(M)∆Fc([M ])) = 0, where F∆G = (F \G) ∪ (G \ F ) for F,G ∈ F .

Exercise 2.4. Let X ∈ cS with X = M + A, where M ∈ cM` and A ∈ cA. Prove that

Fc(X) = (suptXt <∞) almost surely in the sense that P (Fc(X)∆(suptXt <∞)) = 0.

Exercise 2.5. Let X ∈ cS with X = M + A, where M ∈ cM` and A ∈ cA. Show that

Fc(X) = Fc(M) ∩ Fc(A) almost surely in the sense that P (Fc(X)∆(Fc(M) ∩ Fc(A))) = 0.

Exercise 2.6. Let W be a one-dimensional Ft Brownian motion and let H ∈ I. Show that

H ·W is in cM2 if and only if E
∫∞

0
H2
s ds is finite. Show that if it holds that for any t ≥ 0,

E
∫ t

0
H2
s ds is finite, then H ·W is in cM and E(H ·W )2

t = E
∫ t

0
H2
s ds.

Exercise 2.7. Let M ∈ cM`. Show that the mapping µM from B+ ⊗ F to [0,∞] defined

by putting, for any A ∈ B+ ⊗ F , µM (A) =
∫ ∫

1A(t, ω) d[M ](ω)t dP (ω), is a well-defined

nonnegative measure on B+ ⊗ F . Show that µM is always σ-finite, and if M ∈ cM2, µM is

bounded. Denote by L2(M) the L2 space of (R+ ×Ω,Σp, µM ). Show that for H ∈ I, H ·M
is in cM2 if and only if H ∈ L2(µM ), and in the affirmative, ‖H ·M‖2 = ‖H‖M , where ‖ ·‖M
denotes the L2 norm of the space L2(M).

Exercise 2.8. Let W be a one-dimensional Ft Brownian motion and let H be bounded,

adapted and continuous. Show that for any fixed t ≥ 0, (Wt+h−Wt)
−1
∫ t+h
t

Hs dWs converges

in probability to Ht, where we define
∫ t+h
t

Hs dWs = (H ·W )t+h − (H ·W )t.

Exercise 2.9. Let X be a continuous process. Let t ≥ 0 and let tnk = kt2−n. Let p > 0 and

assume that
∑2n

k=1 |Xtnk
−Xtnk−1

|p is convergent in probability. Show that
∑2n

k=1 |Xtnk
−Xtnk−1

|q

converges to zero in probability for q > p.

Exercise 2.10. Let 0 < H < 1 and X be a continuous adapted process such that X has

finite-dimensional distributions which are normally distributed with mean zero and such that
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for any s and t with s, t ≥ 0, EXsXt = 1
2 (t2H + s2H − |t− s|2H). Such a process is called a

fractional Brownian motion with Hurst parameter H. Show that if H = 1
2 , then X has the

distribution of a Brownian motion. Show that if H 6= 1
2 , then X is not in cS.

Exercise 2.11. Let W be a p-dimensional Ft Brownian motion. Let f : Rp → R be C2.

Show that f(Wt) is a contiuous local martingale if
∑p
i=1

∂2f
∂x2

i
(x) = 0 for all x ∈ Rp.

Exercise 2.12. Let W be a one-dimensional Ft Brownian motion. Let f : R2 → R be C2.

Show that f(t,Wt) is a continuous local martingale if ∂f∂t (t, x)+ 1
2
∂2f
∂x2 (t, x) = 0 for (t, x) ∈ R2.

Show that in the affirmative, it holds that f(t,Wt) = f(0, 0) +
∫ t

0
∂f
∂x (s,Ws) dWs.

Exercise 2.13. Let M ∈ cM` and define the process E(M) by E(M)t = exp(Mt − 1
2 [M ]t).

Show that E(M) is a continuous local martingale with initial value one. Show that E(M) is

the unique solution in Y in cS to the stochastic differential equation Yt = 1 +
∫ t

0
Ys dMs.

Exercise 2.14. Let M,N ∈ cM`. Show that E(M) and E(N) are indistinguishable if and

only if M and N are indistinguishable.

Exercise 2.15. Fix t ≥ 0 and define Znt =
∏2n

k=1(Mtk −Mtk−1
), where tnk = kt2−n. Show

that Znt converges in probability to E(M)t.

Exercise 2.16. Let M ∈ cM`. Show that E(M) is a nonnegative supermartingale. Show

that EE(M)t ≤ 1 for all t ≥ 0. Show that E(M) is almost surely convergent and that the

limit E(M)∞ satisfies that EE(M)∞ ≤ 1.

Exercise 2.17. Show that E(M) is a uniformly integrable martingale if and only if it holds

that EE(M)∞ = 1, and show that E(M) is a martingale if and only if EE(M)t = 1 for all

t ≥ 0.

Exercise 2.18. Let W be a one-dimensional Ft Brownian motion and let f : R+ → R be

continuous. Show that f ∈ I in the sense that the process (t, ω) 7→ f(t) is in I. Fix t ≥ 0

and find the distribution of
∫ t

0
f(s) dWs.

Exercise 2.19. Let X,Y ∈ cS and f, g ∈ C2(R). With f(X)t = f(Xt) and g(Y )t = g(Yt),

show that [f(X), g(Y )]t =
∫ t

0
f ′(Xs)g

′(Ys) d[X,Y ]s for all t ≥ 0 up to indistinguishability.

Use this to identify the quadratic variation of W p when W is an Ft Brownian motion and

p ≥ 1.



64 Stochastic integration

Exercise 2.20. Let W be a p-dimensional Ft Brownian motion. Find the quadratic covari-

ation process of W i
tW

j
t for i, j ≤ p.

Exercise 2.21. Let W be a one-dimensional Ft Brownian motion. Define X as the pro-

cess given by Xt =
∫ t

0
sgn(Ws) dWs. Show that XtWt and XtW

2
t are both integrable with

EXtWt = 0 and EXtW
2
t = 2

5
2 t

3
2 (3
√
π)−1.

Exercise 2.22. Let X be in cS with initial value zero and let A ∈ cV. Define Mα by

putting Mα
t = exp(αXt − α2

2 At). Show that if Mα ∈ cM` for all α ∈ R, then X is in cM`

and [X] = A.

Exercise 2.23. Let W be a one-dimensional Ft Brownian motion. Let f : R → R be C2

with f(0) = α and assume that f satisfies that |f ′′(x)| ≤ C + exp(β|x|) for some C, β > 0.

Show that Ef(Bt) = α+ 1
2

∫ t
0
Ef ′′(Bs) ds. Use this to prove that for all p ∈ N, EB2p−1

t = 0

and EB2p
t = tp

∏p
i=1(2i− 1).

Exercise 2.24. Assume that M ∈ cMb and put tnk = kt2−n. Show that the sequence∑2n

k=1(Mtk −Mtk−1
)2 converges in L1 to [M ]t.

Exercise 2.25. Let W be a one-dimensional Ft Brownian motion. Define X as the process

given by Xt =
∫ t

0
sinWs + cosWs dWs. Argue that the stochastic integral is well-defined.

Find the mean and variance of Xt for t ≥ 0.

Exercise 2.26. Let Xt =
∫ t

0
sinWs dWs, where W is a one-dimensional Ft Brownian motion.

Compute the covariance between Xs and Xt for 0 ≤ s ≤ t.

Exercise 2.27. With W a one-dimensional Ft Brownian motion, show that exp( 1
2 t) sinWt

and (Wt + t) exp(−Wt − 1
2 t) are in cM`.

Exercise 2.28. Let W be a one-dimensional Ft Brownian motion. Without using direct

moment calculations, show that the processes W 3
t − 3tWt and W 4

t − 6tW 2
t + 3t2 are in cM.



Appendix A

Appendices

In these appendices, we review the general analysis, measure theory and probability theory

which are used in the main text, but whose subject matter is either taken to be more or less

well-known or taken to be sufficiently different from our main interests to merit separation.

A.1 Analysis and measure theory

We begin by considering some results on signed measures and mappings of finite variation.

Let (E, E) be a measure space. A signed measure on (E, E) is a mapping µ : E → R such

that µ(∅) = 0 and such that whenever (An) is a sequence of disjoint sets in E ,
∑∞
n=1 |µ(An)|

is convergent and µ(∪∞n=1An) =
∑∞
n=1 µ(An).

Theorem A.1.1. Let µ be a signed measure on (E, E). There exists a bounded nonnegative

measure |µ| on (E, E) such that |µ|(A) = sup
∑∞
n=1 |µ(An)|, where the supremum is taken

over all mutually disjoint sequences (An) in E with A = ∪∞n=1An. |µ| is called the total

variation measure of µ. In particular, |µ(A)| ≤ |µ|(A) ≤ |µ|(E), so every signed measure is

bounded.

Proof. See Theorem 6.2 and Theorem 6.4 of Rudin (1987).
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Theorem A.1.2 (Jordan-Hahn decomposition). Let µ be a signed measure on (E, E). There

is a unique pair of positive bounded singular measures µ+ and µ− such that µ = µ+ − µ−,

given by µ+ = 1
2 (|µ|+µ) and µ− = 1

2 (|µ|−µ). This decomposition also satisfies |µ| = µ++µ−.

We call this the Jordan-Hahn decomposition of µ.

Proof. By Section 6.6 of Rudin (1987) and Theorem 6.14 of Rudin (1987), the explicit

construction of µ+ and µ− satisfies the requirements of the theorem. For uniqueness, assume

that µ = ν+ − ν−, where ν+ and ν− is another pair of singular positive bounded measures.

Assume that ν+ is concentrated on F+ and ν− is concentrated on F−, while µ+ is concen-

trated on E+ and µ− is concentrated on E−, where F+ and F− are disjoint and E+ and E−

are disjoint. Then, for any A ∈ E , µ+(A) = µ+(A∩E+) = µ(A) ≤ ν+(A∩E+) ≤ ν+(A) and

ν+(A) = ν+(A∩F+) = µ(A) ≤ µ+(A∩F+) ≤ µ+(A), so ν+ and µ+ are equal and therefore

ν− and µ− are equal as well.

Lemma A.1.3. Let µ be a signed measure on (E, E). Let D be an algebra generating E.

Then |µ|(E) = sup
∑n
k=1 |µ(Ak)|, where the sum is taken over finite disjoint partitions (Ak)

of A, and each element Ak is in D.

Proof. We first show that |µ|(E) = sup
∑n
k=1 |µ(Ak)|, where the sum is taken over finite

disjoint partitions (Ak) of E, and each element Ak is in E . To this end, let ε > 0. There is

a countable disjoint measurable partition (An) of E such that |µ|(E) ≤ ε +
∑∞
n=1 |µ(An)|.

Since |µ| is a bounded positive measure, the sum
∑∞
n=1 |µ|(An) is convergent, and therefore,

there is k such that |µ(∪∞n=kAn)| = |
∑∞
n=k µ(An)| ≤

∑∞
n=k |µ(An)| ≤

∑∞
n=k |µ|(An) ≤ ε.

As all the numbers in the chain of inequalities are nonnegative, we find in particular that

||µ(∪∞n=kAn)| −
∑∞
n=k |µ(An)|| ≤ ε and thus

|µ|(E) ≤ ε+
∞∑
n=1

|µ(An)| = ε+
k−1∑
n=1

|µ(An)|+
∞∑
n=k

|µ(An)| ≤ 2ε+ |µ(∪∞n=kAn)|+
k−1∑
n=1

|µ(An)|,

and since the family of sets A1, . . . , Ak−1,∪∞n=kAn is a finite disjoint partition of E with each

element in E , and ε > 0 was arbitrary, we conclude that |µ|(E) = sup
∑n
k=1 |µ(Ak)|, where

the supremum is over finite disjoint measurable partitions of E.

Next, we show that it suffices to consider partitions with each element in D. Let ε > 0,

we need to locate a finite disjoint partition (An) of E with elements from D such that

|µ|(E) ≤ ε+
∑k
n=1 µ(Ak). From what we have just shown, there is a finite disjoint partition

(An) of E with each An in E such that |µ|(E) ≤ ε+
∑k
n=1 |µ(An)|. For any n ≤ k, we may

use Theorem 1.3.11 of Ash (2000) to obtain some Bn ∈ D with |µ|(An∆Bn) ≤ 1
kε2
−k, where

the symmetric difference An∆Bn is defined by An∆Bn = (An ∩Bcn) ∪ (Acn ∩Bn).
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Now let Pk denote the set of all subsets of {1, . . . , k}, and define the set Cα for any α ∈ Pk
by putting Cα = {x ∈ E | ∀ n ≤ k : x ∈ Bn if n ∈ α and x ∈ Bcn if n /∈ α}. Cα is the

intersection of the Bn’s with n ∈ α and the Bcn’s with n /∈ α. In particular, the family

(Cα)α∈Pk
consists of mutually disjoint sets. As for each x ∈ E and each n ≤ k, we either

have x ∈ Bn or x ∈ Bcn, the family (Cα)α∈Pk
is a finite disjoint partition of E, and as D is

an algebra, Cα ∈ D for all α ∈ Pk. We claim that |µ|(E) ≤ 3ε+
∑
α∈Pk

|µ(Cα)|.

To prove this, we first note that for any n ≤ k, we have

||µ(An)| − |µ(Bn)|| ≤ |µ(An)− µ(Bn)|

≤ |µ(An ∩Bn) + µ(An ∩Bcn)− (µ(An ∩Bn) + µ(Acn ∩Bn))|

= |µ(An ∩Bcn)− µ(Acn ∩Bn)| ≤ |µ(An ∩Bcn)|+ |µ(Acn ∩Bn)|

≤ |µ|(An ∩Bcn) + |µ|(Acn ∩Bn) = |µ|(An∆Bn),

which is less than 1
kε2
−k. Therefore, we obtain

|µ|(E) ≤ ε+

k∑
n=1

|µ(An)| ≤ ε+

k∑
n=1

|µ(Bn)|+
k∑

n=1

||µ(An)| − |µ(Bn)|| ≤ 2ε+

k∑
n=1

|µ(Bn)|.

Note that Bn = ∪α:n∈αCα, with each pair of sets in the union being mutually disjoint. We

will argue that |µ|(Bn) ≤ |µ|(C{n}) + 1
kε. To see this, consider some α ∈ Pn with more than

one element, assume for definiteness that n,m ∈ α with n 6= m. As the An’s are disjoint, we

then find

|µ|(Cα) ≤ |µ|(Bn ∩Bm) = |µ|(Bn ∩An ∩Bm) + |µ|(Bn ∩Acn ∩Bm)

≤ |µ|(An ∩Bm) + |µ|(Bn ∩Acn) = |µ|(An ∩Acm ∩Bm) + |µ|(Bn ∩Acn)

≤ |µ|(Acm ∩Bm) + |µ|(Bn ∩Acn) ≤ |µ|(Am∆Bm) + |µ|(An∆Bn),

which is less than 2
kε2
−k. We now note, using C{n} ⊆ Bn, that

|µ(Bn)| ≤ |µ(C{n})|+ |µ(Bn)− µ(C{n})|

= |µ(C{n})|+ |µ(Bn \ C{n})|

≤ |µ(C{n})|+ |µ|(Bn \ C{n}).

However, |µ|(Bn \ C{n}) = |µ|(Bn) − |µ|(C{n}) =
∑
n∈α,α6={n} |µ|(Cα) and as there are less

than 2k−1 elements in the sum, with each element according to what was alerady proven

has a value of less than 2
kε2
−k, we find |µ|(Bn) ≤ |µ|(C{n}) + 1

kε. We may now conclude

|µ|(E) ≤ 2ε +
∑k
n=1 |µ(Bn)| ≤ 3ε +

∑k
n=1 |µ(C{n})| ≤ 3ε +

∑
α∈Pn

|µ(Cα)|. As ε was

arbitrary, we conclude that |µ(E)| = sup
∑k
n=1 |µ(An)|, where the sum is taken over finite

disjoint partitions (Ak) of E, and each element Ak is in D.
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We next introduce finite variation mappings and consider their connection to pairs of posi-

tive singular measures. These types of mappings will be important in our consideration of

continuous-time stochastic processes of finite variation, of which the quadratic covariation

will be a primary example. Consider a mapping f : R+ → R. We define the variation of f

on [0, t] by Vf (0) = 0 and Vf (t) = sup
∑n
k=1 |f(tk) − f(tk−1)|, where the supremum is over

partitions 0 = t0 < · · · < tn = t. We say that f is of finite variation on [0, t] if Vf (t) is

finite. We say that f is of finite variation if Vf (t) is finite for t ≥ 0. We say that f is of

bounded variation if supt Vf (t) is finite. Finally, by cFV, we denote the continuous map-

pings f : R+ → R of finite variation, and by cFV0, we denote the elements of cFV which

are zero at zero. In general, we will focus our attention on cFV0 and not cFV, as pinning

our mapping to zero at zero makes for a better concordance with measure theory. Note that

any monotone function has finite variation, and for any increasing function f : R+ → R with

initial value zero, Vf (t) = f(t).

Lemma A.1.4. Let f ∈ cFV0. Then Vf is continuous.

Proof. See Carothers (2000), Theorem 13.9.

Theorem A.1.5. Let f ∈ cFV0. There is a unique decomposition f = f+ − f− such

that f+ and f− are increasing functions in cFV0 with the property that there exists two

unique positive singular measures µ+
f and µ−f with zero point mass at zero such that for any

0 ≤ a ≤ b, µ+
f (a, b] = f+(b) − f+(a) and µ−f (a, b] = f−(b) − f−(a). The decomposition is

given by f+ = 1
2 (Vf + f) and f− = 1

2 (Vf − f). In particular, the measures µ+
f and µ−f are

finite on bounded intervals, and (µ+
f + µ−f )(a, b] = Vf (b)− Vf (a).

Proof. We first show that the explicit construction of f+ and f− satisfies the properties

required. We note that f+ and f− are increasing and zero at zero, and so, as monotone

function are of finite variation, we conclude that f+ and f− are in cFV0, continuity being

a consequence of Lemma A.1.4. By Theorem 1.4.4 of Ash (2000), there exists unique

nonnegative measures µ+
f and µ−f with zero point mass at zero such that for any 0 ≤ a ≤ b,

µ+
f (a, b] = f+(b)−f+(a) and µ−f (a, b] = f−(b)−f−(a). Then (µ+

f +µ−f )(a, b] = Vf (b)−Vf (a)

as well. It remains to prove that µ+
f and µ−f are singular, and to this end, it suffices to prove

that the measures are singular on [0, t] for any t ≥ 0.

To do so, fix t ≥ 0. Put µtf = µ+
f − µ−f on Bt, then µtf is a signed measure on Bt, and

for any 0 ≤ a ≤ b ≤ t, µtf (a, b] = f(b) − f(a). We consider the total variation of µtf . Fix

0 ≤ a ≤ b ≤ t and let D be the set of finite unions of intervals of the form (c, d] with

a ≤ c ≤ d ≤ b, D is an algebra generating the Borel-σ-algebra on (a, b]. Lemma A.1.3 shows
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that we have |µtf |(a, b] = sup
∑k
n=1 |µtf (An)|, where (An) is a finite disjoint partition of (a, b]

with elements from D. In particular, we obtain |µtf |(a, b] ≤ Vf (t), and as we trivially have

Vf (t) ≤ |µtf |(a, b], we have equality. Thus, |µtf |(a, b] = Vf (b) − Vf (a). Let (µtf )+ and (µtf )−

be the Jordan-Hahn decomposition of Theorem A.1.2, we then obtain

(µtf )+(a, b] = 1
2 (|µtf |(a, b] + µtf (a, b]) = 1

2 (Vf (b)− Vf (a) + f(b)− f(a)) = µ+
f (a, b],

and so we find that (µtf )+ and µ+
f agree on Bt. Analogously, (µtf )− and µ−f agree on Bt as

well. As the components of the Jordan-Hahn decomposition are singular, we conclude that

µ+
f and µ−f are singular on [0, t], and so µ+

f and µ−f are singular measures.

It remains to prove uniqueness. Assume that f = g+−g− is another decomposition with the

same properties. Let ν+
f and ν−f be the two corresponding singular nonnegative measures.

As earlier, we may then define νtf = ν+
f − ν

−
f on Bt. Then νtf and µtf are equal, and so in

particular, we have the Jordan-Hahn decompositions µtf = µ+
f − µ

−
f and µtf = νtf = ν+

f − ν
−
f

on Bt. By uniqueness of the decomposition, we conclude µ+
f = ν+

f and µ−f = ν−f , and so

f+ = g+ and f− = g−, proving uniqueness.

Theorem A.1.5 shows that finite variation mappings correspond to pairs of positive singular

measures. As stated in the theorem, for any f ∈ cFV0, we denote by f+ and f− the positive

and negative parts of f , given by f+ = 1
2 (Vf + f) and f− = 1

2 (Vf − f). Furthermore,

we denote by µ+
f and µ−f the two corrresponding positive singular measures, and we put

|µf | = µ+ + µ− and call |µf | the total variation measure of f . By Theorem A.1.5, |µf |
is the measure induced by the increasing function Vf using Theorem 1.4.4 of Ash (2000).

As µ+
f and µ−f has finite mass on bounded intervals, so does |µf |, in particular we have

|µf |([0, t]) = Vf (t) according to Theorem A.1.5. Also note that if f is increasing, Vf = f and

so µ− is zero.

These results lead to a concept of integration with respect to a function of finite variation.

Let f ∈ cFV0 and let h : R+ → R be some measurable function. We say that h is integrable

with respect to f if
∫ t

0
|h(s)|d|µf |s is finite for all t ≥ 0, and in the affirmative, we put∫ t

0
h(s) df(s) =

∫ t
0
h(s) d(µ+

f )s −
∫ t

0
h(s) d(µ−f )s and call

∫ t
0
h(s) df(s) the integral of h with

respect to f over [0, t]. Furthermore, we denote by
∫ t

0
h(s)|dfs| the integral

∫ t
0
h(s) d|µf |s.

Next, we consider some further properties of finite variation mappings and their integrals.

Lemma A.1.6. Let f ∈ cFV0. Then |f(t)| ≤ Vf (t) for all t ≥ 0.

Proof. As {0, t} is a partition of [0, t], |f(t)| = |f(t)−f(0)| ≤ sup |f(tk)−f(tk−1)| = Vf (t).
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Lemma A.1.7. Let f ∈ cFV0 and let h be integrable with respect to f . It then holds that

|
∫ t

0
h(s) dfs| ≤

∫ t
0
|h(s)|| dfs|.

Proof. We find∣∣∣∣∫ t

0

h(s) dfs

∣∣∣∣ =

∣∣∣∣∫ t

0

h(s) dµ+
f −

∫ t

0

h(s) dµ−f

∣∣∣∣ ≤ ∣∣∣∣∫ t

0

h(s) dµ+
f

∣∣∣∣+

∣∣∣∣∫ t

0

h(s) dµ−f

∣∣∣∣
≤

∫ t

0

|h(s)|dµ+
f +

∫ t

0

|h(s)|dµ−f =

∫ t

0

|h(s)|d|µf |,

and the latter is what we denote by
∫ t

0
|h(s)||dfs|.

Lemma A.1.8 (Integration by parts). Let f, g ∈ cFV, then for any t ≥ 0,

f(t)g(t) = f(0)g(0) +

∫ t

0

f(s) dgs +

∫ t

0

g(s) dfs.

Proof. See Section IV.18 of Rogers & Williams (2000b).

Lemma A.1.9. Let f ∈ cFV0. Then Vf (t) = sup
∑n
k=1 |f(tk)−f(tk−1)|, with the supremum

taken over partitions in Q+ ∪ {t}.

Proof. It suffices to show that for any ε > 0 and any partition (t0, . . . , tn) of [0, t], there exists

another partition (q0, . . . , qn) such that |
∑n
k=1 |f(tk)−f(tk−1)|−

∑n
k=1 |f(qk)−f(qk−1)| < ε.

To this end, choose δ parrying ε
2n for the continuity of f in t0, . . . , tn, and let, for k ≤ n, qk

be some rational with |qk − tk| ≤ δ. By picking qk close enough to tk, we may ensure that

(q0, . . . , qn) is in fact a partition of [0, t]. Then |(f(tk)− f(tk−1))− (f(qk)− f(qk−1))| ≤ ε
n ,

and since | · | is a contraction, this implies ||f(tk)− f(tk−1)| − |f(qk)− f(qk−1)|| ≤ ε
n , finally

yielding ∣∣∣∣∣
n∑
k=1

|f(tk)− f(tk−1)| −
n∑
k=1

|f(qk)− f(qk−1)|

∣∣∣∣∣
≤

n∑
k=1

||f(tk)− f(tk−1)| − |f(qk)− f(qk−1)|| ≤ ε.

This proves the result.

This concludes our results on finite variation mappings and signed measures. Next, we

consider two results which will aid us in the proof of the Kunita-Watanabe inequality.
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Lemma A.1.10. Let α, γ ≥ 0 and β ∈ R. It then holds that |β| ≤
√
α
√
γ if and only if

λ2α+ 2λβ + γ ≥ 0 for all λ ∈ Q.

Proof. First note that by continuity, the requirement that λ2α + 2λβ + γ ≥ 0 for all λ ∈ Q
is equivalent to the same requirement for all λ ∈ R.

Consider first the case α = 0. If |β| ≤
√
α
√
γ, clearly β = 0, and the criterion is trivially

satisfied. Conversely, assume that the criterion holds, which in this case is equivalent to

2λβ + γ ≥ 0 for all λ ∈ Q. Letting λ tend to infinity or minus infinity depending on the sign

of β, the requirement that γ be nonnegative forces β = 0, so that β ≤
√
α
√
γ. This proves

the result in the case α = 0. Next, consider the case α 6= 0, so that α > 0. The mapping

λ2α+ 2λβ + γ ≥ 0 takes its minimum at −β
α , and the minimum value is

inf
λ∈R

λ2α+ 2λβ + γ =

(
−β
α

)2

α− 2β2

α
+ γ =

1

α
(αγ − β2),

which is nonnegative if and only if |β| ≤
√
α
√
γ. This proves the result.

Lemma A.1.11. Let f, g, h : R+ → R be in cFV0, with f and g increasing. If it holds

for all 0 ≤ s ≤ t that |h(t) − h(s)| ≤
√
f(t)− f(s)

√
g(t)− g(s), then for any measurable

x, y : R+ → R, we have∫ ∞
0

|x(t)y(t)||dh(t)| ≤
(∫ ∞

0

x(t)2 df(t)

) 1
2
(∫ ∞

0

y(t)2 dg(t)

) 1
2

.

Proof. Let µf , µg and µh be the measures corresponding to the finite variation mappings f ,

g and h. Clearly, the measures µf , µg and µh are all absolutely continuous with respect to

ν = µf + µg + |µh|. Then, by the Radon-Nikodym Theorem, there exists densities ϕf , ϕg

and ϕh of the three measures with respect to ν, and it therefore suffices to prove(∫ ∞
0

|x(t)y(t)||ϕh(t)|dν(t)

)2

≤
(∫ ∞

0

x(t)2ϕf (t) dν(t)

)(∫ ∞
0

y(t)2ϕg(t) dν(t)

)
.

To this end, we wish to argue that |ϕh(t)| ≤
√
ϕf (t)

√
ϕg(t) almost everywhere with respect

to ν. By Lemma A.1.10, this is equivalent to proving that almost everywhere in t with

respect to ν, it holds that for all λ ∈ Q that λ2ϕf (t) + 2λϕh(t) + ϕg(t) ≥ 0. As a countable

intersection of null sets is again a null set, it suffices to prove that for any λ ∈ Q, it holds

that λ2ϕf (t) + 2λϕh(t) + ϕg(t) ≥ 0 almost everywhere with respect to ν. However, for any

0 ≤ s ≤ t, we have∫ t

s

λ2ϕf (t) + 2λϕh(t) + ϕg(t) dν(t) = λ2µf (s, t] + 2λµh(s, t] + µg(s, t],
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and as |µh(s, t]| ≤
√
µf (s, t]

√
µg(s, t] by assumption, the above is nonnegative by Lemma

A.1.10. By a monotone class argument, we obtain that
∫
A
λ2ϕf (t)+2λϕh(t)+ϕg(t) dν(t) ≥ 0

for any A ∈ B+, in particular λ2ϕf (t) + 2λϕh(t) +ϕg(t) ≥ 0 almost everywhere with respect

to ν. Thus, we finally conclude |ϕh(t)| ≤
√
ϕf (t)

√
ϕg(t). The Cauchy-Schwartz inequality

then immediately yields∫ ∞
0

|x(t)y(t)||ϕh(t)|dν(t) ≤
∫ ∞

0

|x(t)
√
ϕf (t)||y(t)

√
ϕg(t)|dν(t)

≤
(∫ ∞

0

x(t)2ϕf (t) dν(t)

) 1
2
(∫ ∞

0

y(t)2ϕg(t) dν(t)

) 1
2

=

(∫ ∞
0

x(t)2 df(t)

) 1
2
(∫ ∞

0

y(t)2 df(t)

) 1
2

,

as desired.

Finally, we end the section with a few assorted results from measure theory and analysis.

Theorem A.1.12. Let P be a probability measure on (Ω,F) and let (νω) be a family of

uniformly bounded nonnegative measures on (E, E), in the sense that there is c > 0 such that

νω(E) ≤ c for all ω ∈ Ω. Assume that ω 7→ νω(A) is F measurable for all A ∈ E. There

exists a unique nonnegative measure λ on F ⊗ E, called the integration of (νω) with respect

to P , uniquely characterized by the requirement that for F ∈ F and A ∈ E, it holds that

λ(F ×A) =
∫
F
νω(A) dP (ω).

Proof. This follows from Theorem 2.6.2 of Ash (2000).

Theorem A.1.13 (Tonelli and Fubini theorems for integration measures). Let P be a proba-

bility measure on (Ω,F) and let (νω) be a family of uniformly bounded nonnegative measures

on (E, E) such that ω 7→ νω(A) is F measurable for all A ∈ E. Let λ be the integration of

(νω) with respect to P . Let f : Ω× E → R be F ⊗ E measurable. Then, the following holds.

1. If f is nonnegative, ω 7→
∫
f(ω, x) dνω(x) is F measurable and we have the equality∫

f(ω, x) dλ(ω, x) =
∫ ∫

f(ω, x) dνω(x) dP (ω).

2. If f is integrable with respect to λ, ω 7→
∫
f(ω, x) dνω(x) exists and is finite P almost

surely, and defines an F measurable function if it is taken to be zero on the null set where∫
f(ω, x) dνω(x) does not exist, and

∫
f(ω, x) dλ(ω, x) =

∫ ∫
f(ω, x) dνω(x) dP (ω).

Proof. See Theorem 2.6.4 of Ash (2000).
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Lemma A.1.14. Let X be some integrable variable. Let G be a sub-σ-algebra of F . If

E1FX ≥ 0 for all F ∈ G, then E(X|G) ≥ 0 almost surely.

Proof. Pick n ∈ N and define F = (E(X|G) ≤ − 1
n ). As E(X|G) is G measurable, we have

F ∈ G and therefore obtain E1FX = E1FE(X|G) ≤ − 1
nP (F ). Therefore, P (F ) = 0. By

the continuity properties of probability measures, we conclude P (E(X|G) < 0) = 1, so that

E(X|G) ≥ 0 almost surely.

Lemma A.1.15. Let X ≥ 0. It holds that X has mean zero if and only if X is almost surely

zero.

Proof. Clearly, X has mean zero if X is almost surely zero. Assume instead that X has

mean zero. For any n ∈ N, we have EX ≥ EX1(X≥ 1
n ) ≥ 1

nP (X ≥ 1
n ). Thus, we conclude

P (X ≥ 1
n ) = 0 for all n, and therefore P (X > 0) = 0, so that X is almost surely zero.

Lemma A.1.16. Let f : R+ → R be some continuous mapping. Let U(f, a, b) denote the

number of upcrossings from a to b of f , meaning that

U(f, a, b) = sup{n | ∃ 0 ≤ s1 < t1 < · · · sn < tn : f(sk) < a, f(tk) > b, k ≤ n}.

The mapping ft has a limit in [−∞,∞] as t tends to infinity if U(f, a, b) is finite for all

a, b ∈ Q with a < b.

Proof. Assume that U(f, a, b) is finite for all a, b ∈ Q with a < b. Assume, expecting a

contradiction, that f(t) does not converge to any limit in [−∞,∞] as t tends to infinity.

Then lim inft f(t) < lim supt f(t), and in particular there exists a, b ∈ Q with a < b such that

lim inft f(t) < a < b < lim supt f(t).

Now consider U(f, a, b), we wish to derive a contradiction with our assumption that U(f, a, b)

is finite. If U(f, a, b) is zero, either f(t) ≥ a for all t ≥ 0, or f(t) < a for some t and

f(t) ≤ b from a point onwards. In this first case, lim inft f(t) ≥ a, and in the second case,

lim supt f(t) ≤ b, both leading to contradictions. Therefore, U(f, a, b) must be nonzero. As

we have assumed that U(f, a, b) is finite, we obtain that either f(t) ≥ a from a point onwards,

or f(t) ≤ b from a point onwards. In the first case, lim inft f(t) ≥ a and in the second case,

lim supt f(t) ≤ b. Again, we obtain a contradiction, and so conclude that f(t) must exist as

a limit in [−∞,∞].
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For the next results, we use the notation that for any open set U in Rp, C2(U) denotes the

set of mappings f : U → R such that all second-order partial derivatives of f exists and

are continuous. Furthermore, C∞(U) denotes the set of f : U → R such that all partial

derivatives of any order of f exists, and C∞c (U) denotes the set of elements f in C∞(U)

which have compact support in the sense that {x ∈ U |f(x) 6= 0} is contained in a compact

set.

Theorem A.1.17. Let f ∈ C2(Rp), and let x, y ∈ Rp. It then holds that

f(y) = f(x) +

p∑
i=1

∂f

∂xi
(x)(yi − xi) +

1

2

p∑
i=1

p∑
j=1

∂2f

∂xi∂xj
(x)(yi − xi)(yj − xj) +R2(x, y),

where R2(x, y) =
∑p
i=1

∑p
j=1 r

ij
2 (y, x)(yi − xi)(yj − xj), and

rij2 (y, x) =
1

2

(
∂2f

∂xi∂xj
(ξ(x, y))− ∂2f

∂xi∂xj
(x)

)
,

where ξ(x, y) is some element on the line segment between x and y.

Proof. Define g : R→ R by g(t) = f(x+ t(y − x)). Note that g(1) = f(y) and g(0) = f(x).

We will prove the theorem by applying the one-dimensional Taylor formula, see Apostol

(1964) Theorem 7.6, to g. Clearly, g ∈ C2(R), and we obtain g(1) = g(0) + g′(0) + 1
2g
′′(s),

where 0 ≤ s ≤ 1. Applying the chain rule, we find g′(t) =
∑p
i=1

∂f
∂xi

(x + t(y − x))(yi − xi)
and g′′(t) =

∑p
i=1

∑p
j=1

∂2f
∂xi∂xj

(x + t(y − x))(yi − xi)(yj − xj). Substituting and writing

ξ = x+ s(y − x), we may conclude

f(y) = f(x) +

p∑
i=1

∂f

∂xi
(x)(yi − xi) +

1

2

p∑
i=1

p∑
j=1

∂2f

∂xi∂xj
(ξ)(yi − xi)(yj − xj).

In particular, we find R2(x, y) =
∑p
i=1

∑p
j=1 r

ij
2 (y, x)(yi − xi)(yj − xj), where rij2 : R2 → R

is defined by putting

rij2 (y, x) =
1

2

(
∂2f

∂xi∂xj
(ξ)− ∂2f

∂xi∂xj
(x)

)
,

where ξ of course depends on x and y, as it is on the line segment between the two. This

proves the result.

Lemma A.1.18. Let U be an open set in Rp and let f ∈ C2(U). Let ε > 0. With ‖ · ‖
denoting some norm on Rp and d(x, y) = ‖x − y‖, put F = {x ∈ Rp | d(x, U c) ≥ ε}. There

exists g ∈ C2(Rp) such that f and g agree on F .
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Proof. Let G = {x ∈ Rp | d(x, U c) ≥ ε
2} and H = {x ∈ Rp | d(x, U c) ≥ ε

4}. We first prove

that there exists a mapping χ ∈ C∞(Rp) such that χ is one on F and zero on Hc. From

Lemma 2.1 of Grubb (2008) and Section 0.B of Zimmer (1990), there exists some mapping

ψ ∈ C∞c (Rp) such that
∫
Rp ψ(x) dx = 1 and ψ is zero outside of the open Euclidean ball B

centered at the origin with radius ε
4 . Define χ : Rp → R by χ(x) =

∫
Rp 1G(y)ψ(x−y) dy, this

is well-defined as ψ has compact support, and compact sets have finite Lebesgue measure.

We claim that χ satisfies the requirements. Applying the methods of the proof of Proposition

B.3 of Zimmer (1990), we find that χ ∈ C∞(Rp). Note that by the translation invariance of

Lebesgue measure, we have

χ(x) =

∫
Rp

1G(x− y)ψ(y) dy =

∫
B

1G(x− y)ψ(y) dy.

Now, given some x ∈ F , we find that for any y ∈ B, d(x, U c) ≤ d(x − y, U c) + ‖y‖ and so

d(x− y, U c) ≥ d(x, U c)− ‖y‖ ≥ ε− ε
4 ≥

ε
2 . Thus, x− y ∈ G and so χ(x) =

∫
B
ψ(y) dy = 1.

Conversely, if x ∈ Hc, it holds that d(x− y, U c) ≤ d(x, U c) + ‖y‖ < ε
4 + ε

4 = ε
2 , so x− y /∈ G,

and χ(x) = 0. Thus, χ is in C∞(Rp) and χ(x) = 1 when x ∈ F and χ(x) = 0 when x ∈ Hc.

We now define g : Rp → R by putting g(x) = f(x)χ(x) when x ∈ U and g(x) = 0 otherwise.

We claim that g satisfies the requirements of the lemma.

To see this, first note that when x ∈ F , g(x) = f(x)χ(x) = f(x), so g and f agree on F .

Therefore, we merely need to check that g is C2. To see this, note that on U , g is the product

of an C2 mapping and an C∞ mapping, so g is C2 on U . Conversely, as χ is zero on Hc, we

find that g is in particular C2 on Hc. As H ⊆ U , U c ⊆ Hc and so Rp = U ∪Hc. Therefore,

we conclude that g is in C2(Rp), as desired.

Lemma A.1.19 (Dynkin’s lemma). Let E be some set, and let E be a family of subsets of E

which is stable under intersections. Let D be another family of subsets of E such that E ∈ D,

if A,B ∈ D with A ⊆ B then B \ A ∈ D and if (An) is an increasing sequence in D, then

∪∞n=1An ∈ D. Such a family is called a Dynkin class. If E ⊆ D, then σ(E) ⊆ D.

Proof. See Theorem 2.1.3 of Karatzas & Shreve (1991).

A.2 Convergence results and uniform integrability

In this section, we recall some basic results on convergence of random variables. Let (Ω,F , P )

be a probability triple. Let Xn be a sequence of random variables and let X be another
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random variable. By Lp, p ≥ 1, we denote the variables X where E|X|p is finite. If Xn(ω)

converges to X(ω) for all ω except on a null set, we say that Xn converges almost surely to

X and write Xn
a.s.−→ X. If it holds for all ε > 0 that limn P (|Xn −X| > ε) = 0, we say that

Xn converges in probability to X under P and write Xn
P−→ X. If limnE|Xn − X|p = 0,

we say that Xn converges to X in Lp and write Xn
Lp

−→ X. Convergence in Lp and almost

sure convergence both imply convergence in probability. Convergence in probability implies

convergence almost surely along a subsequence.

The following lemmas will be useful at various points in the main text.

Lemma A.2.1. Let Xn be a sequence of random variables, let X be another random variable

and let (Fn) ⊆ F . Assume that Xn1Fk

P−→ X1Fk
for all k ≥ 1 and that limk P (F ck ) = 0.

Then Xn
P−→ X as well.

Proof. For any ε > 0, we find

P (|Xn −X| > ε) = P ((|Xn −X| > ε) ∩ Fk) + P ((|Xn −X| > ε) ∩ F ck )

≤ P (|Xn1Fk
−X1Fk

| > ε) + P (F ck ),

and may therefore conclude lim supn P (|Xn −X| > ε) ≤ P (F ck ). Letting k tend to infinity,

we obtain Xn
P−→ X.

Lemma A.2.2. Let (Xn) and (Yn) be two sequences of variables convergent in probability

to X and Y , respectively. If Xn ≤ Yn almost surely for all n, then X ≤ Y almost surely.

Proof. Picking nested subsequences, we find that for some subsequence, Xnk
tends almost

surely to X and Ynk
tends almost surely to Y . From the properties of ordinary convergence,

we obtain X ≤ Y almost surely.

Next, we consider the concept of uniform integrability, its basic properties and its relation to

convergence of random variables. Let (Xi)i∈I be a family of random variables. We say that

Xi is uniformly integrable if it holds that

lim
λ→∞

sup
i∈I

E|Xi|1(|Xi|>λ) = 0.

Note that as supi∈I E|Xi|1(|Xi|>λ) is decreasing in λ, the limit always exists in [0,∞]. We

will review some basic results about uniform integrability. We refer the results mainly for

discrete sequences of variables, but many results extend to sequences indexed by R+ as well.
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Lemma A.2.3. Let (Xi)i∈I be some family of variables. (Xi) is uniformly integrable if and

only if it holds that (Xi) is bounded in L1, and for every ε > 0, it holds that there is δ > 0

such that whenever F ∈ F with P (F ) ≤ δ, we have E1F |Xi| ≤ ε for all i ∈ I.

Proof. First assume that (Xi)i∈I is uniformly integrable. Clearly, we then have

sup
i∈I

E|Xi| ≤ sup
i∈I

E|Xi|1(|Xi|>λ) + sup
i∈I

E|Xi|1(|Xi|≤λ)

≤ λ+ sup
i∈I

E|Xi|1(|Xi|>λ),

and as the latter term converges to zero, it is in particular finite from a point onwards, and

so supi∈I E|Xi| is finite, proving that (Xi) is bounded in L1. Now fix ε > 0. For any λ > 0,

we have E1F |Xi| = E1F |Xi|1(|Xi|>λ) + E1F |Xi|1(|Xi|≤λ) ≤ supi∈I E|Xi|1(|Xi|>λ) + λP (F ).

Therefore, picking λ so large that supi∈I E|Xi|1(|Xi|>λ) ≤ ε
2 and putting δ = ε

2λ , we obtain

E1F |Xi| ≤ ε for all i ∈ I, as desired.

In order to obtain the converse, assume that (Xi)i∈I is bounded in L1 and that for all

ε > 0, there is δ > 0 such that whenever F ∈ F with P (F ) ≤ δ, we have E1F |Xi| ≤ ε

for all i ∈ I. We need to prove that (Xi)i∈I is uniformly integrable. Fix ε > 0, we wish

to prove that there is λ > 0 such that supi∈I E|Xi|1(|Xi|>λ) ≤ ε. To this end, let δ > 0 be

such that whenever P (F ) ≤ δ, we have E1F |Xi| ≤ ε for all i ∈ I. Note that by Markov’s

inequality, P (|Xi| > λ) ≤ 1
λE|Xi| ≤ 1

λ supi∈I E|Xi|, which is finite as (Xi)i∈I is bounded

in L1. Therefore, there is λ > 0 such that P (|Xi| > λ) ≤ δ for all i. For this λ, we then

have E|Xi|1(|Xi|>λ) ≤ ε for all i ∈ I, in particular supi∈I E|Xi|1(|Xi|>λ) ≤ ε for this λ and

all larger λ as well, proving limλ→∞ supi∈I E|Xi|1(|Xi|>λ) = 0 and thus proving uniform

integrability.

Lemma A.2.4. The property of being uniformly integrable satisfies the following properties.

1. If (Xi)i∈I is a finite family of integrable variables, then (Xi) is uniformly integrable.

2. If (Xi)i∈I and (Yj)j∈J are uniformly integrable, then the union is uniformly integrable.

3. If (Xi)i∈I and (Yi)i∈I are uniformly integrable, so is (αXi + βYi)i∈I for α, β ∈ R.

4. If (Xi)i∈I is uniformly integrable and J ⊆ I, then (Xj)j∈J is uniformly integrable.

5. If (Xi)i∈I is bounded in Lp for some p > 1, (Xi)i∈I is uniformly integrable.

6. If (Xi)i∈I is uniformly integrable and |Yi| ≤ |Xi|, then (Yi)i∈I is uniformly integrable.
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Proof. Proof of (1). Assume that (Xi)i∈I is a finite family of integrable variables. The

dominated convergence theorem then yields

lim
λ→∞

sup
i∈I

E|Xi|1(|Xi|>λ) ≤ lim
λ→∞

∑
i∈I

E|Xi|1(|Xi|>λ) =
∑
i∈I

E lim
λ→∞

|Xi|1(|Xi|>λ),

which is zero. Therefore, (Xi)∈I is uniformly integrable.

Proof of (2). As the maximum function is continuous, we find

lim
λ→∞

max{sup
i∈I

E|Xi|1(|Xi|>λ), sup
j∈J

E|Yj |1(|Yj |>λ)}

= max{ lim
λ→∞

sup
i∈I

E|Xi|1(|Xi|>λ), lim
λ→∞

sup
j∈J

E|Yj |1(|Yj |>λ)},

which is zero when the two families (Xi)i∈I and (Yj)j∈J are uniformly integrable, and the

result follows.

Proof of (3). Assume that (Xi)i∈I and (Yi)i∈I are uniformly integrable. If α and β

are both zero, the result is trivial, so we assume that this is not the case. Let ε > 0.

Using Lemma A.2.3, pick δ > 0 such that whenever P (F ) ≤ δ, we have the inequalities

E1F |Xi| ≤ ε(|α|+ |β|)−1 and E1F |Yi| ≤ ε(|α|+ |β|)−1 for any i ∈ I. Then

E1F |αXi + βYi| ≤ |α|E1F |Xi|+ |β|E1F |Yi|

≤ |α|ε(|α|+ |β|)−1 + |β|ε(|α|+ |β|)−1 ≤ ε,

so that by Lemma A.2.3, the result holds.

Proof of (4). As J ⊆ I, we have supj∈J E|Xj |1(|Xj |>λ) ≤ supi∈I E|Xi|1(|Xi|>λ), and the

result follows.

Proof of (5). Assume that (Xi)i∈I is bounded in Lp for some p > 1. We have

lim
λ→∞

sup
i∈I

E|Xi|1(|Xi|>λ) ≤ lim
λ→∞

λ1−p sup
i∈I

E|Xi|p1(|Xi|>λ) ≤ sup
i∈I

E|Xi|p lim
λ→∞

λ1−p,

which is zero, as p− 1 > 0, so (Xi)i∈I is uniformly integrable.

Proof of (6). In the case where (Xi)∈I is uniformly integrable and (Yi)i∈I is such that

|Yi| ≤ |Xi|, we get E|Yi|1(|Yi|>λ) ≤ E|Xi|1(|Xi|>λ) for all i, and it follows immediately that

(Yi)i∈I is uniformly integrable.

Lemma A.2.5. Let (Xn) be a sequence of random variables indexed by N, and let X be

another variable. Xn converges in L1 to X if and only if (Xn) is uniformly integrable and
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converges in probability to X. If (Xt) is a sequence of random variables indexed by R+, Xt

converges to X in L1 if (Xt) is uniformly integrable and converges in probability to X.

Proof. Consider first the discrete-time case. Assume that Xn converges to X in L1, we need

to prove that (Xn) is uniformly integrable. We use the criterion from Lemma A.2.3. As

(Xn) is convergent in L1, (Xn) is bounded in L1, and Xn converges to X in probability. Fix

ε > 0 and let m be such that whenever n ≥ m, E|Xn−X| ≤ ε
3 . As the finite-variable family

{X1, . . . , Xm, X} is uniformly integrable by Lemma A.2.4, using Lemma A.2.3 we may obtain

δ > 0 such that whenever P (F ) ≤ δ, E1F |X| ≤ ε
3 and E1F |Xn| ≤ ε

3 for n ≤ m. We then

obtain that for all such F ∈ F ,

sup
n
E1F |Xn| ≤ sup

n≤m
E1F |Xn|+ sup

n≥m
E1F |Xn|

≤ ε
3 + E1F |X|+ sup

n≥m
E1F |Xn −X|

≤ 2ε
3 + sup

n≥m
E|Xn −X| ≤ ε,

so (Xn) is uniformly integrable.

Consider the converse statement, where we assume that (Xn) is uniformly integrable and

converges to X in probability. As (Xn) is uniformly integrable, (Xn) is bounded in L1.

Using that there is a subsequence (Xnk
) converging to X almost surely, we obtain by Fatou’s

lemma that E|X| = E limk |Xnk
| ≤ lim infk E|Xnk

| ≤ supnE|Xn|, so X is integrable. By

Lemma A.2.4, (Xn − X) is uniformly integrable. Let ε > 0. Using Lemma A.2.3, we pick

δ > 0 such that whenever P (F ) ≤ δ, we have E1F |Xn − X| ≤ ε. As Xn
P−→ X, there is

m such that whenever n ≥ m, we have P (|Xn − X| ≤ ε) ≤ δ. For such n, we then find

E|Xn −X| = E1(|Xn−X|≤ε)|Xn −X|+ E1(|Xn−X|>ε)|Xn −X| ≤ 2ε, proving that Xn tends

to X in L1.

As for the case of a family (Xt)t≥0 indexed by R+, we see that the proof that Xt is convergent

in L1 to X if Xt is convergent in probability to X and is uniformly integrable may be copied

more or less verbatim from the discrete-time case.

Note that in Lemma A.2.5, one cannot obtain a double implication in the statements re-

garding sequences indexed by R+. As a counterexample, simply put Xt =
∑∞
n=1 n1(t=1− 1

n ).

Then Xt converges to zero in L1, but (Xt)t≥0 is not uniformly integrable as it is not even

bounded in L1.

Lemma A.2.6. Let X be any integrable random variable on probability space (Ω,F , P ). Let

I be the set of all sub-σ-algebras of F . Then, (E(X|G))G∈I is uniformly integrable.
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Proof. Using Jensen’s inequality and the fact that (E(|X||G) > λ) ∈ G, we have

sup
G∈I

E|E(X|G)|1(|E(X|G)|>λ) ≤ sup
G∈I

EE(|X||G)1(E(|X||G)>λ) = sup
G∈I

E|X|1(E(|X||G)>λ).

Fix ε > 0, we show that for λ large enough, the above is smaller than ε. To this end, note

that for any sub-σ-algebra G of F , we have P (E(|X||G) > λ) ≤ 1
λEE(|X||G) = 1

λE|X|
by Markov’s inequality. Applying Lemma A.2.3 with the family {X}, we know that there

is δ > 0 such that whenever P (F ) ≤ δ, E1F |X| ≤ ε. Therefore, picking λ so large that
1
λE|X| ≤ δ, we obtain P (E(|X||G) > λ) ≤ δ and so supG∈I E|X|1(E(|X||G)>λ) ≤ ε. This

concludes the proof.

Lemma A.2.7 (Mazur’s lemma). Let (Xn) be sequence of variables bounded in L2. There

exists a sequence (Yn) such that each Yn is a convex combination of a finite set of elements

in {Xn, Xn+1, . . .} and (Yn) is convergent in L2.

Proof. Let αn be the infimum of EZ2, where Z ranges through all convex combinations of

elements in {Xn, Xn+1, . . .}, and define α = supn αn. If Z =
∑Kn

k=n λkXk for some convex

weights λn, . . . , λKn , we obtain
√
EZ2 ≤

∑Kn

k=n λ
n
k

√
EX2

k ≤ supn
√
EX2

n, in particular we

have αn ≤ supnEX
2
n and so α ≤ supnEX

2
n as well, proving that α is finite. For each n,

there is a variable Yn which is a finite convex combination of elements in {Xn, Xn+1, . . .}
such that E(Yn)2 ≤ αn + 1

n . Let n be so large that αn ≥ α − 1
n , and let m ≥ n, we then

obtain

E(Yn − Ym)2 = 2EY 2
n + 2EY 2

m − E(Yn + Ym)2

= 2EY 2
n + 2EY 2

m − 4E( 1
2 (Yn + Ym))2

≤ 2(αn + 1
n ) + 2(αm + 1

m )− 4αn

= 2( 1
n + 1

m ) + 2(αm − αn).

As (αn) is convergent, it is Cauchy. Therefore, the above shows that (Yn) is Cauchy in L2,

therefore convergent, proving the lemma.

A.3 Discrete-time martingales

In this section, we review the basic results from discrete-time martingale theory. Assume

given a probability field (Ω,F , P ). If (Fn) is a sequence of σ-algebras indexed by N which

are increasing in the sense that Fn ⊆ Fn+1, we say that (Fn) is a filtration. We then refer
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to (Ω,F , (Fn), P ) as a filtered probability space. In the remainder of this section, we will

assume given a filtered probability space of this kind.

A discrete-time stochastic process is a sequence X = (Xn) of random variables defined on

(Ω,F). If Xn is Fn measurable, we say that the process X is adapted. If X is adapted and

E(Xn|Fk) = Xk whenever n ≥ k, we say that X is a martingale. If instead E(Xn|Fk) ≤ Xk,

we say that X is a supermartingale and if E(Xn|Fk) ≥ Xk, we say that X is a submartingale.

Any martingale is also a submartingale and a supermartingale. Furthermore, if X is a

supermartingale, then −X is a submartingale and vice versa.

A stopping time is a random variable T : Ω → N ∪ {∞} such that (T ≤ n) ∈ Fn for any

n ∈ N. We say that T is finite if T maps into N. We say that T is bounded if T maps into a

bounded subset of N. If X is a stochastic process and T is a stopping time, we denote by XT

the process XT
n = XT∧n and call XT the process stopped at T . Furthermore, we define the

stopping time σ-algebra FT by putting FT = {A ∈ F|A ∩ (T ≤ n) ∈ Fn for all n ∈ N0}. FT
is a σ-algebra, and if T is constant, the stopping time σ-algebra is the same as the filtration

σ-algebra.

Lemma A.3.1 (Doob’s upcrossing lemma). Let Z be a supermartingale which is bounded in

L1. Define U(Z, a, b) = sup{n | ∃ 1 ≤ s1 < t1 < · · · sn < tn : Zsk < a,Ztk > b, k ≤ n} for

any a, b ∈ R with a < b. We refer to U(Z, a, b) as the number of upcrossings from a to b by

Z. Then

EU(Z, a, b) ≤ |a|+ supnE|Zn|
b− a

Proof. See Corollary II.48.4 of Rogers & Williams (2000a).

Theorem A.3.2 (Doob’s supermartingale convergence theorem). Let Z be a supermartin-

gale. If Z is bounded in L1, Z is almost surely convergent. If Z is uniformly integrable, Z

is also convergent in L1, and the limit Z∞ satisfies that for all n, E(Z∞|Fn) ≤ Zn almost

surely.

Proof. That Z converges almost surely follows from Theorem II.49.1 of Rogers & Williams

(2000a). The results for the case where Z is uniformly integrable follows from Theorem

II.50.1 of Rogers & Williams (2000a).

Theorem A.3.3 (Uniformly integrable martingale convergence theorem). Let M be a discrete-

time martingale. The following are equivalent:
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1. M is uniformly integrable.

2. M is convergent almost surely and in L1.

3. There is some integrable variable ξ such that Mn = E(ξ|Fn) for n ≥ 1.

In the affirmative, with M∞ denoting the limit of Mn almost surely and in L1, we have for all

n ≥ 1 that Mn = E(M∞|Fn) almost surely, and M∞ = E(ξ|F∞), where F∞ = σ(∪∞n=1Fn).

Proof. From Theorem II.50.1 in Rogers & Williams (2000a), it follows that if (1) holds, then

(2) and (3) holds as well. From Theorem II.50.3 of Rogers & Williams (2000a), we find that

if (3) holds, then (1) and (2) holds. Finally, (2) implies (1) by Lemma A.2.5.

In the affirmative case, Theorem II.50.3 of Rogers & Williams (2000a) shows that we have

M∞ = E(ξ|F∞), and so in particular, Mn = E(ξ|Fn) = E(E(ξ|F∞)|Fn) = E(M∞|Fn)

almost surely.

Lemma A.3.4 (Doob’s L2 inequality). Let M be a martingale such that supn≥1EM
2
n is

finite. Then M is convergent almost surely and in L2 to a square-integrable variable M∞,

and EM∗2∞ ≤ 4EM2
∞, where M∗∞ = supn≥0 |Mn| and M∗2∞ = (M∗∞)2.

Proof. This is Theorem II.52.6 of Rogers & Williams (2000a).

Lemma A.3.5 (Optional sampling theorem). Let Z be a discrete-time supermartingale,

and let S ≤ T be two stopping times. If Z is uniformly integrable, then Z is almost surely

convergent, ZS and ZT are integrable, and E(ZT |FS) ≤ ZS.

Proof. That Z is almost surely convergent follows from Theorem II.49.1 of Rogers & Williams

(2000a). That ZS and ZT are integrable and that E(ZT |FS) ≤ ZS then follows from Theorem

II.59.1 of Rogers & Williams (2000a).

Finally, we consider backwards martingales. Let (Fn)n≥1 be a decreasing sequence of σ-

algebras and let (Zn) be some process. If Zn is Fn measurable and integrable, and it holds

that Xn = E(Xk|Fn) for n ≥ k, we say that (Zn) is a backwards martingale. If instead

Zn ≤ E(Zk|Fn), we say that (Zn) is a backwards supermartingale, and if Zn ≥ E(Zk|Fn),

we say that (Zn) is a backwards submartingale.
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Note that for both ordinary supermartingales and backwards supermartingales, the definition

is essentially the same. Z is a supermartingale when, for n ≥ k, E(Zn|Fk) ≤ Zk, while Z is

a backwards supermartingale when, for n ≥ k, Zn ≤ E(Zk|Fn). Furthermore, clearly, if Z is

a backwards supermartingale, then −Z is a backwards submartingale and vice versa.

Theorem A.3.6 (Backwards supermartingale convergence theorem). Let (Fn) be a decreas-

ing sequence of σ-algebras, and let (Zn) be a backwards supermartingale. If supn≥1EZn is

finite, then Z is uniformly integrable and convergent almost surely and in L1. Furthermore,

the limit satisfies Z∞ ≥ E(Zn|F∞), where F∞ is the σ-algebra ∩∞n=1Fn.

Proof. See Theorem II.51.1 of Rogers & Williams (2000a).

A.4 Brownian motion and the usual conditions

Let (Ω,F , P,Ft) be a filtered probability space. Recall that the usual conditions for a filtered

probability space are the conditions that the filtration is right-continuous in the sense that

Ft = ∩s>tFs, and that for t ≥ 0, Ft contains all null sets in F . Our development of

the stochastic integral is made under the assumption that the usual conditions hold. This

assumption is made for convenience. However, making this assumption, we need to make sure

that these assumptions hold in the situations where we would like to apply the stochastic

integral, in particular in the case of Brownian motion. This is the subject matter of this

section. We are going to show that any filtered probability space (Ω,F , (Ft), P ) has a minimal

extension satisfying the usual conditions, and we are going to show that any probability field

endowed with a Brownian motion satisfying certain regularity properties with respect to

the filtration can be extended to a probability field satisfying the usual conditions with a

Brownian motion satisfying the same regularity properties in relation to the filtration.

Our first aim is to understand how to augment a filtered probability space so that it fulfills

the usual conditions. In the following, N denotes the null sets of F . Before we can construct

the desired augmentation of a filtered probability space, we need a few lemmas.

Lemma A.4.1. Letting G = σ(F ,N ), it holds that G = {F ∪ N | F ∈ F , N ∈ N}, and

P can be uniquely extended from F to a probability measure P ′ on G by defining P ′ as

P ′(F ∪N) = P (F ). The space (Ω,G, P ′) is called the completion of (Ω,F , P ).

Proof. We first prove the equality for G. Define H = {F ∪ N | F ∈ F , N ∈ N}. It is clear
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that H ⊆ G. We need to prove the opposite inclusion. To do so, we prove directly that H is

a σ-algebra containing F and N , the inclusion follows from this. It is clear that Ω ∈ H. If

H ∈ H with H = F ∪N , we obtain, with B ∈ F such that P (B) = 0 and N ⊆ B,

Hc = (F ∪N)c = (Bc ∩ (F ∪N)c) ∪ (B ∩ (F ∪N)c)

= (B ∪ F ∪N)c ∪ (B ∩ (F ∪N)c) = (B ∪ F )c ∪ (B ∩ (F ∪N)c),

so since (B∪F )c ∈ F and B∩(F∪N)c ∈ N , we find Hc ∈ H. If (Hn) ⊆ H with Hn = Fn∪Nn,

we find ∪∞n=1Hn = (∪∞n=1Fn) ∪ (∪∞n=1Nn), showing ∪∞n=1Hn ∈ H. We have now proven that

H is a σ-algebra. Since it contains F and N , we conclude G ⊆ H. It remains to show that

P can be uniquely extended from F to G. We begin by proving that the proposed extension

is well-defined. Let G ∈ G with two decompositions G = F1 ∪N1 and G = F2 ∪N2. We then

have Gc = F c2 ∩N c
2 . Thus, if ω ∈ F c2 and ω ∈ G, then ω ∈ N2, showing F c2 ⊆ Gc ∪N2 and

therefore F1 ∩F c2 ⊆ F1 ∩ (Gc ∪N2) = F1 ∩N2 ⊆ N2, and analogously F2 ∩F c1 ⊆ N1. We can

therefore conclude P (F1 ∩ F c2 ) = P (F2 ∩ F c1 ) = 0 and as a consequence,

P (F1) = P (F1 ∩ F2) + P (F1 ∩ F c2 ) = P (F2 ∩ F1) + P (F2 ∩ F c1 ) = P (F2).

This means that putting P ′(G) = P (F ) for G = F ∪ N is a definition independent of the

representation of G, therefore well-defined. It remains to prove that P ′ is in fact a probability

measure. As P ′ is nonnegative and P ′(Ω) = P (Ω) = 1, it suffices to show P ′ is σ-additive. To

this end, let (Hn) be a sequence of disjoint sets in G, and assume that Hn = Fn ∪Nn. Then

Fn ⊆ Hn for all n, so the sequence (Fn) consists of disjoint sets as well. Therefore, we obtain

P ′(∪∞n=1Hn) = P (∪∞n=1Fn) =
∑∞
n=1 P (Fn) =

∑∞
n=1 P (Hn), as desired. This completes the

proof.

In the following, we let (Ω,G, P ) be the completion of (Ω,F , P ). Note in particular that we

use the same symbol for the measure on F and its extension to the completion G.

Lemma A.4.2. Let H be a sub-σ-algebra of G. Then

σ(H,N ) = {G ∈ G | G∆H ∈ N for some H ∈ H},

where ∆ is the symmetric difference, G∆H = (G \H) ∪ (H \G).

Proof. Define K = {G ∈ G | G∆H ∈ N for some H ∈ H}. We begin by arguing that the

inclusion K ⊆ σ(H,N ) holds. Let G ∈ K and let H ∈ H be such that G∆H ∈ N . We then

find G = (H ∩G)∪ (G \H) = (H ∩ (H ∩Gc)c)∪ (G \H) = (H ∩ (H \G)c)∪ (G \H). Since

P (G∆H) = 0, H \G and G\H are both null sets, and we conclude that G ∈ σ(H,N ). Thus

K ⊆ σ(H,N ). To show the other inclusion, we will show that K is a σ-algebra containing
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H and N . If G ∈ H, we have G∆G = ∅ ∈ N and therefore G ∈ K. If N ∈ N , we have

N∆∅ = N ∈ N , so N ∈ K. We have now shown H,N ⊆ K.

It remains to show that K is a σ-algebra. Clearly, Ω ∈ K. Assume G ∈ K and H ∈ H with

G∆H ∈ N . We then obtain that Gc∆Hc = (Gc \Hc)∪ (Hc \Gc) = (H \G)∪ (G \H) ∈ N ,

so Gc ∈ K as well. Now assume that (Gn) ⊆ K, and let Hn ∈ H be such that Gn∆Hn ∈ N .

Then

(∪∞n=1Gn)∆(∪∞n=1Hn) = (∪∞n=1Gn \ ∪∞n=1Hn) ∪ (∪∞n=1Hn \ ∪∞n=1Gn)

⊆ (∪∞n=1Gn \Hn) ∪ (∪∞n=1Hn \Gn)

= ∪∞n=1Gn∆Hn,

so ∪∞n=1Gn ∈ K. We can now conclude that K is a σ-algebra. Since it contains H and N ,

σ(H,N ) ⊆ K.

Theorem A.4.3. With Ft+ = ∩s>tFs, we have ∩s>tσ(Fs,N ) = σ(Ft+,N ), and the filtra-

tion Gt = σ(Ft+,N ) is the smallest filtration such that Ft ⊆ Gt and such that (Ω,F , (Gt), P )

satisfies the usual conditions. We call (Gt) the usual augmentation of (Ft). We call (Ω,G, P,Gt)
the usual augmentation of the filtered probability space (Ω,F , P,Ft).

Proof. We need to prove three things. First, we need to prove the equality stated in the

lemma. Second, we need to prove that (Ω,F , (Gt), P ) satisfies the usual conditions. And

third, we need to prove that Gt is the smallest filtration containing Ft with this property.

We first prove ∩s>tσ(Fs,N ) = σ(Ft+,N ). Since Ft+ ⊆ Fs for any s > t, it is clear that

σ(Ft+,N ) ⊆ ∩s>tσ(Fs,N ). Now consider F ∈ ∩s>tσ(Fs,N ). By Lemma A.4.2, for any

s > t there is Fs ∈ Fs such that F∆Fs ∈ N . Put Gn = ∪k≥nFt+ 1
k

. Much like in the proof

of Lemma A.4.2, we obtain F∆Gn ⊆ ∪∞k=nF∆Fn+ 1
k
∈ N . Put G = ∩∞n=1Gn. Since Gn is

decreasing and Gn ∈ Ft+ 1
n

, G ∈ Ft+. We find

F∆G = (F \ ∩∞n=1Gn) ∪ (∩∞n=1Gn \ F ) = (∪∞n=1F \Gn) ∪ (∩∞n=1(Gn \ F ))

⊆ (∪∞n=1F \Gn) ∪ (∪∞n=1(Gn \ F )) = ∪∞n=1F∆Gn ∈ N ,

showing F ∈ σ(Ft+,N ) and thereby the inclusion ∩s>tσ(Fs,N ) ⊆ σ(Ft+,N ).

Next, we argue that (Ω,F , (Gt), P ) satisfies the usual conditions. We find that Gt contains

all null sets for all t ≥ 0. To prove right-continuity of the filtration, we merely note

∩s>tGs = ∩s>t ∩u>s σ(Fu,N ) = ∩u>tσ(Fu,N ) = Gt.
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Finally, we prove that Gt is the smallest filtration satisfying the usual conditions such that

Ft ⊆ Gt. To do so, assume that Ht is another filtration satisfying the usual conditions with

Ft ⊆ Ht. We need to prove Gt ⊆ Ht. To do so, merely note that since Ht satisfies the usual

conditions, Ft+ ⊆ Ht+ = Ht, and N ⊆ Ht. Thus, Gt = σ(Ft+,N ) ⊆ Ht.

Theorem A.4.3 shows that for any filtered probability space, there exists a minimal aug-

mentation satisfying the usual conditions, and the theorem also shows how to construct this

augmentation. Next, we consider a p-dimensional Brownian motion W on our basic, still

uncompleted, probability space (Ω,F , P,Ft), understood as a continuous process W with

initial value zero such that the increments are independent and normally distributed, with

Wt −Ws having the normal distribution with mean zero and variance (t − s)Ip, where Ip

denotes the identity matrix of order p. We will define a criterion to ensure that the Brownian

motion interacts properly with the filtration, and we will show that when augmenting the

filtration induced by the Brownian motion, we still obtain a proper interaction between the

Brownian motion and the filtration.

Definition A.4.4. An p-dimensional Ft Brownian motion is a continuous process W adapted

to Ft such that for any t, the distribution of s 7→ Wt+s −Wt is a p-dimensional Brownian

motion independent of Ft.

The independence in Definition A.4.4 means the following. Fix t ≥ 0 and let X be the process

defined by Xs = Wt+s−Wt. X is then a random variable with values in C(R+,Rp), the space

of continuous functions from R+ to Rp, endowed with the σ-algebra C(R+,Rp) induced by

the coordinate mappings. The independence of X and Ft means that for any A ∈ C(R+,Rp)
and any B ∈ Ft, P ((X ∈ A) ∩B) = P (X ∈ A)P (B).

In what follows, we will assume that the filtration Ft is the one induced by the Brownian

motion W . W is then trivially a Ft Brownian motion. Letting (Ω,G, P,Gt) be the usual

augmentation of (Ω,F , P,Ft) as given in Theorem A.4.3, we want to show that W is a Gt
Brownian motion.

Lemma A.4.5. W is also a Brownian motion with respect to the filtration Ft+.

Proof. It is clear by the continuity of W that W is adapted to Ft+. We need to show that

for any t ≥ 0, s 7→ Wt+s − Wt is independent of Ft+. Let t ≥ 0 be given and define

Xs = Wt+s −Wt. We need to show that for A ∈ C(R+,Rp) and B ∈ Ft+, it holds that

P ((X ∈ A) ∩B) = P (X ∈ A)P (B). To do so, it suffices by Lemma A.1.19 to prove that for
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any 0 ≤ t1 ≤ · · · ≤ tn, we have that

P ((Xt1 ∈ A1, . . . , Xtn ∈ An) ∩B) = P (Xt1 ∈ A1, . . . , Xtn ∈ An)P (B),

where A1, . . . , An are open sets in Rp. To this end, let 0 ≤ t1 ≤ · · · ≤ tn and be given let

A1, . . . , An be open sets in Rp, and let B ∈ Ft+. Using continuity of W and the fact that

A1, . . . , An are open,

P ((Xt1 ∈ A1, . . . , Xtn ∈ An) ∩B) = E1B

n∏
k=1

1Ak
(Xtk) = E1B

n∏
k=1

1Ak
(Wt+tk −Wt)

= E1B

n∏
k=1

lim
n→∞

1Ak
(Wt+tk+ 1

n
−Wt+ 1

n
)

= lim
n→∞

E1B

n∏
k=1

1Ak
(Wt+tk+ 1

n
−Wt+ 1

n
).

Next, note that for any ε > 0 and s ≥ 0, Wt+s+ε −Wt+ε is independent of Ft+ε. Therefore,

Wt+s+ε −Wt+ε is in particular independent of Ft+, and we obtain

lim
n→∞

E1B

n∏
k=1

1Ak
(Wt+tk+ 1

n
−Wt+ 1

n
) = lim

n→∞
P (B)E

n∏
k=1

1Ak
(Wt+tk+ 1

n
−Wt+ 1

n
)

= P (B)E

n∏
k=1

1Ak
(Wt+tk −Wt)

= P (Xt1 ∈ A1, . . . , Xtn ∈ An)P (B)

This proves the claim.

Theorem A.4.6. W is a Gt Brownian motion.

Proof. It is clear that W is adapted to Gt. We therefore merely need to show that for t ≥ 0,

s 7→ Wt+s −Wt is independent of Gt. Let t ≥ 0 and define X by putting Xs = Wt+s −Wt.

With N the null sets of F , we have by Theorem A.4.3 that Gt = σ(Ft+,N ). Thus, since

both Ft+ and the complements of N contain Ω, the sets of the form C ∩D, where C ∈ Ft+
and Dc ∈ N , form a generating system for Gt, stable under intersections. It will suffice to

show P ((X ∈ A) ∩ (C ∩D)) = P (X ∈ A)P (C ∩D) for any A ∈ C(R+,Rn). Lemma A.4.5

yields P ((X ∈ A) ∩ (C ∩D)) = P ((X ∈ A) ∩ C) = P (X ∈ A)P (C) = P (X ∈ A)P (C ∩D),

and the desired conclusion follows.
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A.5 Exercises

Exercise A.1. Let (Xn) be a sequence of integrable variables. Define the integrability index

c of (Xn) by putting c = infε>0 supF∈F :P (F )≤ε supn≥1E1F |Xn|. Show that (Xn) is uniformly

integrable if and only if (Xn) is bounded in L1 and c = 0. Show that if Xn
P−→ X, where X

is integrable, we have lim supnE|Xn −X| ≤ c.

Exercise A.2. Let (Ω,F , P ) be a probability space endowed with a sequence (Xn)n≥1 of

independent and identically distributed variable with mean ξ. Use the backwards Martingale

Convergence Theorem and Kolmogorov’s zero-one law to show that 1
n

∑n
k=1Xk converges

almost surely and in L1 to ξ.

Exercise A.3. Let (Xi)i∈I be a uniformly integrable family, and let A denote the closure

of this family in L1, that is, the set of all integrable variables X which are limits in L1 of

sequences (Xin) in (Xi)i∈I . Then A is uniformly integrable as well.

Exercise A.4. Let (Xn) be a uniformly integrable sequence of variables. Prove that exists

a sequence (Yn) such that each Yn is a convex combination of a finite set of elements in

{Xn, Xn+1, . . .} and (Yn) is convergent in L1.

Exercise A.5. Let (Ω,F , (Fn), P ) be a filtered probability space, and let (Mn)n≥0 be

a martingale, zero at zero, with supn≥0EM
2
n finite. Define [M ]n =

∑n
k=1(Mk −Mk−1)2

for n ≥ 1 and [M ]0 = 0. Also define 〈M〉n =
∑n
k=1E((Mk −Mk−1)2|Fk−1) for n ≥ 1 and

〈M〉0 = 0. Show that [M ] and 〈M〉 are increasing and adapted, and show that both M2−[M ]

and M2 − 〈M〉 are uniformly integrable martingales, zero at zero.

Exercise A.6. Let (Ω,F , P ) be a probability space endowed with a sequence (Xn)n≥1 of

independent and identically distributed variable such that for some p with 0 < p < 1, it holds

that P (Xn = 1) = p and P (Xn = −1) = 1 − p. Put Zn =
∑n
k=1Xk for n ≥ 1. Let a ∈ N

and define Ta = inf{n ≥ 1 | Zn = a} and T−a = inf{n ≥ 1 | Zn = −a}. Put c = 1−p
p . Show

that when p = 1
2 , P (Ta > Ta−) = 1

2 , and when p 6= 1
2 , P (Ta > Ta−) = 1−ca

1−c2a .

Exercise A.7. Let (Ω,F , P ) be a probability space endowed with a sequence (Xt)t≥0 of

integrable variables, and let X be some other variable. Assume that the mapping t 7→ Xt

from R+ to L1 is continuous. Show that (Xt)t≥0 converges in L1 to X if and only if (Xt)t≥0

is uniformly integrable and converges in probability to X.
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Exercise A.8. Let (Xn) be a bounded sequence of variables. Show that if Xn converges in

probability, it converges in Lp for any p ≥ 1.

Exercise A.9. Let (Xn) be a uniformly integrable sequence of variables. Show that

lim supnEXn ≤ E lim supnXn.
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Appendix B

Hints and solutions for exercises

B.1 Hints and solutions for Chapter 1

Hints for exercise 1.1. For the inclusion FS∨T ⊆ σ(FS ,FT ), use that for any F , it holds that

F = (F ∩ (S ≤ T )) ∪ (F ∩ (T ≤ S)). ◦

Hints for exercise 1.2. Use Lemma 1.1.10 to conclude that T is a stopping time. To show

that XT = a whenever T < ∞, Show that whenever T is finite, there is a sequence (un)

depending on ω such that T ≤ un ≤ T + 1
n and such that Xun

= a. Use this to obtain the

desired result. ◦

Hints for exercise 1.5. Use Lemma 1.1.7, to show FT ⊆ ∩∞n=1FTn . In order to obtain the

other inclusion, let F ∈ ∩∞n=1FTn
. Show that F ∩(T ≤ t) = ∩∞n=1∪∞m=1∩∞k=mF ∩(Tk ≤ t+ 1

n ).

Use this and the right-continuity of the filtration to prove that F ∩(T ≤ t) ∈ Ft, and conclude

∩∞n=1FTn
⊆ FT from this. ◦

Hints for exercise 1.7. First show that for any t ≥ 0, Ztn converges to Zt whenever (tn)

is a sequence in R+ which either increases or decreases to t. Use this to obtain that Z is

continuous in L1 at t using a proof by contradiction. ◦

Hints for exercise 1.9. In order to obtain that M ∈ cMu when (MT )T∈C is uniformly

integrable, use the continuity of M , Lemma 1.2.9 and Lemma A.2.5. ◦
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Hints for exercise 1.12. To show that M is not uniformly integrable, assume that M is in fact

uniformly integrable. Prove that 1
tMt then converges to zero in L1 and obtain a contradiction

from this. ◦

Hints for exercise 1.13. In order to obtain the final two convergences in probability, apply

the relation W 2
t = 2

∑2n

k=1Wtnk−1
(Wtnk

−Wtnk−1
) +

∑2n

k=1(Wtnk
−Wtnk−1

)2. ◦

Hints for exercise 1.14. In order to obtain that T is a stopping time, write T as the minimum

of two variables which are stopping times according to Lemma 1.1.10. In order to find that

the distribution of WT , use the law of the iterated logarithm to show that P (T < ∞) = 1

and conclude that the distribution of WT is concentrated on {a, b}. Then use the optional

sampling theorem on the uniformly integrable martingale WT to obtain the distribution of

WT . ◦

Hints for exercise 1.15. In order to prove that Mα is a martingale, recall that for any

0 ≤ s ≤ t, Wt −Ws is independent of Fs and has a normal distribution with mean zero and

variance t − s. In order to obtain the result on the Laplace transform of the stopping time

T , first reduce to the case of a ≥ 0. Note that by the properties of Brownian Motion, T is

almost surely finite. Show that (Mα)T is uniformly integrable and use the optional sampling

theorem in order to obtain the result. ◦

Hints for exercise 1.16. For the first process, use W 3
t = (Wt−Ws)

3 +3W 2
t Ws−3WtW

2
s +W 3

s

and calculate conditional expectations using the properties of the Ft Brownian motion. Apply

a similar method to obtain the martingale property of the second process. ◦

Hints for exercise 1.17. To show the equality for P (T < ∞), consider the martingale Mα

defined in Exercise 1.15 by Mα
t = exp(αWt − 1

2α
2t) for α ∈ R. Show that the equality

E1(T<∞)M
2b
T = exp(2ab)P (T < ∞) holds. Recalling that limt→∞

Wt

t = 0, use the optional

sampling theorem and the dominated convergence theorem to show that E1(T<∞)M
2b
T = 1.

Use this to obtain the result. ◦

Hints for exercise 1.18. First show that we always have 0 < T ≤ 1 and W 2
T = a(1−T ). From

Theorem 1.2.1 and Exercise 1.16, it is known that the processes W 2
t − t and W 4

t −6tW 2
t +3t2

are in cM. Use these facts to obtain expressions for ET and ET 2. ◦

Solution to exercise 1.1. By Lemma 1.1.7, FS ⊆ FS∨T and FT ⊆ FS∨T , showing that
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σ(FS ,FT ) ⊆ FS∨T . We need to prove the other implication. Let F ∈ FS∨T . We find

F ∩ (S ≤ T ) ∩ (T ≤ t) = F ∩ (S ≤ T ) ∩ (S ∨ T ≤ t)

= (F ∩ (S ∨ T ≤ t)) ∩ ((S ≤ T ) ∩ (S ∨ T ≤ t)).

Here, F ∩ (S ∨ T ≤ t) ∈ Ft as F ∈ FS∨T , and (S ≤ T ) ∩ (S ∨ T ≤ t) ∈ Ft as we have

(S ≤ T ) ∈ FS∧T ⊆ FS∨T by Lemma 1.1.13. We conclude F ∩ (S ≤ T ) ∈ FT . Analogously,

F ∩ (T ≤ S) ∈ FS . From this, we obtain F ∈ σ(FS ,FT ), as desired. �

Solution to exercise 1.2. As one-point sets are closed, we know from Lemma 1.1.10 that T

is a stopping time. When T <∞, it holds that {t ≥ 0|Xt = a} is nonempty, and for any n,

T + 1
n is not a lower bound for the set {t ≥ 0 | Xt = a}. Therefore, there is un < T + 1

n such

that u ∈ {t ≥ 0 | Xt = a}. Furthermore, as T is a lower bound for {t ≥ 0 | Xt = a}, un ≥ T .

Thus, by continuity, XT = limnXun
= a. �

Solution to exercise 1.3. For any ω such that T (ω) > 0, X(ω) has a discontinuity at T (ω),

so X is almost surely not continuous. Now let t ≥ 0 and consider a sequence (tn) tending to

t. Let An be the interval with endpoints tn and t. As tn tends to t, the Lebesgue measure of

An tends to zero. For any ε > 0 with ε < 1, we then find

lim
n
P (|Xtn −Xt| > ε) = lim

n
P (T is between tn and t) = lim

n

∫ ∞
0

1An
exp(−t) dt,

and the latter is zero by the dominated convergence theorem. Thus, Xtn converges in prob-

ability to Xt. �

Solution to exercise 1.4. Fix t ≥ 0 and let Zεt = sup{Xs | s ∈ R+, |t− s| ≤ ε}. Note that as

X is continuous, we also have Zεt = sup{Xs|s ∈ Q+, |t − s| ≤ ε}, and therefore Zεt is Ft+ε
measurable. Also note that we always have Xt ≤ Zεt . Therefore, Xt = Zεt if and only if

Xs ≤ Xt for all s ≥ 0 with |t− s| ≤ ε. In particular, if 0 < ε′ < ε, Xt = Zεt implies Xt = Zε
′

t .

Therefore, fixing δ > 0, we obtain

F = ∪ε>0(Xt = Zεt ) = ∪ε∈Q+,0<ε≤δ(Xt = Zεt ) ∈ Ft+δ.

Consequently, F ∈ ∩s>tFs = Ft, as desired. �

Solution to exercise 1.5. First note that by Lemma 1.1.8, T is a stopping time. In particular,

FT is well-defined. Using Lemma 1.1.7, the relation T ≤ Tn yields FT ⊆ FTn
, so that

FT ⊆ ∩∞n=1FTn
. Conversely, let F ∈ ∩∞n=1FTn

, we want to show F ∈ FT , and to this end, we

have to show F ∩ (T ≤ t) ∈ Ft for any t ≥ 0. Fixing t ≥ 0, the convergence of Tn to T yields

F ∩ (T ≤ t) = ∩∞n=1 ∪∞m=1 ∩∞k=mF ∩ (Tk ≤ t+ 1
n ). Now, as F ∈ ∩∞n=1FTn

, we have F ∈ FTn
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for all n. Therefore, F ∩ (Tk ≤ t+ 1
n ) ∈ Ft+ 1

n
, and so ∪∞m=1 ∩∞k=m F ∩ (Tk ≤ t+ 1

n ) ∈ Ft+ 1
n

.

As this sequence of sets is decreasing in n, we find that ∩∞n=1 ∪∞m=1 ∩∞k=mF ∩ (Tk ≤ t + 1
n )

is in ∩∞n=1Ft+ 1
n

. By right-continuity of the filtration, ∩∞n=1Ft+ 1
n

= Ft, and so we finally

conclude F ∩ (T ≤ t) ∈ Ft, proving F ∈ FT . We have now shown ∩∞n=1FTn
⊆ FT , and so

FT = ∩∞n=1FTn . This concludes the proof. �

Solution to exercise 1.6. Let 0 ≤ s ≤ t. As Gs ⊆ Fs and Ms is Gs measurable, we find

E(Mt|Gs) = E(E(Mt|Fs)|Gs) = E(Ms|Gs) = Ms. This proves the result. �

Solution to exercise 1.7. First assume that (tn) is an increasing sequence in R+ with finite

limit t ≥ 0. By Lemma 1.2.2 and Lemma A.2.4, (Ztn) is then a uniformly integrable discrete-

time supermartingale. Therefore, by Theorem A.3.2, Ztn is convergent almost surely and in

L1. As Z is continuous, Ztn is convergent almost surely to Zt. Therefore, we conclude that

Ztn converges almost surely to Zt.

Next, assume that (tn) is a decreasing sequence in R+ with finite limit t ≥ 0. For n ≥ k, we

then have tk ≥ tn and so Ztn ≥ E(Ztk |Ftn) by the supermartingale property. Therefore, (Ztn)

is a backwards submartingale. By Lemma A.2.4, it is uniformly integrable, and therefore, by

Theorem A.3.6, it is convergent almost surely and in L1. By continuity of Z, we find that

Ztn converges almost surely to Zt, and therefore, we may conclude that Ztn converges to Zt

in L1.

We are now ready to prove continuity in L1 of t 7→ Zt. Fix t ≥ 0. Assume that Z is not

continuous in L1 at t. Then, there exists ε > 0 such that for any δ > 0, there is s ≥ 0 with

|s − t| ≤ δ such that E|Zt − Zs| ≥ ε. Therefore, we obtain a sequence (sn) such that sn

converges to t and E|Zsn − Zt| ≥ ε. As any sequence in R has a monotone subsequence, we

obtain a sequence (tn) such that tn either converges downwards or upwards to t, and such

that E|Ztn − Zt| ≥ ε. This is in contradiction with our earlier conclusions, and we conclude

that Z must be continuous in L1 at t. This proves the result. �

Solution to exercise 1.8. Define α(t) = supF∈F∞ infG∈Ft
P (G∆F ). We will prove the result

by a kind of division into positive and negative parts. First, let F = (Mt −M∞ ≥ 0), we

then have F ∈ F∞. Fix ε > 0 and let G be an element of Ft such that P (G∆F ) ≤ α(t) + ε.
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Using that F c = (Mt −M∞ < 0), we obtain

E1F |Mt −M∞| = E1F∩G(Mt −M∞) + E1F∩Gc |Mt −M∞|

= E1G(Mt −M∞)− E1G∩F c(Mt −M∞) + E1F∩Gc |Mt −M∞|

= E1G(Mt −M∞) + E1G∩F c |Mt −M∞|+ E1F∩Gc |Mt −M∞|

≤ E1G(Mt −M∞) + 2cP (G∆F ) ≤ E1G(Mt −M∞) + 2c(α(t) + ε).

Now, by Theorem 1.2.5, we have Mt = E(M∞|Ft) almost surely. As G ∈ Ft, we therefore find

E1G(Mt−M∞) = E1GMt−E1GM∞ = 0. All in all, we obtain E1F |Mt−M∞| ≤ 2c(α(t)+ε).

As ε > 0 was arbitrary, this allows us to conclude that E1F |Mt −M∞| ≤ 2cα(t). Making

the same calculations with the set (Mt − M∞ ≤ 0) and adding up the results, we find

E|Mt −M∞| ≤ 4cα(t), as desired. �

Solution to exercise 1.9. If M ∈ cMu, we have by Theorem 1.2.7 that MT = E(M∞|FT ) for

all T ∈ C. Therefore, Lemma A.2.6 shows that (MT )T∈C is uniformly integrable. Conversely,

assume that (MT )T∈C is uniformly integrable, we will use Lemma 1.2.9 to show thatM ∈ cM.

Let S be any bounded stopping time, and let (Tn) be a localising sequence with the property

that MTn ∈ cMu. As S is bounded, MTn∧S converges almost surely to MS . As it holds

that (MTn∧S) ⊆ (MT )T∈C , (MTn∧S) is uniformly integrable, and so Lemma A.2.5 shows that

MTn∧S converges in L1 to MS . In particular, EMS = limnEMTn∧S = limnEM
Tn

S = 0 by

Theorem 1.2.7. Lemma 1.2.9 then shows that M ∈ cM. As (Mt)t≥0 ⊆ (MT )T∈C , M is

uniformly integrable, and so M ∈ cMu as well. �

Solution to exercise 1.10. By Lemma 1.4.9, we have

[MT −MS ] = [MT ]− 2[MT ,MS ] + [MS ] = [M ]T − 2[M ]S + [MS ] = [M ]T − [M ]S .

Therefore, if [M ]S = [M ]T almost surely, we obtain that [MT −MS ]∞ is almost surely zero.

As [MT −MS ] is increasing, this implies that [MT −MS ] is evanescent, and so by Lemma

1.4.9, MT = MS almost surely. �

Solution to exercise 1.11. Since XS∧T = (XS)T , we find by Lemma 1.2.8 that XS∧T is in

cMu. As XS∧t+XT∧t = X(S∧T )∧t+X(S∨T )∧t, we find XS∨T = XS +XT −XS∧T , so XS∨T

is in cMu as well, since it is a linear combination of elements in cMu. �

Solution to exercise 1.12. Recall from Theorem 1.2.1 that M is a martingale. In order to

show that M is not uniformly integrable, assume that M is in fact uniformly integrable, we

seek a contradiction. We know by Theorem 1.2.5 that there is M∞ such that Mt converges

almost surely and in L1 to M∞. However, we then obtain

lim
t→∞

E| 1tMt| = lim
t→∞

1
tE|Mt| ≤ lim

t→∞
1
tE|Mt −M∞|+ 1

tE|M∞| = 0,
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so 1
tMt converges in L1 to zero. In particular 1

tMt converges in distribution to the Dirac

measure at zero, which is in contradiction to the fact that as 1
tMt = ( 1√

t
Wt)

2 − 1, 1
tMt has

the law of a standard normal distribution transformed by the transformation x 7→ x2 − 1 for

any t ≥ 0. Therefore, Mt cannot be convergent in L1, and then, again by Theorem 1.2.5, M

cannot be uniformly integrable. �

Solution to exercise 1.13. Put Un =
∑2n

k=1(Wtnk
−Wtnk−1

)2, we need to show that Un
P−→ t.

By the properties of the Brownian motion W , the variables Wtnk
−Wtnk−1

are independent and

normally distributed with mean zero and variance t2−n. Defining the variables Znk by putting

Znk = ( 1√
t2−n

(Wtnk
−Wtnk−1

))2, we find that Znk , k = 1, . . . , 2n are independent and distributed

as an χ2 distribution with one degree of freedom, and we have Un = t2−n
∑2n

k=1 Z
n
k . As

EZnk = 1 and V Znk = 2, we then obtain EUn = t and V Un = (t2−n)2
∑2n

k=1 2 = 2t22−n. In

particular, Chebychev’s inequality yields for any ε > 0 that

lim
n→∞

P (|Un − t| > ε) ≤ 1
ε2 lim
n→∞

E(Un − t)2 = 1
ε2 lim
n→∞

V Un = 1
ε2 2t2 lim

n→∞
2−n = 0,

which proves that Un
P−→ t, as desired. The two convergences in probability then follow from

the equalities

W 2
t = 2

2n∑
k=1

Wtnk−1
(Wtnk

−Wtnk−1
) +

2n∑
k=1

(Wtnk
−Wtnk−1

)2

= 2

2n∑
k=1

Wtnk
(Wtnk

−Wtnk−1
)−

2n∑
k=1

(Wtnk
−Wtnk−1

)2,

by rearrangement and letting n tend to infinity. �

Solution to exercise 1.14. As T = min{inf{t ≥ 0 | Wt = −a}, inf{t ≥ 0 | Wt = b}}, T is a

stopping time by Lemma 1.1.7 and Lemma 1.1.10. As for the distribution of WT , first note

that by the law of the iterated logarithm, lim supt→∞ |Wt|(2t log log t)−1/2 = 1 almost surely,

so that |Wt| almost surely is larger than any fixed number at some timepoint. Therefore,

P (T <∞) = 1. Next, note that since W has initial value zero and both a and b are nonzero,

it follows that if T is finite and T = inf{t ≥ 0 | Wt = −a}, we have WT = −a, and if T is

finite and T = inf{t ≥ 0 | Wt = b}, we have WT = b. Therefore, WT is almost surely either

−a or b. Furthermore, note that whenever 0 ≤ t < T , Wt > −a and Wt < b. Therefore, WT

is a bounded martingale, in particular uniformly integrable, and so EWT = 0 by Theorem

1.2.7. This leads us to conclude

0 = EWT = bP (WT = b)− aP (WT = −a)

= bP (WT = b)− a(1− P (WT = b)) = (a+ b)P (WT = b)− a,
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so that P (WT = b) = a
a+b and P (WT = a) = b

a+b .

Consider now the case where a 6= b, we have to show that [−WT ] and [WT ] are the same,

while −WT and WT have different distributions. From what we already have shown, WT

is concentrated on {−a, b} while −WT is concentrated on {a,−b}, and in both cases, both

points have nonzero probability. As these two sets are not the same when a 6= b, −WT and

WT do not have the same distribution. As these two variables are the limits of −WT
t and

WT
t as t tends to infinity, it follows that −WT and WT cannot have the same distribution.

However, by Lemma 1.4.9, we have [−WT ] = [−WT ,−WT ] = [WT ,WT ] = [WT ], so the

quadratic variation processes are equal. �

Solution to exercise 1.15. Fix α and let 0 ≤ s ≤ t. We then find

E(Mα
t |Fs) = Mα

s E(exp(α(Wt −Ws)− 1
2α

2(t− s))|Fs)

= Mα
s E(exp(α(Wt −Ws)− 1

2α
2(t− s))) = Mα

s ,

using that Wt −Ws is independent of Fs and normally distributed, and for any variable X

which is standard normally distributed, E exp(tX) = exp( 1
2 t

2) for any t ∈ R. Thus, Mα is a

martingale.

Next, we consider the result on the stopping time T . By symmetry, it suffices to consider

the case where a ≥ 0. By the law of the iterated logarithm, T is almost surely finite.

Therefore, WT is bounded from above by a and WT = a. Fixing some α ≥ 0, we then

find (Mα)Tt = exp(αWT
t − 1

2α
2(T ∧ t)) ≤ exp(αa). Therefore, by Lemma A.2.4 (Mα)T is

uniformly integrable. Now, the almost sure limit of (Mα)T is exp(αa− 1
2α

2T ). By Theorem

1.2.7, we therefore find 1 = E(Mα)T∞ = E exp(αa − 1
2α

2T ) = exp(αa)E exp(− 1
2α

2T ). This

shows E exp(− 1
2α

2T ) = exp(−αa). Thus, if we now fix β ≥ 0, we find

E exp(−βT ) = E exp(− 1
2 (
√

2β)2T ) = exp(−
√

2βa),

as desired. �

Solution to exercise 1.16. Fix 0 ≤ s ≤ t. As (Wt −Ws)
3 = W 3

t − 3W 2
t Ws + 3WtW

2
s −W 3

s ,

we obtain

E(W 3
t − 3tWt|Fs) = E((Wt −Ws)

3|Fs) + E(3W 2
t Ws − 3WtW

2
s +W 3

s |Fs)− 3tWs

= E(Wt −Ws)
3 + 3WsE(W 2

t |Fs)− 3W 2
sE(Wt|Fs) +W 3

s − 3tWs

= 3WsE(W 2
t − t|Fs)− 2W 3

s = 3Ws(W
2
s − s)− 2W 3

s = W 3
s − sWs.

As regards the second process, we have (Wt−Ws)
4 = W 4

t −4W 3
t Ws+6W 2

t W
2
s −4WtW

3
s +W 4

s ,
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and so

E(W 4
t |Fs) = E((Wt −Ws)

4|Fs) + E(4W 3
t Ws − 6W 2

t W
2
s + 4WtW

3
s −W 4

s |Fs)

= 3(t− s)2 + 4WsE(W 3
t |Fs)− 6W 2

sE(W 2
t |Fs) + 4W 3

sE(Wt|Fs)−W 4
s

= 3(t− s)2 + 4WsE(W 3
t − 3tWt|Fs) + 12tW 2

s − 6W 2
sE(W 2

t |Fs) + 3W 4
s

= 3(t− s)2 + 4Ws(W
3
s − 3sWs) + 12tW 2

s − 6W 2
sE(W 2

t |Fs) + 3W 4
s

= 3(t− s)2 + 12(t− s)W 2
s − 6W 2

sE(W 2
t − t|Fs)− 6tW 2

s + 7W 4
s

= 3(t− s)2 + 12(t− s)W 2
s − 6W 2

s (W 2
s − s)− 6tW 2

s + 7W 4
s

= 3(t− s)2 + 6(t− s)W 2
s +W 4

s .

Therefore, we find

E(W 4
t − 6tW 2

t + 3t2|Fs) = 3(t− s)2 + 6(t− s)W 2
s +W 4

s − 6tE(W 2
t |Fs) + 3t2

= 3(t− s)2 + 6(t− s)W 2
s +W 4

s − 6tE(W 2
t − t|Fs)− 3t2

= 3(t− s)2 + 6(t− s)W 2
s +W 4

s − 6t(W 2
s − s)− 3t2

= W 4
s − 6sW 2

s + 3(t− s)2 + 6st− 3t2

= W 4
s − 6sW 2

s + 3s2,

as desired. �

Solution to exercise 1.17. We have T = inf{t ≥ 0 | Wt − a − bt ≥ 0}, where the process

Wt − a− bt is continuous and adapted. Therefore, Lemma 1.1.10 shows that T is a stopping

time. Now consider a > 0 and b > 0. Note that Wt − a− bt has initial value −a 6= 0, so we

always have T > 0. In particular, again using continuity, we have WT = a + bT whenever

T is finite. Now, by Exercise 1.15, we know that for any α ∈ R, the process Mα defined by

Mα
t = exp(αWt − 1

2α
2t) is a martingale. We then find

E1(T<∞)M
α
T = E1(T<∞) exp(αWT − 1

2α
2T )

= E1(T<∞) exp(α(a+ bT )− 1
2α

2T )

= exp(αa)E1(T<∞) exp(T (αb− 1
2α

2)).

Now note that the equation αb = 1
2α

2 has the unique nonzero solution α = 2b. Therefore,

we obtain E1(T<∞)M
2b
T = exp(2ab)P (T < ∞). In order to show the desired equality, it

therefore suffices to prove E1(T<∞)M
2b
T = 1. To this end, note that by the law of the

iterated logarithm, using that b 6= 0, limt→∞ 2bWt− 1
2 (2b)2t = limt→∞ t(2bWt

t − 2b2) = −∞,

so that limt→∞M2b
t = 0. Therefore, 1(T<∞)M

2b
T = M2b

T and it suffices to prove EM2b
T = 1.
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To this end, note that

M2b
T∧t = exp

(
2bWT∧t −

1

2
(2b)2(T ∧ t)

)
≤ exp

(
2b(a+ b(T ∧ t))− 1

2
(2b)2(T ∧ t)

)
= exp(2ba).

Therefore, (M2b)T is bounded by the constant exp(2ba), in particular it is uniformly inte-

grable. Thus, Theorem 1.2.7 shows that EM2b
T = E(M2b)T∞ = 1. From this, we finally

conclude P (T <∞) = exp(−2ab). �

Solution to exercise 1.18. Since W 2
t −a(1− t) is a continuous adapted process, Lemma 1.1.10

shows that T is a stopping time. Now let a > 0. As W 2
t − a(1− t) has initial value −a 6= 0,

we always have T > 0. Furthermore, as a(1− t) < 0 when t > 1, we must have T ≤ 1, so T

is a bounded stopping time. In particular, T has moments of all orders, and by continuity,

W 2
T = a(1− T ).

In order to find the mean of T , recall from Theorem 1.2.1 that W 2
t − t is a martingale. As

T is a bounded stopping time, we find 0 = E(W 2
T − T ) = E(a(1− T )− T ) = a− (1 + a)ET

by Theorem 1.2.7, so ET = a
1+a . Next, we consider the second moment. Recall by Exercise

1.16 that W 4
t − 6tW 2

t + 3t2 is in cM. Again using Theorem 1.2.7, we obtain

0 = E(W 4
T − 6TW 2

T + 3T 2)

= E(a2(1− T )2 − 6Ta(1− T ) + 3T 2)

= E(a2(1− 2T + T 2) + 6a(T 2 − T ) + 3T 2)

= (a2 + 6a+ 3)ET 2 − (2a2 + 6a)ET + a2.

Recalling that ET = a
1+a , we find

(2a2 + 6a)ET − a2 =
a(2a2 + 6a)

1 + a
− (1 + a)a2

1 + a
=
a3 + 5a2

1 + a
,

from which we conclude

ET 2 =
a3 + 5a2

(1 + a)(a2 + 6a+ 3)
=

a3 + 5a2

a3 + 7a2 + 9a+ 3
,

concluding the solution to the exercise. �

Solution to exercise 1.19. By Theorem 1.4.8, we know that W ∈ cM` with [W ]t = t. In

particular, we find that when p > 1
2 , we have, with Wn denoting the process stopped at the

deterministic timepoint n,

lim
n→∞

[n−pWn]∞ = lim
n→∞

[n−pWn, n−pWn]∞ = lim
n→∞

n−2p[Wn]∞ = lim
n→∞

n1−2p = 0,
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since 1 − 2p < 0. In particular, [n−pWn]∞
P−→ 0. Therefore, Lemma 1.4.11 shows that

(n−pWn)∗∞
P−→ 0, which is equivalent to stating that 1

np sup0≤s≤n |Ws|
P−→ 0. �

B.2 Hints and solutions for Chapter 2

Hints for exercise 2.3. Define Tn = inf{t ≥ 0 | [M ]t > n}. Show that MTn is almost surely

convergent for all n. Use that Fc([M ]) ⊆ ∪∞n=1(Tn = ∞) ⊆ ∪∞n=1(MTn = M) to argue that

P (Fc([M ]) \ Fc(M)) = 0. Apply a similar argument to obtain P (Fc(M) \ Fc([M ])) = 0. ◦

Hints for exercise 2.4. Since convergent sequences are bounded, it is immediate that the

inclusion Fc(X) ⊆ (suptXt < ∞) holds. Therefore, in order to obtain the ersult, it suffices

to argue that P (Fc(X) \ (suptXt < ∞)) = 0. To this end, define Tn = inf{t ≥ 0|Xt > n}
and put Zn = n−XTn . Show that Zn is a supermartingale which is bounded in L1 and so

almost surely convergent. Note that (suptXt < ∞) ⊆ ∪∞n=1(X = n − Zn). Combine these

results in order to obtain the desired result. ◦

Hints for exercise 2.5. The inclusion Fc(M) ∩ Fc(A) ⊆ Fc(X) is immediate, so it suffices

to consider the other inclusion. To this end, apply Exercise 2.4 to prove the relationships

P (Fc(M)∆(suptMt <∞)) = 0 and P (Fc(X)∆(suptXt <∞)) = 0. Use this and M ≤ X to

obtain the desired result. ◦

Hints for exercise 2.6. In order to show that H ·W is in cM if E
∫ t

0
H2
s ds is finite for all

t ≥ 0, show that the stopped process (H ·W )t is in cM2. ◦

Hints for exercise 2.7. The issue regarding the measure µM being well-defined is that the

family of measures induced by [M ](ω) for ω ∈ Ω is not uniformly bounded, and so Theorem

A.1.12 and Theorem A.1.13 cannot be directly applied. Let νω be the nonnegative measure

induced by [M ](ω) by Theorem A.1.5. The proposed definition of µM is then,for A ∈ B+⊗F ,

to put µM (A) =
∫ ∫

1A(t, ω) dνω(t) dP (ω). In order to show that this is well-defined, it is

necessary to argue that t 7→ 1A(t, ω) is B+ measurable for all ω ∈ Ω whenever A ∈ B+ ⊗ F ,

such that the inner integral is well-defined, and that
∫

1A(t, ω) d[M ](ω)t is F measurable

whenever A ∈ B+ ⊗ F , such that the outer integral is well-defined. That the inner integral

is well-defined follows from general properties of measurable mappings. In order to show

that the outer integral is well-defined, let (Tn) be a localising sequence such that [M ]Tn ≤ n.

Denote by νnω the nonnegative measure induced by [M ]Tn(ω) by Theorem A.1.5. Use Theorem

A.1.12 to show that there exists a unique nonnegative measure λn on B+ ⊗ F such that for
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any B ∈ B+ and F ∈ F , λn(B × F ) =
∫
F
νnω(B) dP (ω) and apply Theorem A.1.13 to show

that whenever A ∈ B+ ⊗ F , ω 7→
∫

1A(t, ω) dνnω(t) is F measurable. Use this fact to show

that for any A ∈ B+ ⊗F , ω 7→ 1A(t, ω) dνω(t) is F measurable.

As regards the remaining claims of the exercise, use the monotone convergence theorem to

show that µM is a measure. Apply Lemma 1.4.10 and Lemma 2.2.7 to show the statements

regarding the stochastic integral. ◦

Hints for exercise 2.8. First show that it suffices to prove the convergence to zero in prob-

ability of the variables that (Wt+h −Wt)
−1
∫ t+h
t

(Hs − Ht)1[[t,∞[[ dWs, where the indicator

1[[t,∞[[ is included to ensure that the integrand is progressively measurable. To show this, fix

δ > 0 and show that

1(|Wt+h−Wt|>δ)

Wt+h −Wt

∫ t+h

t

(Hs −Ht)1[[t,∞[[ dWs
P−→ 0,

using Chebychev’s inequality and the results from Lemma 2.6. Then apply Lemma A.2.1 to

obtain the result. ◦

Hints for exercise 2.10. To prove that X has the same distribution as a Brownian motion

for H = 1
2 , let W be a Brownian motion and show that X and W have the same finite-

dimensional distributions.

To show that X is not in cS when H 6= 1
2 , first fix t ≥ 0, put tnk = tk2−n and consider∑2n

k=1 |Xtnk
−Xtnk−1

|p for p ≥ 0. Use the fact that normal distributions are determined by their

mean and covariance structure to argue that the distribution of
∑2n

k=1 |Xtnk
−Xtnk−1

|p is the

same as the distribution of 2−npH
∑2n

k=1 |Xk−Xk−1|p. Show that the process (Xk−Xk−1)k≥1

is stationary. Now recall that the ergodic theorem for discrete-time stationary processes

states that for a stationary process (Yn)n≥1 and a mapping f : R → R such that f(Y1) is

integrable, it holds that 1
n

∑n
k=1 f(Yk) converges almost surely and in L1. Use this to argue

that 1
2n

∑2n

k=1 |Xk −Xk−1|p converges almost surely and in L1 to a variable Zp which is not

almost surely zero.

Finally, use this to prove that X is not in cS when H 6= 1
2 . To do so, first consider the

case H < 1
2 . In this case, assume that X ∈ cS and seek a contradiction. Use the result of

Exercise 2.9 to show that
∑2n

k=1 |Xtnk
−Xtnk−1

| 1H converges to zero in probability. Obtain a

contradiction with the results obtained above. In the case where H > 1
2 , use that 1

H < 2 and

Exercise 2.9 to show that
∑2n

k=1 |Xtnk
−Xtnk−1

|2 converges in probability to zero, and use this

to argue that [X] is evanescent. Conclude that X has paths of finite variation, and use this

to obtain a contradiction with our earlier results. ◦
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Hints for exercise 2.12. Apply Itô’s formula to the two-dimensional continuous semimartin-

gale (t,Wt). ◦

Hints for exercise 2.13. Use Itô’s formula on the two-dimensional continuous semimartingale

(M, [M ]) to prove that E(M) is a continuous local martingale with initial value one and that

E(M) solves the stochastic differential equation. For uniqueness of the solution, assume given

another solution Y ∈ cS to the stochastic differential equation. Define Zt = E(M)−1
t Yt and

apply the local version of Itô’s formula, Corollary 2.3.6, to (E(M), Y ) in order to show that

Z is indistinguishable from 1. ◦

Hints for exercise 2.15. Use a Taylor expansion of x 7→ log(1 + x) as in Theorem A.1.17

to rewrite Znt into a form resembling E(M). Apply Theorem 2.3.3 and the same method of

proof as in the proof of Theorem 2.3.5 to obtain control of the remainder term and prove the

desired convergence in probability. ◦

Hints for exercise 2.16. Use Exercise 2.13 to conclude that E(M) is nonnegative and that

E(M) is a continuous local martingale. Apply Fatou’s lemma to obtain the supermartingale

property. ◦

Hints for exercise 2.17. In order to obtain the criterion for E(M) to be a uniformly integrable

martingale, note that by Exercise 2.16, E(M) is a nonnegative supermartingale. By applying

the optional sampling theorem 1.2.7 to E(M), conclude by Lemma 1.2.9 that if EE(M)∞ = 1,

then E(M) is a uniformly integrable martingale. To obtain the converse, use that uniformly

integrable martingales are L1 convergent by Theorem 1.2.5.

In order to obtain the criterion for E(M) to be a martingale, show that E(M) is a martingale

if and only if E(M)t is a uniformly integrable martingale for all t ≥ 0, and prove the result

using the criterion for E(M) to be a uniformly integrable martingale. ◦

Hints for exercise 2.18. Use Theorem 2.3.2 to show that
∫ t

0
f(s) dWs is the limit in prob-

ability of a sequence of variables whose distribution may be calculated explicitly. Use that

convergence in probability implies weak convergence to obtain the desired result. ◦

Hints for exercise 2.20. In the case where i = j, use Itô’s formula with the function f(x) = x2,

and in the case i 6= j, use Itô’s formula with the function f(x, y) = xy. Afterwards, apply

Lemma 2.1.8 and Lemma 2.2.7 to obtain the result. ◦

Hints for exercise 2.21. To prove integrability, first use Exercise 2.6 to show that X has



B.2 Hints and solutions for Chapter 2 103

the property that the stopped process Xc for any c ≥ 0 is in cM2. Apply this together

with the Cauchy-Schwartz inequality to prove that both XtWt and XtW
2
t are integrable.

In order to obtain the mean of XtWt, use Exercise 2.6 and Lemma 1.4.10 to show that

XtWt − [X,W ]t is a martingale, and apply the properties of the stochastic integral and its

quadratic covariation. In order to obtain the mean ofXtW
2
t , apply Itô’s formula to decompose

W 2 into its continuous local martingale part and continuous finite variation part and proceed

as in the previous case, recalling that for a variable Z which is normally distributed with

variance σ, we have E|Z| =
√
σ
√

2/π. ◦

Hints for exercise 2.22. Let X = N + B be the decomposition of X into its continuous

local martingale part and its continuous finite variation part. Apply Itô’s formula to Mα

with the mapping f : R2 → R defined by f(x, y) = exp(x − 1
2y). Use Lemma 1.4.5 to show

that the process α
∫ t

0
Mα
s dBs + α2

2

∫ t
0
Mα
s d[X]s − α2

2

∫ t
0
Mα
s dAs is evanescent. Use this to

show that Mα
t = 1 +

∫ t
0
Mα
s dNs. Use this and Corollary 2.3.6 to obtain that [X] and A are

indistinguishable and that X ∈ cM`. ◦

Hints for exercise 2.23. Use Itô’s formula to conclude

f(Wt) = α+

∫ t

0

f ′(Ws) dWs +
1

2

∫ t

0

f ′′(Ws) ds.

Use the growth conditions on f and Exercise 2.6 to argue that the integral with respect to W

is in cM and so Ef(Wt) = α + 1
2E
∫ t

0
f ′′(Ws) ds. Again applying the growth conditions on

f , show that interchange of expectation and integration is allowed, and obtain the formula

for Ef(Wt) from this. ◦

Hints for exercise 2.24. First note that in order to prove the result, it suffices to prove that

the sequence
∑2n

k=1(Mtk −Mtk−1
)2 is bounded in L2. To do so, write

E

(
2n∑
k=1

(Mtk −Mtk−1
)2

)2

= E

2n∑
k=1

(Mtk −Mtk−1
)4 + E

∑
k 6=i

(Mtk −Mtk−1
)2(Mti −Mti−1)2.

Let C ≥ 0 be a constant such that |Mt| ≤ C for all t ≥ 0. By repeated use of the martingale

property, prove that the first term is less than 4C2 and that the second term is less than

2C2, thus proving boundedness in L2. ◦

Hints for exercise 2.26. First argue that when stopped at a deterministic timepoint, X is in

cM2. Use the properties of stochastic integrals from Lemma 2.2.7 as well as Lemma 1.4.10

to argue that for 0 ≤ s ≤ t, Cov(Xs, Xt) =
∫ s

0
E sin2Wu du. Calculate E sin2Wu by applying

the identity sin2 x = 1
2 −

1
2 cos 2x and calculating E cos 2Wu using the Taylor series for the

cosine function. ◦
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Hints for exercise 2.27. Apply Exercise 2.12. ◦

Solution to exercise 2.1. By Theorem 1.2.1, W is a martingale. As W is continuous and has

initial value zero, we obtain W ∈ cM` ⊆ cS, as desired. �

Solution to exercise 2.2. As X has continuous paths, we have

Fc(X) = {ω ∈ Ω | Xt(ω) is convergent as t→∞}

= {ω ∈ Ω | Xq(ω) is convergent as q →∞, q ∈ Q+}

= {ω ∈ Ω | Xq(ω) is Cauchy as q →∞, q ∈ Q+}

= ∩∞n=1 ∪q∈Q+
∩p,r>q,p,r∈Q+

(|Xp −Xr| < 1
n ),

and this set is in F . This proves the desired result. �

Solution to exercise 2.3. Define Tn = inf{t ≥ 0 | [M ]t > n}. We then have [M ]Tn ≤ n,

and so Lemma 1.4.10 shows that MTn ∈ cM2. Therefore, MTn is almost surely convergent.

Furthermore, Fc([M ]) ⊆ ∪∞n=1(Tn = ∞) ⊆ ∪∞n=1(MTn = M). Let F be the almost sure set

where MTn is convergent for all n. We then obtain

P (Fc([M ]) \ Fc(M)) = P (F ∩ Fc([M ]) ∩ Fc(M)c)

≤ P (F ∩ Fc(M)c ∩ ∪∞n=1(MTn = M)) = 0,

since the final set is empty. We conclude P (Fc([M ]) \ Fc(M)) = 0. Conversely, define the

sequence of stopping times Sn = inf{t ≥ 0 | |Mt| > n}, so that MTn ∈ cMb. By Lemma

1.4.10, [M ]Tn is almost surely convergent, so Fc(M) ⊆ ∪∞n=1(Tn =∞) ⊆ ∪∞n=1([M ]Tn = [M ]).

Letting F be the almost sure set where [M ]Tn is convergent for all n, we obtain

P (Fc(M) \ Fc([M ])) = P (F ∩ Fc(M) ∩ Fc([M ])c)

≤ P (F ∩ Fc([M ])c ∩ ∪∞n=1([M ]Tn = [M ])) = 0.

We have now shown P (Fc(M)∆Fc([M ])) = 0. �

Solution to exercise 2.4. As convergent sequences are bounded, we clearly have the inclusion

Fc(X) ⊆ (suptXt < ∞), such that P ((suptXt < ∞) \ Fc(X)) = 0. We need to prove that

P (Fc(X) \ (suptXt <∞)) = 0.

Define Tn = inf{t ≥ 0 | Xt > n} and put Zn = n − XTn , we then have Zn ≥ 0. Let (Sn)

be a localising sequence such that MSn ∈ cMb and ASn is bounded. We may then obtain

(Zn)Sn = n− (M + A)Tn∧Sn = n−MTn∧Sn − ATn∧Sn , where MTn∧Sn ∈ cMb and ATn∧Sn
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is bounded. Therefore, (Zn)Sn is bounded, in particular (Zn)Sn
t is integrable for all t ≥ 0.

Since ATn∧Sn is increasing, we have for 0 ≤ s ≤ t that

E((Zn)Sn
t |Fs) = E(n−MTn∧Sn

t −ATn∧Sn
t |Fs)

= n−MTn∧Sn
s − E(ATn∧Sn

t |Fs)

≤ n−MTn∧Sn
s − E(ATn∧Sn

s |Fs)

= n−MTn∧Sn
s −ATn∧Sn

s = (Zn)Sn
s .

Thus, (Zn)Sn is a nonnegative supermartingale. For 0 ≤ s ≤ t, we then obtain using Fatou’s

lemma that

E(Znt |Fs) = E(lim inf
n→∞

(Zn)Sn
t |Fs) ≤ lim inf

n→∞
E((Zn)Sn

t |Fs) ≤ lim inf
n→∞

(Zn)Sn
s = Zns ,

so Zn is also a nonnegative supermartingale. As Zn0 = n, we have E|Znt | = EZnt ≤ n, so

Zn is bounded in L1, and thus almost surely convergent by Theorem 1.2.4. Now note that

(suptXt < ∞) ⊆ ∪∞n=1(Tn = ∞) ⊆ ∪∞n=1(X = n − Zn). As the set such that Zn is almost

surely convergent for all n is an almost sure set, we conclude

P ((sup
t
Xt <∞) \ Fc(X)) = P ((∩∞n=1Fc(Z

n)) ∩ (sup
t
Xt <∞) ∩ Fc(X)c)

≤ P ((∩∞n=1Fc(Z
n)) ∩ Fc(X)c ∩ ∪∞n=1(X = n− Zn)) = 0.

Combining our results, we have now shown P (Fc(X)∆(suptXt <∞)) = 0. �

Solution to exercise 2.5. Clearly, Fc(M) ∩ Fc(A) ⊆ Fc(X), we need to prove the converse

inclusion. Note that both X and M is in cS and satisfy the criterion from Exercise 2.4.

Therefore, P (Fc(M)∆(suptMt < ∞)) = 0 and P (Fc(X)∆(suptXt < ∞)) = 0. This in

particular implies that Fc(X) ⊆ (suptXt <∞)∪N and (suptMt <∞) ⊆ Fc(M)∪N , where

N is some null set. Also, as A ≥ 0, we have M = X −A ≤ X, so whenever suptXt is finite,

so is suptMt. Thus, Fc(X) ⊆ (suptXt <∞) ∪N ⊆ (suptMt <∞) ∪N ⊆ Fc(M) ∪N .

Whenever X and M are both convergent with finite limits, so is A. Therefore, we finally

conclude Fc(X) ⊆ (Fc(X) ∩ Fc(M)) ∪ N ⊆ (Fc(M) ∩ Fc(A)) ∪ N . As N is a null set, this

implies P (Fc(X) \ (Fc(M) ∩ Fc(A))) = 0. We conclude P (Fc(X)∆(Fc(M) ∩ Fc(A))) = 0. �

Solution to exercise 2.6. As [W ]t = t by Theorem 1.4.8, we obtain [H ·W ]∞ =
∫∞

0
H2
s ds.

Therefore, Lemma 1.4.10 shows that H · W ∈ cM2 if and only if E
∫∞

0
H2
s ds is finite.

As regards the second claim, assume that for any t ≥ 0, E
∫ t

0
H2
s ds is finite. We have

[(H ·W )t]∞ = [H ·W ]t∞ =
∫ t

0
H2
s ds, so our assumptions yields that (H ·W )t is in cM2 for

all t ≥ 0, and Lemma 1.4.10 shows that ((H ·W )t)2 − [(H ·W )t] is in cMu.
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In order to obtain that H ·W is a martingale, let T be a bounded stopping time, assume

that T ≤ c. We then have (H ·W )T = (H ·W )cT , so as (H ·W )c is in cM2, (H ·W )T is

integrable and has mean zero. Therefore, 1.2.9 shows that H ·W is in cM. Furthermore, we

have E(H ·W )2
t = E((H ·W )t)2

∞ = E[(H ·W )t]∞ = E
∫ t

0
H2
s ds. �

Solution to exercise 2.7. Let νω be the nonnegative measure induced by [M ](ω) by Theorem

A.1.5. The proposed definition of µM is then µM (A) =
∫ ∫

1A(t, ω) dνω(t) dP (ω) for sets

A ∈ B+ ⊗ F . In order to show that this is well-defined, we need to argue that t 7→ 1A(t, ω)

is B+ measurable for all ω ∈ Ω whenever A ∈ B+ ⊗ F and that
∫

1A(t, ω) d[M ](ω)t is F
measurable whenever A ∈ B+⊗F . The first claim follows since the mapping (t, ω) 7→ 1A(t, ω)

is B+ ⊗F-B measurable and therefore, for any ω ∈ Ω, t 7→ 1A(t, ω) is B+-B measurable.

In order to prove the remaining claims, let (Tn) be a localising sequence such that [M ]Tn ≤ n.

By νnω , we denote the nonnegative measure induced by [M ]Tn(ω) by Theorem A.1.5. We

wish to argue that the family (νnω)ω∈Ω satisfies the requirements in Theorem A.1.12. As νnω is

bounded by n, the family (νnω)ω∈Ω is uniformly bounded. Let D be the family of sets B ∈ B+

such that ω 7→ νnω(B) is F measurable. We will show that D is a Dynkin class containing a

generating family for B+ which is stable under intersections, Lemma A.1.19 will then yield

that D is equal to B+.

For any fixed 0 ≤ s ≤ t, we find that νnω((s, t]) = [M ]Tn(ω)t − [M ]Tn(ω)s. As [M ]Tn
t is F

measurable for all t ≥ 0, we find that ω 7→ νnω((s, t]) is F measurable. Thus, D contains

a generating family for B+ which is stable under intersections. In order to show that D
is a Dynkin class, first note that νnω(R+) = [M ]Tn

∞ , so the mapping ω 7→ νnω(R+) is also

F measurable. If A,B ∈ D with A ⊆ B, we find that νnω(B \ A) = νnω(B) − νnω(B), so

B \ A ∈ D. And if (Bn) is an increasing sequence in D, upper continuity of measures shows

that νnω(∪∞k=1Bn) = limk ν
n
ω(Bk). Thus, ∪∞k=1Bk ∈ D. We have now shown that D is a Dynkin

class. Therefore, Lemma A.1.19 shows that ω 7→ νnω(B) is F measurable for all B ∈ B+. The

requirements given in Theorem A.1.12 are therefore satisfied, and we conclude that there

exists a unique nonnegative measure λn on B+ ⊗ F such that for any B ∈ B+ and F ∈ F ,

λn(B × F ) =
∫
F
νnω(B) dP (ω).

Now, by Theorem A.1.13, whenever A ∈ B+ ⊗ F , it holds that ω 7→
∫

1A(t, ω) dνnω(t) is F
measurable. We will use this to argue that ω 7→

∫
1A(t, ω) dνω(t) is F measurable as well.

To obtain this, fix A ∈ B+ ⊗ F and define An by putting An = A ∩ {(t, ω) | t ≤ Tn(ω)}.
As Tn(ω) converges to infinity for all ω, we find that (An) is increasing with A = ∪∞n=1An.

Furthermore, for each fixed ω, it holds that the measures νω and νnω agree on [0, Tn(ω)].

Therefore, we obtain
∫

1A(t, ω) dνω(t) = limn

∫
1An

(t, ω) dνω(t) = limn

∫
1An

(t, ω) dνnω(t) by
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the monotone convergence theorem. As the mappings in the latter pointwise limit are F
measurable, we conclude that the mapping ω 7→

∫
1A(t, ω) dνω(t) is F measurable. We have

now shown that the proposed definition of µM is well-defined, and so µM is a well-defined

mapping from B+ ⊗F to [0,∞].

That µM is a measure follows as we clearly have µM (∅) = 0 and for any sequence of disjoint

sets (An) in B+ ⊗F , two applications of the monotone convergence theorem yield

µM (∪∞n=1An) =

∫ ∫
1∪∞n=1An(t, ω) d[M ](ω)t dP (ω) =

∫ ∫ ∞∑
n=1

1An(t, ω) d[M ](ω)t dP (ω)

=

∞∑
n=1

∫ ∫
1An

(t, ω) d[M ](ω)t dP (ω) =

∞∑
n=1

µM (An).

We conclude that µM is a measure. Furthermore, as µM ({(t, ω) ∈ R+×Ω | Tn(ω) ≤ t}) ≤ n,

we find that µM is σ-finite. In the case where M ∈ cM2, we find µM (R+ × Ω) = E[M ]∞,

which is finite, so µM is a finite measure in this case.

Finally, we consider the claims regarding the stochastic integral. Let H ∈ I, we need to show

that H ·M ∈ cM2 if and only if H ∈ L2(M). By construction, we know that we always have

H ·M ∈ cM`. By Lemma 1.4.10, H ·M is in cM2 if and only if [H ·M ]∞ is integrable. From

Lemma 2.2.7, we know that H2 is integrable with respect to [M ] and [H ·M ]t =
∫ t

0
H2
s d[M ]s

for all t ≥ 0. In particular, E[H · M ]∞ = E
∫∞

0
H2
s d[M ]s =

∫ ∫
H2
s (ω) d[M ](ω)s dP (ω),

which is equal to ‖H‖M . Therefore, H ·M is in cM2 if and only if ‖H‖M is finite, which is

the case if and only if H ∈ L2(M). Finally, in the affirmative case, Lemma 1.4.10 shows that

‖H ·M‖22 = E(H ·M)2
∞ = E[H ·M ]∞ = ‖H‖2M by what we already have shown, proving the

final claim of the exercise. �

Solution to exercise 2.8. Note that the conclusion is well-defined, as Wt+h −Wt is almost

surely never zero. To show the result, first note that Lemma 2.2.7 yields, up to indistin-

guishability,

∫ t+h

t

Hs dWs =

∫ t+h

t

Hs1[[t,∞[[ dWs =

∫ t+h

t

Ht1[[t,∞[[ dWs +

∫ t+h

t

(Hs −Ht)1[[t,∞[[ dWs

= Ht(Wt+h −Wt) +

∫ t+h

t

(Hs −Ht)1[[t,∞[[ dWs,

where the indicators [[t,∞[[ are included as a formality to ensure that the integrals are well-

defined. Therefore, it suffices to show that (Wt+h−Wt)
−1
∫ t+h
t

(Hs−Ht)1[[t,∞[[ dWs converges

in probability to zero as h tends to zero. To this end, let c be a bound for H and note that
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by Exercise 2.6, we have

E

(
1√
h

∫ t+h

t

(Hs −Ht)1[[t,∞[[ dWs

)2

=
1

h
E

∫ t+h

t

(Hs −Ht)
2 ds.

As H is bounded and continuous, the dominated convergence theorem shows that the above

tends to zero as h tends to zero. Thus, 1√
h

∫ t+h
t

(Hs − Ht)1[[t,∞[[ dWs tends to zero in L2.

Now fix δ,M > 0. With Yh = 1√
h

∫ t+h
t

(Hs −Ht)1[[t,∞[[ dWs, we have

P

(∣∣∣∣∣(Wt+h −Wt)
−1

∫ t+h

t

(Hs −Ht)1[[t,∞[[ dWs

∣∣∣∣∣ > δ

)

≤ P

(∣∣∣∣∣
√
h

Wt+h −Wt
Yh

∣∣∣∣∣ > δ,

∣∣∣∣∣
√
h

Wt+h −Wt

∣∣∣∣∣ ≤M
)

+ P

(∣∣∣∣∣
√
h

Wt+h −Wt

∣∣∣∣∣ > M

)

≤ P

(
|Yh| >

δ

M

)
+ P

(∣∣∣∣∣
√
h

Wt+h −Wt

∣∣∣∣∣ > M

)
.

Here, P (
√
h(Wt+h−Wt)

−1 > M) does not depend on h, as (Wt+h−Wt)(
√
h)−1 is a standard

normal distribution. For definiteness, we define ϕ(M) = P (
√
h(Wt+h −Wt)

−1 > M). The

above then allows us to conclude

lim sup
h→∞

P

(∣∣∣∣∣(Wt+h −Wt)
−1

∫ t+h

t

(Hs −Ht)1[[t,∞[[ dWs

∣∣∣∣∣ > δ

)
≤ ϕ(M),

and letting M tend to infinity, we obtain the desired result. �

Solution to exercise 2.9. For q > p, we have

2n∑
k=1

|Xtnk
−Xtnk−1

|q ≤
(

max
k≤2n

|Xtnk
−Xtnk−1

|q−p
) 2n∑
k=1

|Xtnk
−Xtnk−1

|p.

As X has continuous paths, the paths of X are uniformly continuous on [0, t]. In particular,

maxk≤2n |Xtnk
− Xtnk−1

|q−p converges almost surely to zero. Therefore, this variable also

converges to zero in probability, and so
∑2n

k=1 |Xtnk
−Xtnk−1

|q converges in probability to zero,

as was to be proven. �

Solution to exercise 2.10. First, consider the case where H = 1
2 . In this case, X is a process

whose finite-dimensional distributions are normally distributed with mean zero and with the

property that for any s, t ≥ 0, EXsXt = 1
2 (t+s−|t−s|). For a Brownian motion W , we have

that when 0 ≤ s ≤ t, EWsWt = EWs(Wt −Ws) +EW 2
s = EWsE(Wt −Ws) +EW 2

s = s. In

this case, |t − s| = t − s, and so EWsWt = 1
2 (t + s − |t − s|). In the case where 0 ≤ t ≤ s,
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EWsWt = t = 1
2 (t + s + (t − s)) = 1

2 (t + s − |t − s|) as well. Thus, X and W are processes

whose finite-dimensional distributions are normally distributed and have the same mean

and covariance structure. Therefore, their distributions are the same, and so X has the

distribution of a Brownian motion.

In order to show that X is not in cS when H 6= 1
2 , we first fix t ≥ 0 and consider the sum∑2n

k=1 |Xtnk
− Xtnk−1

|p for p ≥ 0. Understanding the convergence of such sums will allow us

to prove our desired result. We know that the collection of variables Xtnk
− Xtnk−1

follows

a multivariate normal distribution with E(Xtnk
− Xtnk−1

) = 0 and, using the property that

EXsXt = 1
2 (t2H + s2H − |t− s|2H), we obtain

E(Xtnk
−Xtnk−1

)(Xtni
−Xtni−1

) = EXtnk
Xtni
− EXtnk

Xtni−1
− EXtnk−1

Xtni
+ EXtnk−1

Xtni−1

= 2−2nH 1
2 (|k − i+ 1|2H + |k − 1− i|2H − 2|k − i|2H).

Here, the parameter n only enters the expression through the constant multiplicative factor

2−2nH . Therefore, as normal distributions are determined by their covariance structure, it

follows that the distribution of the variables (Xtnk
− Xtnk−1

) for k ≤ 2n is the same as the

distribution of the variables 2−nH(Xk −Xk−1) for k ≤ 2n. In particular, it follows that the

distributions of
∑2n

k=1 |Xtnk
−Xtnk−1

|p and 2−npH
∑2n

k=1 |Xk −Xk−1|p are the same. We wish

to apply the ergodic theorem for stationary processes to the sequence (Xk −Xk−1)k≥1. To

this end, we first check that this sequence is in fact stationary. To do so, we need to check

for any m ≥ 1 that the variables Xk − Xk−1 for k ≤ n have the same distribution as the

variables Xm+k −Xm+k−1 for k ≤ n. As both families of variables are normally distributed

with mean zero, it suffices to check that the covariance structure is the same. However, by

what we already have shown,

E(Xk −Xk−1)(Xtni
−Xi−1)

= 1
2 (|k − i+ 1|2H + |k − 1− i|2H − 2|k − i|2H)

= E(Xm+k −Xm+k−1)(Xtnm+i
−Xm+i−1).

This allows us to conclude that the sequence (Xk−Xk−1)k≥1 is stationary. As E|Xk−Xk−1|p

is finite, the ergodic theorem shows that 1
n

∑n
k=1 |Xk −Xk−1|p converges almost surely and

in L1 to some variable Zp, where Zp is integrable and EZp = E|X1 − X0|p = E|X1|p > 0.

This property ensures that Zp is not almost surely zero. Next, we observe that we have

2−npH
∑2n

k=1 |Xk −Xk−1|p = 2n(1−pH)( 1
2n

∑2n

k=1 |Xk −Xk−1|p), where we have just checked

that the latter factor always converges almost surely and in L1 to Zp. Having this result at

hand, we are ready to prove that X is not in cS when H 6= 1
2 .

First consider the case where H < 1
2 . In this case, 1

H > 2. If X ∈ cS, we have that∑2n

k=1 |Xtnk
− Xtnk−1

|2 converges in probability to [X]t. Therefore, by Exercise, 2.9, we find
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that
∑2n

k=1 |Xtnk
− Xtnk−1

| 1H converges to zero in probability. As
∑2n

k=1 |Xtnk
− Xtnk−1

| 1H has

the same distribution as 1
2n

∑2n

k=1 |Xk −Xk−1|
1
H , we conclude that this sequence converges

to zero in probability. However, this is in contradiction with what we have already shown,

namely that this sequence converges in probability to a variable Z 1
H

which is not almost

surely zero. We conclude that in the case H < 1
2 , X cannot be in cS.

Next, consider the case H > 1
2 . Again, we assume that X ∈ cS and hope for a contradiction.

In this case, 1 − 2H < 0, so 2n(1−2H) converges to zero and so, by our previous results,

2n(1−2H)( 1
2n

∑2n

k=1 |Xk − Xk−1|2) converges to zero in probability. Therefore, we find that∑2n

k=1 |Xtnk
− Xtnk−1

|2 converges to zero in probability as well, since this sequence has the

same distribution as the previously considered sequence. By Theorem 2.3.3, this implies

[X]t = 0 almost surely. As t ≥ 0 was arbitrary, we conclude that [X] is evanescent. With

X = M + A being the decomposition of X into its continuous local martingale part and its

continuous finite variation part, we have [X] = [M ], so [M ] is evanescent and so by Lemma

1.4.9, M is evanescent. Therefore, X almost surely has paths of finite variation. In particular,∑2n

k=1 |Xtnk
−Xtnk−1

| is almost surely convergent, in particular convergent in probability. As

H < 1, we have 1
H > 1, so by Exercise 2.9,

∑2n

k=1 |Xtnk
− Xtnk−1

| 1H converges in probability

to zero. Therefore, 1
2n

∑2n

k=1 |Xk − Xk−1|
1
H converges to zero in probability as well. As in

the previous case, this is in contradiction with the fact that that this sequence converges in

probability to a variable Z 1
H

which is not almost surely zero. We conclude that in the case

H < 1
2 , X cannot be in cS either. �

Solution to exercise 2.11. By Itô’s formula of Theorem 2.3.5 and Theorem 1.4.8, we have

f(Wt)− f(0) =

p∑
i=1

∫ t

0

∂f

∂xi
(Ws) dW i

s +
1

2

p∑
i=1

p∑
j=1

∫ t

0

∂2f

∂xi∂xj
(Ws) d[W i,W j ]s

=

p∑
i=1

∫ t

0

∂f

∂xi
(Ws) dW i

s +
1

2

p∑
i=1

∫ t

0

∂2f

∂xi∂xj
(Ws) ds,

and by our assumptions on f , this is equal to
∑p
i=1

∫ t
0
∂f
∂xi

(Ws) dW i
s , since the second term

vanishes. Here,
∑p
i=1

∫ t
0
∂f
∂xi

(Ws) dW i
s is in cM`. Therefore, f(Wt)− f(0) is in cM` and so

f(Wt) is a continuous local martingale. �

Solution to exercise 2.12. Define the two-dimensional process X by putting Xt = (t,Wt).

With At = t, we have [A,W ]t = 0, so Itô’s formula of Theorem 2.3.5 shows

f(t,Wt)− f(0, 0) =

∫ t

0

∂f

∂t
(s,Ws) ds+

∫ t

0

∂f

∂x
(s,Ws) dWs +

1

2

∫ t

0

∂2f

∂x2
(s,Ws) ds

=

∫ t

0

∂f

∂t
(s,Ws) +

1

2

∂2f

∂x2
(s,Ws) ds+

∫ t

0

∂f

∂x
(s,Ws) dWs,
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which is equal to
∫ t

0
∂f
∂x (s,Ws) dWs by our assumptions on f , and this is in cM`. Therefore,

f(t,Wt) is a continuous local martingale, and f(t,Wt) = f(0, 0) +
∫ t

0
∂f
∂x (s,Ws) dWs. �

Solution to exercise 2.13. Define Xt = (Mt, [M ]t) and put f(x, y) = exp(x − 1
2y). Then f

is C2 with ∂2f
∂x2 (x, y) = ∂f

∂x (x, y) = f(x, y) and ∂f
∂y (x, y) = − 1

2f(x, y), and E(M)t = f(Xt), so

Itô’s formula yields

E(M)t = 1 +

∫ t

0

E(M)s dMs −
1

2

∫ t

0

E(M)s d[M ]s +
1

2

∫ t

0

E(M)s d[M ]s

= 1 +

∫ t

0

E(M)s dMs.

This proves that E(M) as defined satisfies the stochastic differential equation given, in par-

ticular E(M) is a continuous local martingale with initial value one as the stochastic integral

of a process with respect to an element of cM` is in cM`. It remains to show that E(M) is

the unique solution to the stochastic differential equation. Assume therefore given a process

Y ∈ cS satisfying Yt = 1 +
∫ t

0
Ys dMs up to indistinguishability. In particular, Y ∈ cM`.

Define Zt = E(M)−1
t Yt, we wish to show that Z is indistinguishable from one. Define

f(x, y) = y
x . The function f is C2 on the open set (0,∞)×R, and the two-dimensional semi-

martingale (E(M), Y ) takes its values in this set. Therefore, we may apply the local version of

Itô’s formula, Corollary 2.3.6, to (E(M), Y ) and f . First note that as E(M) = 1 + E(M) ·M ,

we find [E(M)] = [E(M) ·M ] = E(M)2 · [M ] and also

[E(M), Y ] = [E(M) ·M,Y ·M ] = E(M) · [M,Y ·M ] = E(M)Y · [M ].

All in all, this yields

Zt = f(E(M)t, Yt)

= 1−
∫ t

0

Ys
E(M)2

s

dE(M)s +

∫ t

0

1

E(M)s
dYs

+
1

2

∫ t

0

2Ys
E(M)3

s

d[E(M)]s −
1

2

∫ t

0

1

E(M)2
s

d[E(M), Y ]s −
1

2

∫ t

0

1

E(M)2
s

d[Y, E(M)]s

= 1−
∫ t

0

Ys
E(M)s

dMs +

∫ t

0

Ys
E(M)s

dMs +
1

2

∫ t

0

2Ys
E(M)s

d[M ]s −
1

2

∫ t

0

2Y

E(M)s
d[M ]s,

which is one. Thus, we conclude that almost surely, Zt = 1 for all t ≥ 0, and so E(M) and Y

are indistinguishable. This proves that up to indistinguishability, E(M) is the only solution

in Y ∈ cS satisfying Yt = 1 +
∫ t

0
Ys d[M ]s. �

Solution to exercise 2.14. Clearly, E(M) and E(N) are indistinguishable if M and N are

indistinguishable. Conversely, assume that E(M) and E(N) are indistinguishable. In partic-

ular, M − 1
2 [M ] and N − 1

2 [N ] are indistinguishable. This yields M −N = 1
2 ([M ]− [N ]) up
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to indistinguishability, so M −N is almost surely equal to an element of cM` with paths of

finite variation. Therefore, Lemma 1.4.5 shows that M and N are indistinguishable. �

Solution to exercise 2.15. Defining f(x) = log(1 + x), we find that f ′(x) = 1
1+x and that

f ′′(x) = − 1
(1+x)2 . By Theorem A.1.17 we then obtain log(1 +x) = x+ 1

2x
2 + s(x), where the

remainder term satisfies s(x) = (f ′′(ξ) − f ′′(0))x2 = (1 + f ′′(ξ))x2 for some ξ between zero

and x, depending on x. We may use this to obtain

Znt = exp

(
2n∑
k=1

log(Mtnk
−Mtnk−1

)

)

= exp

(
2n∑
k=1

Mtnk
−Mtnk−1

+
1

2
(Mtnk

−Mtnk−1
)2 + s(Mtnk

−Mtnk−1
)

)

= exp

(
Mt +

1

2

2n∑
k=1

(Mtnk
−Mtnk−1

)2 +

2n∑
k=1

s(Mtnk
−Mtnk−1

)

)
.

By Theorem 2.3.3, 1
2

∑2n

k=1(Mtnk
−Mtnk−1

)2 converges in probability to 1
2 [M ]t. In order to

show the result, it therefore suffices to show that
∑2n

k=1 s(Mtnk
−Mtnk−1

) converges to zero

in probability. To this end, note that for some ξnk on the line segment between zero and

Mtnk
−Mtnk−1

, we have

2n∑
k=1

s(Mtnk
−Mtnk−1

) =

2n∑
k=1

(
1− 1

(1 + ξnk )2

)
(Mtnk

−Mtnk−1
)2

≤
2n∑
k=1

(
1− 1

(1 + |Mtnk
−Mtnk−1

|)2

)
(Mtnk

−Mtnk−1
)2

≤ max
k≤2n

(1− (1 + |Mtnk
−Mtnk−1

|)−2)

2n∑
k=1

(Mtnk
−Mtnk−1

)2

Therefore, it suffices to prove that the latter converges to zero in probability. To this end,

let ε > 0 and fix ω. As M has continuous paths, M has uniformly continuous paths on

[0, t], and therefore, for some n large enough, |Mtnk
−Mtnk−1

| ≤ ε for all k ≤ 2n, showing that

maxk≤2n(1− (1 + |Mtnk
−Mtnk−1

|)−2) ≤ 1− (1− ε)−2. Thus, the maximum tends pointwise

to zero, in particular it converges to zero in probability. As
∑2n

k=1(Mtnk
−Mtnk−1

)2 tends to

[M ]t by Theorem 2.3.3, we conclude that
∑2n

k=1 s(Mtnk
−Mtnk−1

) converges in probability to

zero, and the result follows. �

Solution to exercise 2.16. From the expression E(M)t = exp(Mt− 1
2 [M ]t), we see that E(M)

is nonnegative. From Exercise 2.13, we know that E(M) is a continuous local martingale.
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Letting (Tn) be a localising sequence such that E(M)Tn is a martingale, we may apply Fatou’s

lemma to obtain

E(E(M)t|Fs) = E(lim inf
n
E(M)Tn

t |Fs) ≤ lim inf
n

E(E(M)Tn
t |Fs)

= lim inf
n
E(M)Tn

s = E(M)s.

Therefore, E(M) is a supermartingale. In particular, since E(M) has initial value 1, we

conclude EE(M)t ≤ 1. Therefore, E(M) is bounded in L1, so from Theorem 1.2.4, we find

that E(M) is almost surely convergent. By Fatou’s lemma, EE(M)∞ ≤ lim inftEE(M)t = 1,

as desired. �

Solution to exercise 2.17. We first prove the criterion for E(M) to be a uniformly integrable

martingale. Assume that EE(M)∞ = 1, we will show that E(M) is uniformly integrable.

By Exercise 2.16, E(M) is a nonnegative supermartingale. Therefore, Theorem 1.2.7 shows

that for any stopping time T that 1 = EE(M)∞ ≤ EE(M)T ≤ 1. Thus, EE(M)T = 1

for all stopping times T , and so, Lemma 1.2.9 shows that E(M) is a uniformly integrable

martingale. Conversely, assume that E(M) is a uniformly integrable martingale. Theorem

1.2.5 then shows that E(M)t converges to E(M)∞ in L1, and so EE(M)∞ = limtEE(M)t = 1.

This proves the criterion for E(M) to be a uniformly integrable martingale.

Next, we consider the martingale result. From Lemma 1.2.9, we find that E(M) is a mar-

tingale if and only if E(M)t is a uniformly integrable martingale for all t ≥ 0. From

E(M)t = exp(Mt − 1
2 [M ]t), we note that E(M)t = E(M t). Therefore, E(M) is a martin-

gale if and only if E(M t) is a uniformly integrable martingale for all t ≥ 0. This is the case

if and only if EE(M t)∞ = 1 for all t ≥ 0. As E(M t)∞ = E(M)t, the result follows. �

Solution to exercise 2.18. As f is adapted and continuous, f ∈ I by Lemma 2.2.5. Put

tnk = kt2−n. By Theorem 2.3.2, we find that
∑2n

k=1 f(tnk−1)(Wtnk
− Wtnk−1

) converges in

probability to
∫ t

0
f(s) dWs. However, the finite sequence of variables Wtnk

− Wtnk−1
for

k = 1, . . . , 2n are independent and normally distributed with mean zero and variance t2−n.

Therefore, we find that
∑2n

k=1 f(tnk−1)(Wtnk
−Wtnk−1

) is normally distributed with mean zero

and variance t2−n
∑2n

k=1 f(tnk−1)2. As f is continuous, this converges to
∫ t

0
f(s)2 ds. There-

fore,
∑2n

k=1 f(tnk−1)(Wtnk
− Wtnk−1

) converges weakly to a normal distribution with mean

zero and variance
∫ t

0
f(s)2 ds. As this sequence of variables also converges in probability

to
∫ t

0
f(s) dWs, and convergence in probability implies weak convergence, we conclude by

uniqueness of limits that
∫ t

0
f(s) dWs follows a normal distribution with mean zero and vari-

ance
∫ t

0
f(s)2 ds. �

Solution to exercise 2.19. By Itô’s formula of Theorem 2.3.5, as well as Lemma 2.1.8 and
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Lemma 2.2.7, we have

[f(X), g(Y )]t = [f ′(X) ·X + 1
2f
′′(X) · [X], g′(Y ) · Y + 1

2g
′′(Y ) · [Y ]]t

= [f ′(X) ·X, g′(Y ) · Y ]t =

∫ t

0

f ′(Xs)g
′(Ys) d[X,Y ]s,

up to indistinguishability. This shows in particular that with W an Ft Brownian motion,

[W p]t =
∫ t

0
(pW p−1

s )2 d[W ]s = p2
∫ t

0
W

2(p−1)
s ds. �

Solution to exercise 2.20. In the case where i = j, we may apply Itô’s formula with the

function f : R→ R defined by f(x) = x2 and obtain (W i)2
t = 2

∫ t
0
W i
s dW i

s + t. Lemma 2.1.8

then shows that [(W i)2]t = 4[W i ·W i]t = 4
∫ t

0
(W i

s)
2 ds. Next, consider the case where i 6= j.

Applying Itô’s formula with the function f : R2 → R defined by f(x, y) = xy, we have

W i
tW

j
t =

∫ t

0

W i
s dW j

s +

∫ t

0

W j
s dW i

s .

Using Lemma 2.1.8 and Lemma 2.2.7, we then obtain

[W iW j ]t = [W i ·W j ]t + 2[W i ·W j ,W j ·W i]t + [W j ·W i]t

=

∫ t

0

(W i
s)

2 ds+ 2

∫ t

0

W i
sW

j
s d[W i,W j ]s +

∫ t

0

(W j
s )2 ds

=

∫ t

0

(W i
s)

2 ds+

∫ t

0

(W j
s )2 ds.

�

Solution to exercise 2.21. Define Ht = sgn(Wt), we then have X = H ·W . Fix t ≥ 0. By

Exercise 2.6, H ·W stopped at any deterministic timepoint is in cM2. As Xt thus is square

integrable and W has moments of all orders, the Cauchy-Schwartz inequality shows that both

XtWt and XtW
2
t are integrable.

As for the values of the integral, first note that as H ·W and W are both in cM`, it holds

that (H ·W )W − [H ·W,W ] is in cM` as well. This same property holds for W as well.

Therefore, using Lemma 1.4.10, (H ·W )W − [H ·W,W ] is in cM, and so we obtain

EXtWt = E(H ·W )tWt = E[H ·W,W ]t = E

∫ t

0

Hs d[W,W ]s = E

∫ t

0

Hs ds.

Now, as H is bounded by the constant one, we may interchange integration and expectation

in the above. And as Wt for any t ≥ 0 has a distribution which is symmetric around zero,

we find E
∫ t

0
Hs ds =

∫ t
0
EHs ds = 0, proving that EXtWt = 0.
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As regards the other expectation, we have by Itô’s formula that W 2
t = 2

∫ t
0
Ws dWs + t

up to indistinguishability. Again by Exercise 2.6, we find that W ·W ∈ cM and that this

process is in cM2 when stopped at any deterministic timepoint. Therefore, by Lemma 1.4.10,

(H ·W )(W ·W )− [H ·W,W ·W ] is in cM, and so, using Lemma 2.2.7 and that HtWt = |Wt|,

EXtW
2
t = 2E(H ·W )t(W ·W )t + tEXt = 2E[H ·W,W ·W ]t = 2

∫ t

0

E|Ws|ds.

Now, Ws follows a normal distribution with mean zero and variance s, so E|Ws| =
√
s
√

2/π.

Therefore, we obtain 2
∫ t

0
E|Ws|ds = 2

√
2/π

∫ t
0

√
sds = 2

√
2/π 2

3 t
3
2 = 2

5
2 (3
√
π)−1t

3
2 , which

proves the result. �

Solution to exercise 2.22. Let X = N + B be the decomposition of X into its continuous

local martingale and continuous finite variation parts. We first define f : R2 → R by

putting f(x, y) = exp(x − 1
2y), f is then C2 and satisfies ∂2f

∂x2 f(x, y) = ∂f
∂x = f(x, y) and

∂f
∂y f(x, y) = − 1

2f(x, y). Then Mα
t = f(αXt, α

2At), so Applying Itô’s formula, we obtain

Mα
t = f(αXt, α

2At)

= 1 + α

∫ t

0

Mα
s dXs −

α2

2

∫ t

0

Mα
s dAs +

α2

2

∫ t

0

Mα
s d[X]s

= 1 + α

∫ t

0

Mα
s dNs +

(
α

∫ t

0

Mα
s dBs +

α2

2

∫ t

0

Mα
s d[X]s −

α2

2

∫ t

0

Mα
s dAs

)
.

As Mα and N both are in cM`, we may apply Lemma 1.4.5 to show that the process

α
∫ t

0
Mα
s dBs+ α2

2

∫ t
0
Mα
s d[X]s− α2

2

∫ t
0
Mα
s dAs is evanescent, so that Mα

t = 1+α
∫ t

0
Mα
s dNs

and [Mα]t = α2
∫ t

0
(Mα

s )2 d[N ]s. Applying the local version of Itô’s formula, Corollary 2.3.6,

with the mapping x 7→ log x defined on (0,∞), we then obtain

αXt − α2

2 At =

∫ t

0

1

Mα
s

dMα
s −

1

2

∫ t

0

1

(Mα)2
s

d[Mα]s = αNt − α2

2 [N ]t.

This shows αB = α2

2 (A− [N ]) = α2

2 (A− [X]). In particular, for any α 6= 0, B = α
2 (A− [X]).

This implies that [X] and A are indistinguishable and that B is evanescent, so X ∈ cM`. �

Solution to exercise 2.23. By Itô’s formula, f(Wt) = α +
∫ t

0
f ′(Ws) dWs + 1

2

∫ t
0
f ′′(Ws) ds.

We will prove the formula for Ef(Wt) by arguing that the integral with respect to Brownian

motion is in cM and that interchange of integration and expectation is allowed in the final

term. To prove the first claim, first note that

|f ′(x)| ≤
∣∣∣∣∫ x

0

f ′′(y) dy

∣∣∣∣ ≤ ∫ |x|
0

|f ′′(y)|dy

≤
∫ |x|

0

C + exp(βy) dy = C|x|+ 1

β
(exp(β|x|)− 1),
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so we also have |f ′(x)| ≤ C∗ + exp(β∗|x|) for some C∗, β∗ > 0. Now, using that for any

variable X which is standard normally distributed, E exp(tX) = exp( 1
2 t

2) for t ∈ R, we

obtain by Tonelli’s theorem that

E

∫ t

0

f ′(Ws)
2 ds =

∫ t

0

Ef ′(Ws)
2 ds ≤

∫ t

0

E(C + exp(β|Ws|))2 ds

≤
∫ t

0

4C2 + 4E exp(2β|Ws|) ds ≤
∫ t

0

4(1 + C2) + 4E exp(2βWs) ds

= 4(1 + C2)t+

∫ t

0

4 exp(2sβ2) ds,

which is finite, and so Exercise 2.6 shows that
∫ t

0
f ′(Ws) dWs is in cM. From this we conclude

Ef(Wt) = α+ 1
2E
∫ t

0
f ′′(Ws) ds. By calculations analogous to those above, we also conclude

that E
∫ t

0
|f ′′(Ws)|ds is finite, and so we finally obtain Ef(Wt) = α +

∫ t
0
Ef ′′(Ws) ds, as

desired.

As for the formula for EW p
t , we note that for p ≥ 2, the mappings x 7→ xp clearly satisfy the

criteria for exponential growth considered above. We therefore obtain for any p ∈ N with

p ≥ 2 that EW p
t = 1

2p(p − 1)
∫ t

0
EW p−2

t ds. We prove the formulas for EW p
t by recursion.

As EWt = 0 for all t ≥ 0, it follows from the formula above that EW 2p−1
t = 0 for all p ∈ N

and t ≥ 0. As for the moments of even order, we know that EW 0
t = 1 for all t ≥ 0. Assume

inductively that EW 2p
t = tp

∏p
i=1(2i− 1) for all t ≥ 0. The formula above then shows

EW
2(p+1)
t =

1

2
(2p+ 2)(2p+ 1)

∫ t

0

sp
p∏
i=1

(2i− 1) ds

=

(
p∏
i=1

(2i− 1)

)
1

2
(2p+ 2)(2p+ 1)

1

p+ 1
tp+1

= tp+1

(
p∏
i=1

(2i− 1)

)
(2p+ 1) = tp+1

p+1∏
i=1

(2i− 1),

as desired. �

Solution to exercise 2.24. By Theorem 2.3.3, we know that
∑2n

k=1(Mtk −Mtk−1
)2 converges

to [M ]t in probability. Therefore, by Lemma A.2.5, we have convergence in L1 if and only

if the sequence of variables is uniformly integrable. To show uniform integrability, it suffices

by Lemma A.2.4 to show boundedness in L2. To prove this, we first note the relationship

E(
∑2n

k=1(Mtk−Mtk−1
)2)2 = E

∑2n

k=1(Mtk−Mtk−1
)4 +E

∑
k 6=i(Mtk−Mtk−1

)2(Mti−Mti−1
)2.

With C ≥ 0 being a constant such that |Mt| ≤ C for all t ≥ 0, we may use the martingale
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property to obtain

E

2n∑
k=1

(Mtk −Mtk−1
)4 ≤ 4C2

2n∑
k=1

E(Mtk −Mtk−1
)2

= 4C2
2n∑
k=1

EM2
tk

+ EM2
tk−1
− 2EMtkMtk−1

= 4C2
2n∑
k=1

EM2
tk
− EM2

tk−1
≤ 4C4.

Furthermore, we have by symmetry that

E
∑
k 6=i

(Mtk −Mtk−1
)2(Mti −Mti−1

)2 = 2E

2n−1∑
k=1

2n∑
i=k+1

(Mtk −Mtk−1
)2(Mti −Mti−1

)2,

and this is equal to 2E
∑2n−1
k=1 (Mtk − Mtk−1

)2
∑2n

i=k+1E((Mti − Mti−1
)2|Ftk), since M is

adapted. Here, we may apply the martingale property to obtain

2n∑
i=k+1

E((Mti −Mti−1
)2|Ftk) =

2n∑
i=k+1

E(M2
ti − 2MtiMti−1

+M2
ti−1
|Ftk)

=

2n∑
i=k+1

E(M2
ti −M

2
ti−1
|Ftk) = E(M2

t −M2
tnk
|Ftk) ≤ C2,

which finally yields

E
∑
k 6=i

(Mtk −Mtk−1
)2(Mti −Mti−1

)2 ≤ 2C2E

2n−1∑
k=1

(Mtk −Mtk−1
)2

= 2C2
2n−1∑
k=1

E(M2
tk
− 2MtkMtk−1

+M2
tk−1

)

= 2C2
2n−1∑
k=1

EM2
tk
− EM2

tk−1
≤ 2C4.

Thus, we conclude E(
∑2n

k=1(Mtk −Mtk−1
)2)2 ≤ 6C4, and so the sequence is bounded in L2.

From our previous deliberations, we may now conclude that
∑2n

k=1(Mtk −Mtk−1
)2 converges

in L1 to [M ]t. �

Solution to exercise 2.25. As sinWs+ cosWs is continuous and adapted, it is in I by Lemma

2.2.5, so the stochastic integral is well-defined. As | sinx+cosx| ≤ 2,
∫ t

0
(sinWs+cosWs)

2 ds

is finite, so by Exercise 2.6, we find that X is in cM. Therefore, EXt = 0. Furtheremore,
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Exercise 2.6 also shows that EX2
t = E

∫ t
0
(sinWs + cosWs)

2 ds. For any t ≥ 0, the Fubini

Theorem yields

E

∫ t

0

(sinWs + cosWs)
2 ds = E

∫ t

0

sin2Ws + cos2Ws + 2 sinWs cosWs ds

= t+

∫ t

0

E sinWs cosWs ds.

Noting that sin(−x) cos(−x) = − sinx cosx, the function x 7→ sinx cosx is odd, and therefore

E sinWs cosWs = 0. Thus, we conclude that EXt = 0 and EX2
t = t. �

Solution to exercise 2.26. As sinWs is continuous and adapted, Lemma 2.2.5 shows that

the stochastic integral is well-defined. As | sinWs| ≤ 1, we find that
∫ t

0
sin2Ws ds is finite.

Therefore, Exercise 2.6 shows that X ∈ cM and that the stopped process Xt is in cM2 for

all t ≥ 0. In particular, the covariance between Xs and Xt exists. As X ∈ cM, we have

Cov(Xs, Xt) = EXsXt. Now note that by Lemma 2.2.7, [H ·W,K ·W ]t =
∫ t

0
HsKs ds for

any H,K ∈ I. If H ·W and K ·W are in cM2 when stopped at t ≥ 0, we may then use

Lemma 1.4.10 to obtain E(H ·W )t(K ·W )t = E[H ·W,K ·W ]t = E
∫ t

0
HsKs ds. Applying

this reasoning to the case at hand, we find for 0 ≤ s ≤ t that

EXsXt = E

(∫ t

0

sinWu dWu

)(∫ s

0

sinWu dWu

)
= E

(∫ t

0

sinWu dWu

)(∫ t

0

1[[0,s]] sinWu dWu

)
= E

∫ t

0

sinWu1[[0,s]] sinWu du =

∫ s

0

E sin2Wu du.

By the double-angle formula, cos 2x = cos2 x− sin2 x = 1− 2 sin2 x, so sin2 x = 1
2 −

1
2 cos 2x.

Therefore, we obtain E sin2Wu = 1
2 −

1
2E cos 2Wu. Now recall that cosine is given by its

Taylor series cosx =
∑∞
n=0(−1)nx2n((2n)!)−1, with the series converging absolutely for all

x ∈ R. We have that |
∑k
n=0(−1)nx2n((2n)!)−1| ≤

∑∞
n=0 x

2n((2n)!)−1 ≤ exp(|x|), so as

E exp(|Wu|) is finite, we obtain by the dominated convergence theorem that

E cos 2Wu = E lim
k→∞

k∑
n=0

(−1)n(2Wu)2n

(2n)!

= lim
k→∞

E
k∑

n=0

(−1)n(2Wu)2n

(2n)!
=
∞∑
n=0

E
(−1)n(2Wu)2n

(2n)!
.
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With the notational convention that the product of zero factors equals one, we have

∞∑
n=0

E
(−1)n(2Wu)2n

(2n)!
=

∞∑
n=0

(−1)n22n

(2n)!
EW 2n

u =

∞∑
n=0

(−1)n22n

(2n)!
un

n∏
i=1

(2i− 1)

=

∞∑
n=0

(−1)n22n

(2n)!
un

(2n)!∏n
i=1(2i)

=
1

2

∞∑
n=0

(−1)n22n

n!2n
un = exp(−2u).

All in all, we conclude E sin2Wu = 1
2 −

1
2 exp(−2u), and we then finally obtain

Cov(Xs, Xt) =
1

2

∫ s

0

1− exp(−2u) du =
1

2

(
s−

(
1

2
− 1

2
exp(−2s)

))
=

s

2
− 1

4
+

1

4
exp(−2s).

�

Solution to exercise 2.27. Since we have(
∂

∂t
+

1

2

∂2

∂x2

)
exp( 1

2 t) sinx =
1

2
exp( 1

2 t) sinx− 1

2
exp( 1

2 t) sinx = 0,

it follows from Exercise 2.12 that the first process is in cM`. As for the second process, we

obtain by direct calculations that

∂

∂t
(x+ t) exp(−x− 1

2 t) = − 1
2x exp(−x− 1

2 t) +
∂

∂t
t exp(−x− 1

2 t)

= − 1
2x exp(−x− 1

2 t) + exp(−x− 1
2 t)−

1
2 t exp(−x− 1

2 t)

= exp(−x− 1
2 t)−

1
2 (x+ t) exp(−x− 1

2 t),

and

∂2

∂x2
(x+ t) exp(−x− 1

2 t) =

(
∂2

∂x2
x exp(−x− 1

2 t)

)
+ t exp(−x− 1

2 t)

=
∂

∂x

(
exp(−x− 1

2 t)− x exp(−x− 1
2 t)
)

+ t exp(−x− 1
2 t)

= −2 exp(−x− 1
2 t) + (t+ x) exp(−x− 1

2 t),

so we conclude that ∂
∂t + 1

2
∂2

∂x2 (x+ t) exp(−x− 1
2 t) is identically zero as well, and so Exercise

2.12 shows that (Bt + t) exp(−Bt − 1
2 t) is in cM` as well. �

Solution to exercise 2.28. Defining p(t, x) = x3 − 3tx and q(t, x) = x4 − 6tx2 + 3t2, we have

∂p

∂t
+

1

2

∂2p

∂x2
= −3x+ 1

2 (6x) = 0

∂q

∂t
+

1

2

∂2q

∂x2
= −6x2 + 6t+ 1

2 (12x2 − 12t) = 0,
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so it follows directly from Exercise 2.12 that both processes are in cM`. In order to show

that the processes are in cM, we recall that Exercise 2.12 also yields

p(t,Wt) =

∫ t

0

∂p

∂x
(s,Ws) dWs

q(t,Wt) =

∫ t

0

∂q

∂x
(s,Ws) dWs.

Using Exercise 2.6, we then obtain the result. �

B.3 Hints and solutions for Appendix A

Hints for exercise A.1. For the equivalence between uniform integrability and L1 boundedness

and c = 0, use Lemma A.2.3. For the asymptotic bound on E|Xn−X| when Xn
P−→ X and X

is integrable, fix ε > 0 and write E|Xn−X| = E1(|Xn−X|≤ε)|Xn−X|+E1(|Xn−X|>ε)|Xn−X|.
Prove the result by considering n so large that P (|Xn −X| > ε) ≤ ε. ◦

Hints for exercise A.2. Define Mn = 1
n

∑n
k=1Xk and put Fn = σ(Mn,Mn+1, . . .). Show

that (Mn) is a backwards martingale. To do so, first note that we have the relationship

E(nMn|Fn+1) = (n+1)Mn+1−nE(Xn+1|Fn+1), so that the backwards martingale property

may be obtained by calculating E(Xn+1|Fn+1). To obtain an experession for the condi-

tional expectation, first show E(Xn+1|Fn+1) = E(Xn+1|Mn+1). Afterwards, prove that

E(Xn+1|Mn+1) = E(Xk|Mn+1) almost surely for all k ≤ n + 1 and use this to identify

E(Xn+1|Mn+1).

Having shown that (Mn) is a backwards martingale, the backwards Martingale Convergence

Theorem shows that Mn converges almost surely and in L1 to some M∞. Use Kolmogorov’s

zero-one law to argue that M∞ is almost surely equal to ξ. ◦

Hints for exercise A.3. For any ε > 0, use Lemma A.2.3 to obtain a δ > 0 such that

whenever P (F ) ≤ δ, E1F |Xi| ≤ ε. Show that this δ satisfies that for any X ∈ A and

P (F ) ≤ δ, E1F |X| ≤ 2ε. ◦

Hints for exercise A.4. Use uniform integrability to find an increasing sequence (λk) of

positive numbers such that with Xk
n = Xn1(|Xn|≤λk), it holds that supnE|Xn −Xk

n| ≤ 2−k.

Use Lemma A.2.7 to recursively define sequences (Y kn )n≥1 with Y kn being a finite convex

combination of elements in {Xk
n, X

k
n+1, . . .} such that Y kn converges to Y k. By recursively

using the convex weights from the k’th sequence to obtain the weights for the k + 1’th
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sequence, ensure that E|Y k − Y k+1| ≤ 21−k and show that this implies that (Y k) converges

to Y in L1 for some integrable Y . Having now defined sequences (Y kn ) such that Y kn is a

finite convex combination of elements from {Xn, Xn+1, . . .} converging to Y k such that Y k

also converges to Y , use uniform integrability again to obtain a sequence of variables (Yn)

with Yn being a finite convex combination of elements from {Xn, Xn+1, . . .} such that Yn

converges to Y . ◦

Hints for exercise A.5. Consider first the square bracket process [M ]. To prove the martingale

property of M2 − [M ], apply the telescoping sum equality M2
n+1 =

∑n+1
k=1 M

2
k −M2

k−1 and

calculate E(M2
n+1 − [M ]n+1|Fn) manually. In order to obtain uniform integrability, use

Lemma A.3.4 to obtain that M2 is uniformly integrable. Use the monotone convergence

theorem and Lemma A.2.4 to show that [M ] is uniformly integrable as well, leading to

uniform integrability of M2 − [M ]. As regards the angle bracket process 〈M〉, show that

[M ]− 〈M〉 is a martingale and use this to obtain the desired results. ◦

Hints for exercise A.6. Consider first the case p = 1
2 . Prove that P (Ta = T−a) = 0 by

showing that P (Ta = T−a = ∞) is zero. This may be done by first applying the Borel-

Cantelli Lemma to show that |Zn| ≥ k infinitely often with probability one. Having obtained

this, we find P (Ta > T−a) = 1 − P (Ta < T−a). Use a symmetry argument to show that

P (Ta < T−a) = P (Ta > T−a), implying P (Ta > T−a) = 1
2 .

Regarding the case of p 6= 1
2 , define Mn = cZn and Fn = σ(X1, . . . , Xn). Show that M

is a martingale and use the strong law of large numbers to show that M is almost surely

convergent to zero. Use the optional sampling theorem on Ta ∧ T−a to obtain an equation

for P (Ta > T−a) yielding the desired result. ◦

Hints for exercise A.7. In order to prove the implication that whenever Xt converges in L1

to X, (Xt) is uniformly integrable, apply Lemma A.2.3. To do so, pick ε > 0. Take u ≥ 0 so

large that E|Xt −X| ≤ ε
2 . Use uniform continuity of t 7→ Xt on compact intervals to obtain

η > 0 such that whenever s, t ∈ [0, u] with |t− s| ≤ η, then E|Xt −Xs| ≤ ε
2 . Combine these

results and the fact that finite families of variables are uniformly integrable to obtain the

result. ◦

Hints for exercise A.8. Fix p ≥ 1. With X being the limit of Xn in probability, show that X

can be taken to be bounded and use Lemma A.2.4 and Lemma A.2.5 to obtain convergence

in Lp. ◦

Hints for exercise A.9. Apply Fatou’s lemma to the sequence (λ − Xn1(Xn≤λ))n≥1, and



122 Hints and solutions for exercises

rearrange to obtain a result close to the objective. Apply uniform integrability to finalize the

proof. ◦

Solution to exercise A.1. First assume that the integrability index is zero and that (Xn) is

bounded in L1. Then, for any ε > 0, it holds that c < ε and so there exists δ such that

supF :P (F )≤δ supn≥1E1F |Xn| ≤ ε. In particular, for any F ∈ F with P (F ) ≤ δ, we have

E1F |Xn| ≤ ε. By Lemma A.2.3, (Xn) is uniformly integrable. Conversely, assume that

(Xn) is uniformly integrable. Using Lemma A.2.3, we know that for any ε > 0, we may

find δ ≥ 0 such that whenever P (F ) ≤ δ, E1F |Xn| ≤ ε for all n ≥ 1, so that in particular

supP (F )≤δ supnE1F |Xn| ≤ ε. Therefore, c ≤ ε, and as ε > 0 was arbitrary, c = 0. Lemma

A.2.3 also shows that (Xn) is bounded in L1. This shows that (Xn) is uniformly integrable

if and only if c = 0 and (Xn) is bounded in L1.

Now assume that Xn
P−→ X. Fix ε > 0, we then obtain

lim sup
n

E|Xn −X| = lim sup
n

E1(|Xn−X|≤ε)|Xn −X|+ lim sup
n

E1(|Xn−X|>ε)|Xn −X|

≤ ε+ lim sup
n

E1(|Xn−X|>ε)|Xn −X|

≤ ε+ lim sup
n

E1(|Xn−X|>ε)|X|+ lim sup
n

E1(|Xn−X|>ε)|Xn|.

Now, as Xn
P−→ X, it holds that P (|Xn−X| > ε) tends to zero. And by Lemma A.2.4, as X

is integrable, the one-variable family {X} is uniformly integrable. Lemma A.2.3 then shows

that lim supnE1(|Xn−X|>ε)|X| = 0. As regards the final term in the above, we know that for n

large enough, P (|Xn−X| > ε) ≤ ε, and so lim supnE1(|Xn−X|>ε)|Xn| ≤ supP (F )≤εE1F |Xn|.
All in all, we obtain lim supnE|Xn −X| ≤ ε+ supP (F )≤εE1F |Xn| for all positive ε. Taking

infimum over all such ε, we obtain lim supnE|Xn −X| ≤ c, as was to be proven. �

Solution to exercise A.2. DefineMn = 1
n

∑n
k=1Xk and put Fn = σ(Mn,Mn+1, . . .). We claim

that (Mn) is a backwards martingale with respect to (Fn). Clearly, Mn is Fn measurable,

and we have

E(nMn|Fn+1) = E((n+ 1)Mn+1 − nXn+1|Fn+1)

= (n+ 1)Mn+1 − nE(Xn+1|Fn+1)

In order to calculate the conditional expectation, note that Mn+1 = n
n+1Mn + 1

n+1Xn+1.

Therefore, we obtain Fn = σ(Mn,Mn+1, . . .) = σ(Mn, Xn+1, Xn+2, . . .) and in particualar

Fn+1 = σ(Mn+1, Xn+2, Xn+3, . . .). Therefore, the sets of type A ∩ B where A ∈ σ(Mn+1)

and B ∈ σ(Xn+2, Xn+3, . . .) form a generating class for Fn+1, stable under intersections, and
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for such A and B,

E1A∩BE(Xn+1|Fn+1) = E1A∩BXn+1 = E1B1AXn+1 = P (B)E1AXn+1

= P (B)E1AE(Xn+1|Mn+1) = E1A∩BE(Xn+1|Mn+1).

As the set of F ∈ Fn+1 such that E1FE(Xn+1|Fn+1) = E1FE(Xn+1|Mn+1) is a Dynkin

class, Lemma A.1.19 shows that for all F ∈ Fn+1, E1FE(Xn+1|Fn+1) = E1FE(Xn+1|Mn+1),

so that E(Xn+1|Fn+1) = E(Xn+1|Mn+1). Now note that for 1 ≤ k ≤ n + 1, the vari-

ables (Xk,Mn+1) have the same distribution. In particular, for any A ∈ σ(Mn+1), we find

E1AE(Xk|Mn+1) = E1AXk = E1AXn+1 = E1AE(Xn+1|Mn+1), allowing us to conclude

E(Xn+1|Mn+1) = E(Xk|Mn+1) for all k ≤ n+ 1, and therefore we obtain

E(Xn+1|Mn+1) =
1

n+ 1

n+1∑
k=1

E(Xk|Mn+1) = E(Mn+1|Mn+1) = Mn+1,

finally showing that E(nMn|Fn+1) = nMn+1, so that E(Mn|Fn+1) = Mn and so (Mn) is

a backwards martingale. By the backwards Martingale Convergence Theorem A.3.6, Mn is

convergent almost surely and in L1 to some variable M∞.

It remains to prove that M∞ is almost surely equal to ξ. To this end, first note that for

any m ≥ 1, we have limnMn = limn
1
n

∑n
k=1Xk = limn

1
n

∑n
k=m+1Xk, so we conclude that

M∞ ∈ σ(Xm, Xm+1, . . .) for all m. Thus, M∞ is measurable with respect to the tail-σ-algebra

∩∞n=1σ(Xn, Xn+1, . . .) of (Xn). By Kolmogorov’s zero-one law, every element of this σ-algebra

all have probability zero or one, and therefore P (M∞ ∈ A) is either zero or one for all A ∈ B.

We claim that this implies that M∞ is almost surely constant. To see this, note that for any

t ∈ R, P (M∞ ≤ t) is either zero or one. Letting α = sup{t ≥ 0 | P (M∞ ≤ t) = 0}, we find

that P (M∞ < α) = 0 and P (M∞ ≤ α+ ε) = 1 for all ε > 0. By the continuity properties of

probability measures, P (M∞ ≤ α) = 1, and we conclude that P (M∞ = α) = 1. Therefore,

M∞ is almost surely equal to α. Therefore, from the convergence of Mn to M∞ in L1, we

obtain in particular that α = EM∞ = limnEMn = ξ, so M∞ is almost surely equal to ξ, as

desired. This proves that 1
nMn converges to ξ almost surely and in L1. �

Solution to exercise A.3. We use Lemma A.2.3. Pick ε > 0 and let δ > 0 be such that

whenever P (F ) ≤ δ, then E1F |Xi| ≤ ε for all i ∈ I. Let F ∈ F with P (F ) ≤ δ be

given, let X ∈ A and let (Xin) be a sequence in (Xi)i∈I converging in L1 to X. Then

E||X| − |Xin || ≤ E|X −Xin | by the reverse triangle inequality, so |Xin | converges to |X| in

L1as well, and so 1F |Xin | converges to 1F |X| in L1. In particular, the means converge. We

may then pick m so that whenever n ≥ m, E1F |X| ≤ ε+E1F |Xin |, and for such n, we find

E1F |X| ≤ ε + E1F |Xin | ≤ 2ε. Also, as Xin converges in L1 to X, E|X| ≤ supi∈I E|Xi|, so

A is bounded in L1. By Lemma A.2.3, A is uniformly integrable. �
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Solution to exercise A.4. From Lemma A.2.7, we know that the result holds in the case

where (Xn) bounded in L2. We will prove the extended result by a truncation argument. By

uniform integrability, limλ→∞ supnE|Xn−Xn1(|Xn|≤λ)| = limλ→∞ supnE|Xn|1(|Xn|>λ) = 0.

Therefore, there exists an increasing sequence (λk) tending to infinity such that by defining

Xk
n = Xn1(|Xn|≤λk), we have supnE|Xn−Xk

n| ≤ 2−k. Then (Xk
n)n≥1 is a sequence bounded

in L2 for any k. We will recursively define sequences (Y kn ) such that Y kn is a finite convex

combination of elements in {Xn, Xn+1, . . .} and such that Y kn converges in L1 to Y k, where

(Y k) is a sequence itself convergent in L1. This will allow us to prove the desired result.

By Lemma A.2.7, there is a sequence (Y 1
n ) such that Y 1

n is a finite convex combination of

elements in {X1
n, X

1
n+1, . . .} and such that Y 1

n converges in L2 to some variable Y 1, in par-

ticular we also have convergence in L1. Assume now that the k’th sequence (Y kn )n≥1 with

corresponding L1 limit Y k has been defined, we construct the k + 1’th sequence. Since Y kn

is a finite convex combination of elements in {Xk
n, X

k
n+1, . . .}, Y kn =

∑Kk
n

i=n(λkn)iX
k
i for some

convex weights. Define Rk+1
n =

∑Kk
n

i=n(λkn)iX
k+1
i , then (Rk+1

n ) is a pointwisely bounded se-

quence, in particular it is bounded in L2. Therefore, again applying what was already proven,

there exists a sequence (Y k+1
n ) of variables with Y k+1

n being a finite convex combination of el-

ements in {Rk+1
n , Rk+1

n+1, . . .}, converging to some limit Y k+1. Thus, for some convex weights,

we have Y k+1
n =

∑Mk+1
n

j=n (µkn)jR
k+1
j =

∑Mk+1
n

j=n (µkn)j
∑Kk

j

i=j(λ
k
j )iX

k+1
i , and in particular, Y k+1

n

is a finite convex combination of elements in {Xk+1
n , Xk+1

n , . . .}. Now, as we have

E

∣∣∣∣∣∣Y k −
Mk+1

n∑
j=n

(µkn)jY
k
j

∣∣∣∣∣∣ = E

∣∣∣∣∣∣
Mk+1

n∑
j=n

(µkn)j(Y
k − Y kj )

∣∣∣∣∣∣ ≤
Mk+1

n∑
j=n

(µkn)jE|Y k − Y kj |,

we find that the sequence
∑Mk+1

n
j=n (µkn)jY

k
j also converges to Y k. Thus, summing up our re-

sults,
∑Mk+1

n
j=n (µkn)j

∑Kk
j

i=j(λ
k
j )iX

k+1
i converges in L1 to Y k+1 and

∑Mk+1
n

j=n (µkn)j
∑Kk

j

i=j(λ
k
j )iX

k
i

converges in L1 to Y k. Therefore,

E|Y k − Y k+1| = lim
n
E

∣∣∣∣∣∣
Mk+1

n∑
j=n

(µkn)j

Kk
j∑

i=j

(λkj )i(X
k
i −Xk+1

i )

∣∣∣∣∣∣
≤ lim

n

Mk+1
n∑
j=n

(µkn)j

Kk
j∑

i=j

(λkj )iE|Xk
i −Xk+1

i |,

and as supnE|Xk
n−Xk+1

n | ≤ supnE|Xn−Xk
n|+ supnE|Xn−Xk+1

n | ≤ 2−(k+1), we conclude

E|Y k − Y k+1| ≤ 21−k. In particular, (Y k) is a Cauchy sequence in L1, therefore convergent

in L1 to some integrable variable Y . We have now proven the existence of sequences (Y kn )n≥1

such that Y kn ∈ conv{Xk
n, X

k
n+1, . . .} and such that Y kn converges in L1 to Y k, where Y k
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converges in L1 to Y . We will now use these results to obtain a sequence (Yn) such that Yn is

a finite convex combination of elements in {Xn, Xn+1, . . .} and Yn converges in L1 to Y . To

this end, recall that for any m and k, we have Y km =
∑Kk

m
i=m(λkm)iX

k
i for some convex weights

(λkm)i. Define Zkm by putting Zkm =
∑Kk

m
i=m(λkm)iXi, we then obtain

E|Y − Zkm| ≤ E|Y − Y k|+ E|Y k − Y km|+ E|Y km − Zkm|

≤ E|Y − Y k|+ E|Y k − Y km|+
Km∑
i=m

(λkm)iE|Xk
i −Xi|

≤ E|Y − Y k|+ E|Y k − Y km|+ sup
i
E|Xi|1(|Xi|>k).

By our previous results, the first term tends to zero as k tends to infinity, and by uniform

integrability, the last term tends to zero as k tends to infinity. Therefore, we may for each

n select kn so large that the first and last terms are less than 1
n each. Then, we may fix

mn ≥ n such that E|Y kn − Y knmn
| is less than 1

n . We then obtain E|Y − Zknmn
| ≤ 3

n , where

Zknmn
is a convex combination of elements from {Xn, Xn+1, . . .}. This concludes the proof. �

Solution to exercise A.5. We first consider the case of the square bracket process. By

inspection, [M ] is increasing and adapted. Since M is zero at zero, we obtain for n ≥ 1,

M2
n − [M ]n =

n∑
k=1

M2
k −M2

k−1 −
n∑
k=1

(Mk −Mk−1)2

=

n∑
k=1

M2
k −M2

k−1 −
n∑
k=1

M2
k − 2MkMk−1 +M2

k−1

= 2

n∑
k=1

Mk−1(Mk −Mk−1),

and in particular,

E(M2
n+1 − [M ]n+1|Fn) = M2

n − [M ]n + 2E(Mn(Mn+1 −Mn)|Fn) = M2
n − [M ]n,

As we also have E(M2
1 − [M ]1|F0) = 0, M2 − [M ] is a martingale with initial value zero. In

order to obtain uniform integrability, note that by Lemma A.3.4, Mn is convergent almost

surely and in L2 to some variable M∞, and EM∗2∞ is finite. As M2
n ≤M∗2∞ for all n, Lemma

A.2.4 shows that (M2
n)n≥1 is uniformly integrable. Furthermore, as [M ] is increasing, [M ]

converges almost surely to a limit [M ]∞ in [0,∞]. By the monotone convergence theorem,

E[M ]∞ = limnE[M ]n = limnEM
2
n ≤ EM∗2∞ , which is finite. Thus, [M ]∞ is integrable.

As [M ]n ≤ [M ]∞ for all n, we find, again by Lemma A.2.4, that ([M ]n)n≥1 is uniformly

integrable, and so M2 − [M ] is uniformly integrable.
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We next turn to the case of the angle bracket process. Clearly, 〈M〉 is increasing. Further-

more, using what we already have shown, we find that for any n,

E([M ]n+1 − 〈M〉n+1|Fn) = E([M ]n+1|Fn)− 〈M〉n+1

= E(M2
n+1|Fn)− (M2

n+1 − [M ]n+1|Fn)− 〈M〉n+1

= E(M2
n+1|Fn)− (M2

n − [M ]n)− 〈M〉n+1

= E(M2
n+1 −M2

n|Fn) + [M ]n − 〈M〉n+1

= [M ]n − 〈M〉n,

and as E([M ]1−〈M〉1|F0) = 0, we find that [M ]−〈M〉 is a martingale with initial value zero.

Therefore, as M2− [M ] is a martingale with initial value zero, M2−〈M〉 is a martingale with

intial value zero as well. As regards uniform integrability, we find that as in the previous

case, it suffices to check that 〈M〉 is uniformly integrable. As 〈M〉 is increasing, it has an

almost sure limit 〈M〉∞, and the monotone convergence theorem along with the martingale

property of [M ]−〈M〉 shows that E〈M〉∞ = limnE〈M〉n = limnE[M ]n = E[M ]∞, which is

finite. Thus, 〈M〉∞ is integrable, and by Lemma A.2.4, 〈M〉 is uniformly integrable, showing

that M2 − 〈M〉 is uniformly integrable. �

Solution to exercise A.6. First consider the case p = 1
2 . We first show P (Ta = T−a) = 0.

Note P (Ta = T−a) = P (Ta = T−a = ∞) = P ( ∀ n : |Zn| < a). For any k, it holds that

P (Z(n+1)k − Znk = k) = P (Zk = k) = P (X1 = 1, . . . , Xk = 1) = 2−k and the sequence of

variables (Z(n+1)k − Znk)n≥1 are independent. Therefore, as
∑∞
n=1 P (Z(n+1)k − Znk = k)

is divergent and the events (Z(n+1)k − Znk = k) are independent, the Borel-Cantelli lemma

shows that Z(n+1)k − Znk = k infinitely often with probability one. As this holds for all

k, we also have that for all k, |Zn| ≥ k infinitely often with probability one, in particular

P ( ∀ n : |Zn| < a) = 0 and so P (Ta = T−a) = 0.

We may then define the auxiliary variables X ′n = −Xn, Z ′n =
∑n
k=1X

′
k and the stopping

times T ′a = inf{n ≥ 1|Z ′n = a}, Ta− = inf{n ≥ 1|Z ′n = −a}. As (Zn)n≥1 has the same

distribution as (−Zn)n≥1, we then find that (T ′a, T
′
−a) has the same distribution as (Ta, T−a).

However, we also have T ′a = T−a and T ′−a = Ta, so

P (Ta > T−a) = 1− P (Ta ≤ T−a) = 1− P (Ta < Ta−) = 1− P (T ′−a < T ′a)

= 1− P (T−a < Ta) = 1− P (Ta > T−a),

so P (Ta > T−a) = 1
2 .

Next, we consider the case p 6= 1
2 . Our plan is to identify a martingale related to the

sequence (Zn) and use the optional sampling theorem. Note that we always have c > 0, so
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we may define a process (Mn) by putting Mn = cZn . Putting Fn = σ(X1, . . . , Xn), we claim

that (Mn) is a martingale with respect to (Fn). As Fn = σ(Z1, . . . , Zn) as well, Mn is Fn
measurable. As |Zn| ≤ n, we find |Mn| ≤ cn and so Mn is integrable. Furthermore, as Xn+1

is independent of X1, . . . , Xn, E(Mn+1|Fn) = MnE(cXn+1 |Fn) = Mn(cp+c−1(1−p)) = Mn,

proving that (Mn) is a martingale. Furthermore, by the strong law of large numbers, 1
nZn

converges almost surely to 2p− 1, the common mean of the elements of the sequence (Xn).

Therefore, if p > 1
2 , Zn

a.s.−→ ∞ and as c < 1 in this case, Mn
a.s.−→ 0. If p < 1

2 , Zn
a.s.−→ −∞,

and in this case c > 1, so Mn
a.s.−→ 0 as well. In both cases, Mn converges almost surely to its

limit M∞, which is zero.

We are now ready to prove the results on the stopping times. We first argue that we never

have Ta = T−a. As noted before, if p > 1
2 , Zn

a.s.−→∞ and if p < 1
2 , Zn

a.s.−→ −∞, so we always

have that either Ta or T−a is finite. Therefore, if Ta = T−a, we have that both are finite and

so a = ZTa
= ZT−a

= −a, which is impossible. Therefore, P (Ta = T−a) = 0.

Now put S = Ta ∧ T−a. We then have MS = ca when Ta < T−a and MS = c−a when

T−a < Ta. In particular, |MS | ≤ ca, so MS is integrable and as P (Ta = T−a) = 0, we find

EMS = caP (Ta < T−a) + c−aP (T−a < Ta). As we also have |Mn∧S | ≤ ca, applying the

dominated convergence theorem and the optional sampling theorem allows us to conclude

that EMS = E limnMn∧S = limnEMn∧S = 1. Using that P (T−a < Ta) = 1−P (Ta < T−a),

we thus find

1 = caP (Ta < T−a) + c−a(1− P (Ta < T−a))

= (ca − c−a)P (Ta < T−a) + c−a,

which shows

P (Ta < T−a) =
1− c−a

ca − c−a
=

ca − 1

c2a − 1
=

1− ca

1− c2a
,

as desired. For completeness, we check manually that the expression obtained is a number

between zero and one. Note that when p > 1
2 , c < 1 and so 0 < c2a < ca < 1, yielding

0 < 1 − ca < 1 and 0 < 1 − c2a < 1, so that 0 < 1−ca
1−c2a <

1−c2a
1−c2a = 1 and when p < 1

2 , c > 1

so that 1 < ca < c2a, and then 1− c2a < 1− ca < 0, proving that 0 < 1−ca
1−c2a < 1 in this case

as well. �

Solution to exercise A.7. From Lemma A.2.5, we know that if (Xt) is uniformly integrable

and converges in probability to X, then Xt converges in L1 to X. We need to prove the

other implication.

Therefore, assume that Xt converges in L1 to some integrable variable X. We apply Lemma

A.2.3. First fix u ≥ 0 so large that, say, E|X −Xt| ≤ 1 when t ≥ u. We then obtain that
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(Xt)t≥u is bounded in L1, as E|Xt| ≤ E|X| + 1 for t ≥ u. As X is continuous and [0, t]

is compact, we find that (Xt)t≤u is bounded in L1 as well, since continuous functions are

bounded over compact sets. We may now conclude that (Xt)t≥0 is bounded, and so the first

criterion in Lemma A.2.3 is satisfied.

Next, pick ε > 0. We will find a δ > 0 satisfying the requirement given in Lemma A.2.3.

Fix u ≥ 0 so large that E|X − Xt| ≤ ε
2 whenever t ≥ u. As the set [0, u] is compact, our

continuity assumption on t 7→ Xt ensures that t 7→ Xt is uniformly continuous on [0, u]. Pick

η > 0 such that whenever s and t are in [0, u] with |s − t| ≤ η, we have E|Xt − Xs| ≤ ε
2 .

Now let m be so large that ηm ≥ u. From Lemma A.2.4, we know that the finite family

{X0, Xη, X2η, . . . , Xmη, X} is uniformly integrable. Using Lemma A.2.3, we may then pick

δ > 0 such that whenever F ∈ F with P (F ) ≤ δ, we have E1F |X| ≤ ε
2 and E1F |Xiη| ≤ ε

2

for i = 0, . . . ,m.

We claim that this δ > 0 satisfies that whenever F ∈ F with P (F ) ≤ δ, it holds for all t ≥ 0

that E1F |Xt| ≤ ε. To see this, consider some t ≥ 0. First assume that t ≥ u. In this case,

we have E1F |Xt| ≤ E|Xt −X|+E1F |X| ≤ ε. If we instead have t ≤ u, there is i ∈ N0 with

i ≤ m such that iη ≤ t ≤ (i+ 1)η. We then obtain E1F |Xt| ≤ E|Xt −Xiη|+E1F |Xiη| ≤ ε.
Lemma A.2.3 now shows that (Xt)t≥0 is uniformly integrable, as was to be proven. �

Solution to exercise A.8. Assume that Xn converges in probability to some variable X. As

(Xn) is bounded, X is almost surely bounded. By changing X on a null set, we may assume

that X is in fact bounded. Fix p ≥ 1. We then have that Xn −X converges in probability

to zero, so |Xn − X|p converges in probability to zero as well. As (Xn) is bounded and X

is bounded, |Xn −X|p is bounded as well, so |Xn −X|p is uniformly integrable by Lemma

A.2.4 and thus converges to zero in L1 by Lemma A.2.5. This shows that Xn converges in

Lp to X. �

Solution to exercise A.9. Since (Xn) is uniformly integrable, it holds that

0 ≤ lim
λ→∞

sup
n
EXn1(Xn>λ) ≤ lim

λ→∞
sup
n
E|Xn|1(|Xn|>λ) = 0

Let ε > 0 be given, we may then pick λ so large that EXn1(Xn>λ) ≤ ε for all n. Now, the

sequence (λ−Xn1(Xn≤λ))n≥1 is nonnegative, and Fatou’s lemma therefore yields

λ− E lim sup
n

Xn1(Xn≤λ) = E lim inf
n

(λ−Xn1(Xn≤λ))

≤ lim inf
n

E(λ−Xn1(Xn≤λ))

= λ− lim sup
n

EXn1(Xn≤λ).
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The terms involving the limes superior may be infinite and are therefore a priori not amenable

to arbitrary arithmetic manipulation. However, by subtracting λ and multiplying by minus

one, we may still conclude that lim supnEXn1(Xn≤λ) ≤ E lim supnXn1(Xn≤λ). As we have

ensured that EXn1(Xn>λ) ≤ ε for all n, this yields

lim sup
n

EXn ≤ ε+ E lim sup
n

Xn1(Xn≤λ) ≤ ε+ E lim sup
n

Xn,

and as ε > 0 was arbitrary, the result follows. �
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cM, 10
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Borel, 2
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cV, 29

cVi, 29

Brownian motion, 10

(Ft), 10, 86

(Ft+), 86

properties, 11

quadratic variation, 30

Continuous semimartingale, 38

quadratic variation, 39

stability properties, 39

uniqueness of decomposition, 38

Convergence

almost surely, 76

in Lp, 76

in probability, 76

Doob’s L2 inequality, 20

Dynkin’s lemma, 75

Evanescent set, 3

Filtration, 2

Finite variation function, 68

decomposition, 68

integration, 69

integration-by-parts formula, 70

Fubini’s theorem, 72

Integration-by-parts formula, 54

Itô’s formula, 56

Komatsu’s lemma, 18

Kunita-Watanabe inequality, 34

Martingale

continuous-time, 9

convergence, 13

discrete-time, 81

evanescence, 28

finite variation, 19

local, 27
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localising sequence, 27

optional sampling theorem, 15

quadratic variation, 24, 29

Riesz’ representation theorem, 23

square-integrable, 20

stopped, 17

submartingale, 9

supermartingale, 9

Mazur’s lemma, 80

Measure

Integration, 72

Jordan-Hahn decomposition, 65

signed, 65

Partition, 53

mesh, 53

Probability space

completion, 83

filtered, 2

usual augmentation, 85

usual conditions, 2

Quadratic variation

approximation, 55

existence, 29

properties, 30

semimartingale, 39

semimartingale properties, 40

square-integrability, 32

Stochastic integral

domain, 47

dominated convergence, 52

existence, 41, 45, 48

for adapted and continuous processes, 47

properties, 48

Riemann approximation, 53

Stochastic process, 2

adapted, 3

continuous, 3

evanescent, 3

indistinguishable, 2

initial value, 2

measurable, 3

modifications, 2

progressive, 3

sample paths, 2

stopped, 5

versions, 2

Stopping time, 5

σ-algebra, 5

bounded, 5

finite, 5

stability properties, 5

Taylor’s theorem, 74

Tonelli’s theorem, 72

Uniform integrability, 76

and L1 convergence, 78

and conditional expectations, 79

characterisation, 76

properties, 77


